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Abstract

Background—Adenomatous polyps are the most common precursor to colorectal cancer (CRC), 

the second leading cause of cancer death in the United States. We sought to learn more about early 

events of carcinogenesis by investigating shifts in the gut microbiota of patients with adenomas.

Methods—We analyzed 16S rRNA gene sequences from the fecal microbiota of patients with 

adenomas (n=233) and without (n=547).

Results—Multiple taxa were significantly more abundant in patients with adenomas, including 

Bilophila, Desulfovibrio, pro-inflammatory bacteria in the genus Mogibacterium, and multiple 

Bacteroidetes species. Patients without adenomas had greater abundances of Veillonella, 

Firmicutes (Order Clostridia), and Actinobacteria (family Bifidobacteriales). Our findings were 

consistent with previously reported shifts in the gut microbiota of CRC patients. Importantly, the 
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altered adenoma profile is predicted to increase primary and secondary bile acid production, as 

well as starch, sucrose, lipid, and phenylpropanoid metabolism.

Conclusions—These data hint that increased sugar, protein, and lipid metabolism along with 

increased bile acid production could promote a colonic environment that supports the growth of 

bile-tolerant microbes such as Bilophilia and Desulfovibrio. In turn, these microbes may produce 

genotoxic or inflammatory metabolites such as H2S and secondary bile acids, which could play a 

role in catalyzing adenoma development and eventually CRC.

Impact—This study suggests a plausible biological mechanism to explain the links between shifts 

in the microbiota and CRC. This represents a first step toward resolving the complex interactions 

that shape the adenoma-carcinoma sequence of CRC and may facilitate personalized therapeutics 

focused on the microbiota.
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1. Introduction

Adenomatous polyps, or adenomas, have long been recognized as a critical precursor to 

colorectal cancer (CRC) (1, 2), the second leading cause of cancer deaths in the United 

States (3). Although screening (4–6) and lifestyle (7–10) play important roles in CRC 

prevention, identifying a causal mechanism of mutagenesis is essential to understand the 

adenoma-carcinoma sequence and to develop new and personalized prevention strategies. 

The gut microbiota has recently been implicated in adenoma and CRC pathogenesis (11, 12) 

and offers a promising avenue for personalized prevention (13). Importantly, many of the 

risk factors for CRC—including diet (high red meat / high fat / low fiber) (8, 14), obesity 

(15), physical activity (10), smoking (7), and alcohol use (9)—also have significant effects 

on the gut microbial community (16). Because the gut microbiota alters the metabolic 

environment of the host, it may directly or indirectly influence mutagenesis rates (11, 17), 

and thus carcinogenesis.

Previous studies on the microbiome of individuals with adenomas have identified many 

microbes associated with these particular polyps (Table 1). However, most of these studies 

lack functional analyses necessary to suggest a mechanistic link between microbiota, 

adenoma development, and carcinogenesis. Microbial functionality, which can be predicted 

based on microbial genomes, provides greater insight into the microbial ecology of the colon 

by not only indicating what taxa are differentially abundant, but also the putative function of 

these taxa (18). Without functional analyses, it is difficult to elucidate the role of microbes in 

the adenoma-carcinoma sequence because microbial taxa associated with adenomas and 

CRC vary widely by study (11, 12). Additionally, many subject cohorts are relatively 

underpowered, ranging in size from 6 to 67 individuals with adenomas (see Table 1), making 

it even more difficult to identify subtle microbial or functional changes that may be 

underlying adenoma/CRC pathogenesis. Moreover, meta-analysis on these data is 

particularly challenging due to multiple biases attributed to extraction methods (19), PCR 

regions (20), and collection protocols (21). As such, a well-powered study with a uniform 
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collection/extraction protocols and functional analyses is needed to more definitively probe 

the link between the microbial community and adenoma development.

In this study, we compared the fecal microbiota of patients with (n=233) and without 

adenomas (n=547). Our aim was twofold: to determine whether gut microbial communities 

can be used to predict the presence of adenomas and to elucidate the microbial ecology 

underlying the adenoma-carcinoma sequence. Here we report significant shifts in the gut 

microbiota composition of patients with adenomas and use these changes and their predicted 

functional consequences to propose a model linking diet, gut microbes, and the development 

of adenomas, the precursors to CRC.

