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Abstract Since the introduction of 2-methyltetrahydrofu-

ran as an useful alternative to the classical tetrahydrofuran,

there has been a continuous interest in the synthetic com-

munity operating at academic and industrial towards it. In

particular, the much higher stability that basic

organometallic reagents display in 2-methyltetrahydrofuran

makes it suitable for processes involving such sensitive

species including asymmetric transformations. The easy

formation of an azeotropic mixture with water, the sub-

stantial immiscibility with water, and the fact it derives

from natural sources (corncobs or bagasse), allow to con-

sider it in agreement with the Anastas’ Geen Chemistry

principles. In this minireview, selected examples of its

employment in organometallic transformations ranging

from carbanions to radical and transition metal-catalyzed

processes are provided.
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Introduction

Solvents featuring ether functionalities constitute highly

valuable media for performing chemistry with

organometallic reagents [1]. This is mainly due to their

capability to disaggregate such species, thus modulating

their reactivity [2]. Unfortunately, common solvents such

as tetrahydrofuran (THF) tend to react with highly basic

carbanions, thus requiring the employment of low tem-

peratures to suppress undesired side reactions [3–5]. In

this context, it is quite known since seminal studies by

Bates that THF undergoes an extremely fast lithiation in

the presence of n-BuLi at the C-2 (t1/2 = 10 min at

35 �C), followed by a reverse [3 ? 2] cycloaddition,

giving ethylene and acetaldehyde [6]. On the other hand,

the simple presence of a methyl group at the 2-position of

2-methyltetrahydrofuran (2-MeTHF) has a dramatic effect

on the decomposition, as reflected by the much higher

value of t1/2 = 130 min at 35 �C) (Scheme 1).

Solutions of organometallic reagents in 2-MeTHF [7–9]

feature higher stability and solubility compared to those

ones in THF [10]; this concept maybe extended also to

hydrocarbon solvents in which often solution of organo-

lithiums are supplied. For example, the presence of

2–2.5 mol amounts of 2-MeTHF per mole of MeLi

increases the stability of MeLi in cumene, thus avoiding

the need of Me2Mg as a stabilizer; further stabilization is

achieved by the addition of LiBr [11]. In addition to the

greater thermal stability, 2-MeTHF may also provide a

supplementary advantage for a MeLi/MeTHF/cumene

compositions. In fact, the storage of MeLi/THF/cumene
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below 0 �C eventually forms (MeLi/THF)4 crystals that

can be easily redissolved with agitation and warming to

room temperature. Similarly, crystallization during cold

storage was also observed with benzyllithium in THF, but

when 2-MeTHF was used instead of THF, the formation of

benzyllithium-MeTHF solids was considerably decreased,

and the thermal stability significantly increased. Appar-

ently, 2-MeTHF provides enough spatially arranged

variations of solvated aggregates, and thus, decreases the

possibility for crystallization to take place.

Additional reasons motivate the significant use of

2-MeTHF in organic synthesis as a versatile and effective

alternative to THF [7]: (a) the only partial miscibility with

water (14/100 g) accounts for clean and easy work-up

procedures, thus dramatically decreasing the need of clas-

sical organic solvents for extracting the reaction products;

(b) a standard distillation, not requiring dangerous dehy-

drating agents, provides dry solvent suitable for performing

sensitive organometallic chemistry; (c) the high boiling

point (82 �C) allows to run processes at higher tempera-

tures with contemporaneous decrease of reaction times;

(d) toxicological essays excluded the risk of genotoxicity

and mutagenicity during the exposure to this solvent [12];

(e) because of the low dielectric constant it possesses

(e = 6.97) [9], its physical properties resemble also those

ones of toluene, thus expanding the range of solvents it can

replace. Moreover, it could be obtained through the cat-

alytic reduction of furfural and levulinic acid which are

themselves available by dehydration of C-5 sugars present

in biomass [13], thus in agreement with the seventh prin-

ciple of Green Chemistry [14–19]. Unfortunately, the

formation of peroxides cannot be avoided when employing

this solvent in analogy to THF; however, the use of sta-

bilizers modulate positively this drawback [9].

The aim of this minireview is focussing on recent

applications (appeared in the last 5 years) of this solvent in

organometallic reactions ranging from classical carban-

ionic to cross-coupling processes [17, 20–56].