2. Materials and Methods

2.1 Subject enrollment

Fecal samples (n=780) were selected from a freezer archive of stools collected without 

preservative buffer. All stool samples came from patients presenting for standard screening 

colonoscopy between 2001–2005 at multiple medical centers, including the Mayo Clinic, 

Rochester, MN; Kaiser Permanente in Sacramento and Oakland, CA; Oregon Health & 

Science University, Portland, OR; University of Colorado Health Sciences Center, Denver, 

CO; Roswell Park Cancer Institute, Buffalo, NY; Indiana University Medical Center, 

Indianapolis, IN; and other North Central Cancer Treatment Group institutions (22). All 

patients were 50–80 years old and were voluntarily enrolled prior to presenting for 

colonoscopy (Fig. 1). Exclusion criteria for the original study comprised premenopausal 

women, hematochezia or melena within the month prior to enrollment, prior colorectal 

resection, coagulopathy or anticoagulant use, chemotherapy within 3 months of enrollment, 

contraindications to colonoscopy, inability to desist from therapeutic doses of nonsteroidal 

anti-inflammatory drugs (NSAIDS), aerodigestive cancer within 5 years of enrollment, a 

fecal occult blood test within the year prior to enrollment, and colorectal evaluation (e.g., 

sigmoidoscopy or colonoscopy) within 10 years of enrollment. Patients at high risk for CRC

—including patients with familial adenomatous polyposis, cancer syndromes, inflammatory 

bowel disease, prior CRC or adenomas, or ≥2 first-degree relatives with CRC—were also 

excluded.

Standard diagnostic colonoscopies were performed on all patients and included intravenous 

sedation (unless otherwise requested); inspection of the colonic mucosal surfaces up to the 

point of the cecum; and lesion assessment, including recording the location, size, number, 

and architecture all polypoid lesions. All polyps/lesions removed from the colon were 

submitted for histological classification and reviewed by the same pathologist. Fecal 

samples from patients in which at least one adenoma > 1 cm was identified were included in 

the “adenoma” group. Fecal samples from patients with no polyps were included in the 

“non-adenoma” group. Fecal samples from patients who were diagnosed with CRC were 

excluded from analysis.

Approval for this study was granted by the Mayo Clinic’s Institutional Review Board. Fecal 

samples were collected under protocol #15-004021, from patients who had previously 
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enrolled under protocol #532-00, undergone standard screening colonoscopies, and given 

consent for the use of their samples in future research studies.

2.2 Sample collection and processing

Fecal samples were self-collected by patients after enrollment and up to 3 months prior to 

bowel preparation and colonoscopy. Samples were collected in a bucket container mounted 

to a toilet seat. Promptly after defecation, whole stools were express shipped on ice in 

insulated containers to a central lab where they were immediately archived at −80°C until 

further processing. Samples received >48 hours after defecation were disqualified. In 

preparation for DNA extraction, a 4-mm biopsy punch (Miltex, York, PA, USA) was used to 

collect a core sample from the still-frozen feces. The frozen fecal core was immediately 

transferred into Chemagic lysis buffer (PerkinElmer, Baesweiler, Germany). DNA extraction 

was performed on a Chemagic MSM I (PerkinElmer), using the Chemagic DNA blood 

special kit (PerkinElmer). DNA quantification and amplification was performed as 

previously described (23). The 16S rRNA sequencing library was constructed at the 

University of Minnesota Genomics Center, and sequencing was performed at the Mayo 

Clinic Medical Genomics Facility, on a MiSeq using a MiSeq Reagent Kit v3 (2 × 300, 600 

cycles, Illumina Inc., San Diego, CA, USA).

2.3 Sequence processing

After sequencing, adapter-primer sequences were removed from reads as previously 

described (23). Sequences were then processed via the IM-TORNADO bioinformatics 

pipeline, using a 97% identity threshold to assign operational taxonomic units (OTUs) (24). 

Paired R1 and R2 reads were analyzed. In total, 17,579,026 reads passed quality control. 

Singleton OTUs as well as samples with less than 2,000 reads were removed. Sequencing 

data are available at SRA Study accession SRP070783.

2.4 Statistical analyses

2.4.1 α-diversity and β-diversity—To compare the microbial communities of the 

adenoma and non-adenoma groups, we summarized microbiota data using both α-diversity 

and β-diversity measures. Two α-diversity metrics were used, the observed OTU number 

and the Shannon index. The observed OTU number reflects species richness, whereas the 

Shannon index places more weight on species evenness. β-diversity, by contrast, indicates 

the shared diversity between bacterial populations in terms of ecological distance; different 

distance metrics provide distinctive views of community structure. Two β-diversity 

measures, unweighted and weighted UniFrac distances, were calculated using the OTU table 

and a phylogenetic tree (with the “GUniFrac” function in the R package GUniFrac) (16). 

The unweighted UniFrac reflects differences in community membership (i.e., the presence 

or absence of an OTU), whereas the weighted UniFrac mainly captures differences in 

abundance. Rarefaction was performed on the OTU table before calculating the distances.

To assess the association between adenoma status and α-diversity, we fitted a linear 

regression model to the α-diversity metrics after rarefaction, adjusting for technical 

covariates such as sequencing batch. A Wald test was used to determine significance. To 

assess the association between adenoma status and β-diversity measures, we used the 
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recently proposed MiRKAT, which is a kernel-based association test based on ecological 

distance matrices (25). We also used MiRKAT to assess the relationship between polyp 

characteristics (size, number, location, architecture, histology) and β-diversity measures. In 

individuals with multiple polyps, a single polyp location was chosen at random, and the 

most severe architecture and histology per patient were selected for analysis. MiRKAT 

produces analytic p-values for individual distance metrics, as well as a permutation-based 

omnibus p-value that combines multiple distance metrics, for a more robust and powerful 

assessment of significance. For the omnibus test, significance was assessed using 1,000 

permutations, and the covariate - sequencing batch - was adjusted if necessary. Ordination 

plots were generated using principal coordinate analysis as implemented in R (“cmdscale” 

function in the R ‘vegan’ package).

2.4.2 Differential abundance analysis—We conducted differential abundance analysis 

at the phylum, class, order, family, and genus levels, and we filtered out taxa with prevalence 

less than 10%. We normalized the count data into relative abundances (proportions) by 

dividing by the total read count; taxa with a maximum proportion less than 0.2% were 

excluded from testing to reduce the number of the tests. To identify differentially abundant 

taxa while accommodating covariates (e.g., sequencing batch) and the non-normality of the 

count data, we used a permutation test in which a regular linear model was fitted, with taxa 

proportion data as the outcome variable. To reduce the effects of outliers, taxa proportion 

data was square-root transformed. Statistical significance was assessed using 1,000 

permutations with the F-stat as the test statistic. False discovery rate (FDR) control (B-H 

procedure, ‘p.adjust’ in standard R packages) was used to correct for multiple testing, and 

FDR-adjusted p-values or q-values less than 0.2 were considered significant. This q-value 

cutoff was chosen to avoid missing important taxa with small effect sizes and is a 

significance threshold frequently utilized in human microbiome studies (26, 27). To quantify 

the effect size of the differential taxa, we used the fold change of the mean relative 

abundance between the normal and adenoma groups.

2.4.3. Predictive modeling based on random forests—The machine learning 

algorithm random forests (RF) was used to predict adenoma status based on the microbiota 

profile (genus-level proportion data) using default parameters of the R implementation of the 

algorithm (28). The RF algorithm, due to its non-parametric assumptions, can detect both 

linear and nonlinear effects and potential taxon-taxon interactions, thereby identifying the 

taxa that best discriminate between groups. Boruta variable selection was applied to select 

the most discriminatory taxa based on importance values produced by RF (29). The Boruta 

method spikes abundance data with “shadow” taxa, which are shuffled versions of real taxa. 

This enables us to assess whether the importance of a given taxon is significant, that is, 

whether the importance is discernible from the effects that arise from random fluctuations 

(shadow taxa). We then assessed the ability of the Boruta-selected taxa to predict adenoma 

status using the receiver operating characteristic (ROC) curve, which was estimated using 

the 0.632+ bootstrap method to more accurately assess error rates (30).

2.4.4. Functional data analysis—PICRUSt was used to infer the abundance of 

functional categories (KEGG metabolic pathways and COG functional groups) based on the 
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16S rRNA data, and differential abundance analysis was performed using the same 

permutation test that was used for the taxon analysis (18). No prevalence-based filtering was 

applied before differential abundance testing, since most of the functional categories are 

shared across subjects. All statistical analyses were performed in R 3.0.2 (R Development 

Core Team, Vienna, Austria).

3. Results

Cases (“adenoma” group) comprised 233 patients with at least one large adenoma (≥ 1 cm); 

controls included 547 patients with no polyps on colonoscopy (“non-adenoma” group). The 

groups did not differ with regard to the potential confounders of age, sex, race, history of 

smoking, history of cancer, or diagnosis of CRC or polyps in first-degree relatives (Table 2).

The overall composition of the groups’ gut microbial communities appeared similar at the 

levels of phylum, family, and genus (Supplementary Fig. S1A). The groups did not differ 

significantly in terms of microbial species richness (P=0.21) or diversity (Shannon Index; 

P=0.23) (Supplementary Fig. S1B and S1C). Neither did they cluster in PCoA plots using 

unweighted or weighted UniFrac distance metrics (Supplementary Fig. S1D and S1E). 

However, our large sample size allowed us to detect small yet statistically significant 

differences in microbial composition between the adenoma and non-adenoma groups 

(MiRKAT omnibus P=0.032). No differences in microbial composition were detected based 

on polyp size, architecture, or location, but polyp number was significant (MiRKAT 

omnibus P=0.035) and histology (hyperplastic, low grade dysplasia, or high grade dysplasia) 

was marginally significant (MiRKAT omnibus P=0.091; Supplementary Table S1).

Next, we identified 31 specific taxa that differed in abundance between patients with and 

without adenomas (Fig. 2 q <0.2) Taxa that were more abundant in the adenoma group 

included multiple OTUs in the Bacteroidetes phyla and Deltaproteobacteria class—including 

OTUs in the Bilophila, Desulfovibrio, Sutterella, and Mogibacterium genera. Taxa more 

common in the non-adenoma group included Firmicutes, such as OTUs in the Clostridia 

class and Veillonella genus, as well as OTUs in the Bifidobacteriales order and Haemophilus 
genus. Despite moderate effect sizes (fold change range: 1.06–2.77), these significant results 

indicate that the microbiota in the adenoma group systematically differs from the non-

adenoma group.

We next assessed the utility of the gut microbiota as a clinical biomarker for adenomas using 

random forests-based prediction. Boruta feature selection was used to select the most 

predictive taxa to improve prediction. Of the 31 taxa identified by differential abundance 

testing, the Boruta algorithm identified four genera that significantly predicted adenoma 

status: Streptococcus and Veillonella, which were enriched in the non-adenoma group, and 

Mogibacterium and Sutterella, which were enriched in the adenoma group (Fig. 3; for heat 

map see Supplementary Fig. S2). The Bilophila genus was also more predictive than most 

other genera included in this analysis; however, this genera did not exceed the threshold for 

significance. An ROC curve generated with the four significantly predictive taxa resulted in 

an area under the curve (AUC) of 0.6599 (Fig. S3; DeLong test, p = 0.001). Although 

significant, this level of sensitivity/specificity is too low for consideration as a clinical 
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biomarker for adenomas. Thus, this analysis indicates that although the abundance of 

Streptococcus, Veillonella, Mogibacterium, and Sutterella is not sufficient to reliably 

identify samples from patients with adenomas, the levels of these genera are consistently 

altered in their respective groups.

To determine whether the taxonomic differences between the groups’ microbiota 

corresponded to functional changes, we performed a predictive functional analysis of the 

16S rRNA sequences present (Fig. 4, q<0.2). PICRUSt analyses predicted that the adenoma 

group’s microbiota exhibits increased primary and secondary bile acid synthesis; increased 

galactose, starch and sucrose, and sphingolipid metabolism; and increased phenylpropanoid 

biosynthesis. By contrast, the non-adenoma group’s microbiota is predicted to exhibit 

increased biosynthesis of unsaturated fatty acids and increased purine, pyrimidine, D-

Alanine, nicotinate, and nicotinamide metabolism.

4. Discussion

In this study, we report significant differences in the microbial composition of individuals 

with adenomas. We also observe differences based on polyp number and histology but not 

size, architecture, or polyp location, suggesting that microbial communities associated with 

polyps change (or are detectable) with some but not all aspects of polyp severity. We 

identified 31 taxa that were differentially abundant among patients with and without 

adenomas, and four of these taxa were significantly predictive of adenoma status, although 

they could not be used to reliably classify samples. Based on the 16S sequences present in 

each group, we also identified putative metabolic shifts between the microbiota of the 

adenoma and non-adenoma groups.

Links with CRC have already been reported in many of the taxa we identified as 

differentially abundant in individuals with adenomas. This suggests that changes in the 

microbial community associated with adenomas may represent early events in the pathway 

leading to CRC. For example, we identified increased levels of Bilophila, Desulfovibrio, 

Bacteroidetes, and Mogibacterium in individuals with adenomas. Both Bilophila and 

Desulfovibrio produce genotoxic hydrogen sulfide (H2S) as an end product of anaerobic 

respiration (31–33) and have been associated with CRC in other studies (34, 35). In addition, 

multiple studies have reported elevated proportions of Bacteroidetes in patients with 

adenomas (36, 37) or CRC (38, 39) (but not all; see (40)). Bacteroides fragilis, in particular, 

causes colitis-associated carcinogenesis (41). Finally, Mogibacterium is an oral bacterium 

associated with periodontal disease and root canal infections, and it, too, has been linked to 

CRC (42–44).

Other taxa differentially abundant in individuals with adenomas are also plausible 

contributors to carcinogenesis. For example, Sutterella, a genus highly predictive of 

adenoma status (Fig. 3), may play a role in inflammation, as it has been linked to active 

colitis in a mouse model of inflammatory bowel disease (45). Gastrointestinal inflammation 

has been strongly linked to CRC pathogenesis (11). By contrast, Veillonella, also highly 

predictive of adenoma status but enriched in patients without adenomas, may exert a 

protective role in the colon (46) along with other taxa enriched in this group, including 
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Firmicutes and Actinobacteria (family Bifidobacteriales) (47). Notably, we did not identify 

an enrichment of Fusobacterium or Porphyromonadaceae in individuals with adenomas, as 

reported in other studies (39, 48, 49). This may have been due to differences in study 

populations, fecal collection and preservation techniques (21, 50), library preparation (51), 

or primers and sequencing platforms (52, 53).

We evaluated microbial alterations in tandem with predictive functional differences 

identified by PICRUST. In an analysis of Human Microbiome Project data, PICRUST 

produced an average correlation of 0.8 between predicted functions and actual functions 

identified through deep metagenomic sequencing (18). Additionally, PICRUST produced 

more accurate and reliable functional predictions than shallow metagenomic sequencing 

(18). Despite these strengths of PICRUST, predictive functions should be examined with 

care, as genomes and functions of the microbes present in a given sample may differ from 

the genomes and functions upon which PICRUST builds its predictions. The results from 

our predictive functional analysis suggest a link the between microbial shifts observed in 

individuals with adenomas to metabolic pathways that have previously been associated with 

dietary risk factors common in a Western diet. The adenoma microbiota was characterized 

by putative functional groups associated with galactose, sphingolipid, and starch/sucrose 

metabolism, as well as phenylpropanoid biosynthesis. Importantly, diets high in dairy result 

in increased galactose metabolism; diets high in fat result in increased lipid/sphingolipid 

metabolism (54); diets high in refined starches and sugars lead to increased starch/sucrose 

metabolism (55); and diets high in protein result in increased phenylpropanoid biosynthesis 

(56). Diets high in animal fat and protein also lead to increased BA production (57). 

Interestingly, the adenoma microbiota is predicted to display increased levels of primary and 

secondary bile acid (BA) synthesis. These functional predictions suggest that individuals 

with adenomas are consuming diets higher in fat, sugar, starch, protein, and dairy than non-

adenoma individuals. These findings are consistent with multiple epidemiological studies, 

which have drawn links between a Western diet (high in fat, dairy, meat, and sugars) and the 

incidence of adenomas (58–60). This suggests a potential link between diet and the 

molecular mechanisms involved in adenoma pathogenesis.

We propose the following mechanism linking diet, the microbiota, and the adenoma-

carcinoma sequence: Diets high in fat and protein increase production of primary BAs, 

which help digest and absorb lipids in the small intestine (61, 62). This promotes the growth 

of bile-tolerant bacteria such as Bilophila and some species of Desulfovibrio. Blooms of 

these species may increase the production of genotoxic metabolites such as H2S (61, 62). In 

addition, the colon microbiota can deconjugate primary bile acids to form secondary BAs 

(62, 63), and some of these secondary BAs, such as lithocholic and deoxycholic acid, have 

cytotoxic and genotoxic effects (62–66). Elevated levels of secondary BAs and pro-

inflammatory bacteria such as Mogibacterium and Sutterella may result in the perfect storm 

of DNA damage and inflammation, leading to adenoma development and eventually 

malignant transformation.

Several limitations of our study warrant mention. Three include a lack of information on 

participants’ diet, body mass index (BMI), and recent antibiotic use. Without dietary 

information, we cannot confirm that the adenoma group consumed a diet higher in sugar, 
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animal fat, and protein; although, previous studies have indicated a link between Western 

diet and adenomas (58, 59). Additionally, we are also unable to determine whether BMI acts 

as a confounder; it is certainly possible, as the gut microbiome of obese individuals differs 

significantly from the microbiome of lean individuals (67), and higher BMI has been 

associated with adenoma development (68). However, obese / high BMI phenotypes are 

commonly associated with increased relative abundances of microbes in the phylum 

Firmicutes while lean phenotypes are associated with increased abundances of Bacteroidetes 

phylum microbes (67, 69). In our study, individuals with adenomas had increased 

abundances of Bacteroidetes microbes while individuals without adenomas had increased 

abundances of Firmicutes phylum microbes. This is opposite to what we would have 

expected if BMI was the main driver of adenoma development; thus, we suggest BMI was 

not a strong confounder in our data set. Lack of antibiotic data prevents us from excluding or 

analyzing data based on antibiotic use, which can dramatically alter the gut microbiota (70); 

although, we have no a priori reason to believe that either group would exhibit increased 

antibiotic use in relation to the other. Finally, the cross-sectional nature of our data does not 

allow us to parse correlation versus causation between microbial alterations and adenoma 

status. While our results show that observed microbial changes lack the specificity and 

sensitivity to serve as a clinical biomarker for adenomas, these findings provide important 

insights into mechanisms that may be driving adenoma development.

This study represents the largest study on microbial communities associated with adenomas 

to date. This robust data set allowed us to detect subtle microbial changes that may be key to 

understanding how a healthy colon develops adenomas, which can then transform into 

carcinomas. We also adjusted our analyses for multiple comparisons, which not all studies 

on adenoma microbiota opt to do (37, 71, 72). Sample collection is another strength of this 

study. All fecal samples from individuals in the adenoma and non-adenoma groups were 

shipped on ice and received and frozen at -80°C within 48 hours of defecation. Previous 

studies have demonstrated that fecal microbial communities stored at ambient temperatures 

for up to 24 hours, are relatively unaffected (21), and no significant changes in microbial 

diversity or composition are detected in fecal samples stored at 4°C for up to 72 hours (73). 

Additionally, long term storage of fecal samples at -80°C seems to have little effect on 

overall microbial composition (50, 74); although, no study, to our knowledge, has examined 

fecal preservation in samples over 10 years old, as is the case with samples in this study. 

Notably, we only examined fecal microbiota and not the mucosal-associated microbiota, 

which has been reported to differ in composition and diversity (75). Every individual 

sampled in this study underwent a complete colonoscopy with full visualization of the colon 

from rectum to cecum, and colonoscopy is regarded as the most robust reference standard 

for presence or absence of polyps. Polyps removed during colonoscopies were all reviewed 

and classified by the same pathologist. Finally, our study included predictive functional 

analyses based on the microbial communities of the adenoma and non-adenoma groups. 

Functional analyses have not been performed on previous adenoma datasets, and this effort 

suggested key insights as to how the host and microbial community may be interacting 

within the context of adenoma development.

In conclusion, we have shown that the composition of the gut microbiota in individuals with 

adenomas differs significantly from that of healthy individuals and resembles the microbiota 
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of individuals with CRC. Moreover, we suggest that these shifts may be consistent with the 

effects of the Western diet and are predicted to result in metabolic changes that could 

increase rates of cellular damage and mutagenesis in the gut. Collectively, our findings 

support a proposed model in which diet alters the microbial composition of our 

gastrointestinal tract, leading to an environment conducive to the development of adenomas, 

and potentially CRC. Future studies are needed to assess the effects of diet on the metabolic 

environment of the gut and the microbial community. Genotoxic metabolites such as H2S 

and secondary bile acids should also be examined in relation to adenoma and carcinoma 

development. Identifying key interactions between diet, microbial community, and 

metabolites that catalyze the adenoma-carcinoma sequence will give us a basis for 

personalized therapeutics aimed at preventing CRC.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Subject enrollment flowchart.

Hale et al. Page 15

Cancer Epidemiol Biomarkers Prev. Author manuscript; available in PMC 2018 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. 
Thirty-one taxa differ in abundance between patients with and without adenomas. A) 

Relative abundance of OTUs in each group, across taxonomic levels. B) −log(P value) of 

these taxa’s differential abundance. C) Cladogram of the taxa that differed between groups.

Hale et al. Page 16

Cancer Epidemiol Biomarkers Prev. Author manuscript; available in PMC 2018 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. 
Based on the results of a random forests (RF) algorithm, four taxa significantly predict 

adenomatous polyp status: Streptococcus, Veillonella, Mogibacterium, and Sutterella. The 

four taxa that are significant predictors are shown in green. Blue boxplots correspond to 

minimal, average and maximum Z score of a shadow taxa. Red, yellow and green boxplots 

represent Z scores of rejected, tentative and confirmed taxa respectively.
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Figure 4. 
Functional differences, predicted using 16S sequencing data, between the gut microbial 

communities of patients with and without adenomas, A) Pink bars represent the −log(P 

value) of KEGG metabolic pathways predicted to be more common among the microbiota of 

individuals with adenomatous polyps. Turquoise bars represent the effect sizes of functions 

predicted to be more common among the microbiota of individuals without polyps. B) 
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Summary of the log(P value) of COG groups predicted to differ between the groups; colors 

as in (A).
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Table 2

Demographics of the adenoma and non-adenoma groups.

Adenoma
(n=233)

Non-adenoma
(n=547)

p-value

Age (mean, SD) 66.5, 6.9 66.5, 6.9 0.60

Sex (n, %)

0.98  Female 100 (42.9) 237 (43.3)

  Male 133 (57.1) 310 (56.7)

Race (n, %)

0.30

  White 223 (95.7) 503 (92)

  Black 3 (1.3) 14 (2.6)

  Hispanic 4 (1.7) 14 (2.6)

  Asian 0 (0) 8 (1.5)

  Native American 0 (0) 2 (0.5)

  Other / Unknown 3 (1.3) 5 (0.9)

Ever smoker (n, %) 138 (59.2) 310 (56.7) 0.56

History of cancer,
any type (n, %) 44 (18.9) 116 (21.2) 0.52

First degree relative with
colorectal cancer (n, %) 35 (15) 89 (16.3) 0.74

First degree relative
with polyps (n, %) 25 (10.7) 47 (8.6) 0.82

Cancer Epidemiol Biomarkers Prev. Author manuscript; available in PMC 2018 January 01.


	Abstract
	1. Introduction
	2. Materials and Methods
	2.1 Subject enrollment
	2.2 Sample collection and processing
	2.3 Sequence processing
	2.4 Statistical analyses
	2.4.1 α-diversity and β-diversity
	2.4.2 Differential abundance analysis
	2.4.3. Predictive modeling based on random forests
	2.4.4. Functional data analysis


	3. Results
	4. Discussion
	References
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Table 1
	Table 2