Use of 2-MeTHF in reactions involving
carbanionic and nucleophilic species

Azzena reported that the generation and reactivity of sin-

gle-electron transfer reagents such as 1,2-diaryl-1,2-

disodioethanes is best accomplished in 2-MeTHF in alter-

native to THF [57]. Solution of this dianion in 2-MeTHF

proved to be stable under dry Ar in a refrigerator for at

least 24 h. Their results suggest that the employment of

2-MeTHF as a solvent promotes the nucleophilic substi-

tution pathway of 1,2-diaryl-1,2-disodioethanes with 1,3-

dichloropropane to a higher extent. Interestingly, signifi-

cant differences were observed in the behavior of these

organometals in 2-MeTHF and in cyclopentyl methyl ether

(CPME) [58]. While comparable result were observed in a

series of redox reactions, (e.g. reductive deprotection of the

2-bromoethyl ester of benzoic acid and reductive dechlo-

rination of acids) 2-MeTHF proved to be the solvent of

choice in reactions involving these dianionic species as

nucleophiles or, even more dramatically, as bases. In the

case of arylacetic acids, the vic-dianons perform a selective

deprotonation in 2-MeTHF at the benzylic position,

enabling the functionalization through subsequent treat-

ment with electrophiles (E). Significantly, under analogous
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conditions halogenated aryloxy acetic acid derivatives

undergo reductive dechlorination. Such an effect of the

reaction medium can be rationalized by assuming that the

interaction between the solvent and the diorganometals

strongly influence the reactivity of these intermediates,

either by affecting their aggregation states and/or reaction

products (Scheme 2).

Breit and coworkers developed a general method for the

preparation of primary and secondary alkylmagnesium

reagents starting from alkenes (via hydroboration) through

the boron-magnesium exchange on alkyl boronates in

2-MeTHF [59]. The authors demonstrated the synthetic

usefulness in a wide range of carbon–carbon bond forming

reactions, including iron, palladium, and copper-catalyzed

cross-couplings. Synthetically useful methallyl alcohol-

and homomethallyl alcohol-derived borolanes equipped

with typical silicon-based protecting groups are highly

sensitive substrates and required the slow addition of the

dimagnesium reagent at 0 �C followed by the slow

warming to ambient temperature to avoid side reactions,

being 2-MeTHF the best solvent (Scheme 3).

Luisi et al. performed a direct and sustainable synthesis

of tertiary butyl esters by the addition of organolithiums to

(Boc)2O under microfluidic conditions by employing

2-MeTHF as the solvent [60]. The reactions conducted

under batch condition needed cryogenic temperatures, and

considerable amounts of the corresponding tertiary alco-

hols were formed as a consequence of the

predictable multiple addictions. By switching to the cor-

responding flow technique a more efficient, versatile and

selective transformation was achieved. This protocol

worked well in the case of several aryl and heteroaryl

bromides, different acetylene and was also extended to b-

bromostyrene (using s-BuLi as a lithiating agent)

(Scheme 4).

The same Luisi’s group exploited the combination of

using, in flow technology, 2-MeTHF for the synthesis of

enantioenriched alcohols via the Corey–Bakshi–Shibata

(CBS) oxazaborolidine-mediated reduction of the

prochiral ketones [61]. Under the optimized reaction

conditions, the process reached to completion within few

minutes, thus providing the desired asymmetric targets in

up to 99% yield and 91:9 enantiomeric ratio (er)

(Scheme 5).

Fjelbye et al. prepared a chiral 1,3-amino alcohol (as

hydrochloride salt) using a two-step approach involving the

magnesiation of 2-iodopyridine in 2-MeTHF followed by

the reaction with the chiral sulfinamide direct precursor of

the desired enantiopure compound [62]. The following

points merit mention: (a) the use of the Turbo Grignard
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reagent (i-PrMgCl LiCl) guarantees the avoiding of

homocoupled products; (b) 2-MeTHF is the optimal sol-

vent in terms of both reaction yield and, more importantly,

diastereoselectivity (Scheme 6).

Ronn’s group described the regioselective deprotonation

at C-2 of 3-bromofuran with LDA followed by the DMF-

mediated formylation [63]. 2-MeTHF gave the best results

in terms of purity and yield also considering the simple and

Scheme 3

Scheme 4
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straightforward work-up procedure it allowed. The method

enabled to produce the desired compound in multi hundred

gram batches with an overall yield of 85–95% yield

(Scheme 7).

Grellepois described the development of a short effi-

cient, and general synthesis of enantiopure b-

(trifluoromethyl) b-amino acids containing a quaternary

stereogenic center at the b position [64]. It is reported the

use of the Reformatsky reagent in the synthesis (on large

Scheme 5

Scheme 6

Scheme 7
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scale), of various enantiopure N-tert-butanesulfinyl triflu-

oromethyl b-amino esters from bench-stable analogues of

aliphatic and aromatic trifluoromethyl N-tert-butanesulfinyl

ketoimines. Optimization studies pointed out that

2-MeTHF was the best solvent while, decreasing the tem-

perature to 0 �C plays a beneficial effect on

diastereoselectivity and yield (Scheme 8).

Schmalz’s group developed new Tartrol-derived chiral

phosphine-phosphite ligands (L1) to perform enantiose-

lective Cu-catalyzed 1,4-addition reactions of Grignard

reagents to cyclohexenone in 2-MeTHF with very high

enantio- and regio-selectivities (Scheme 9) [65]. In the best

case, the 1,4 addition product was obtained in 84% ee and

85:15 regioselectivity, using EtMgBr as reagent under

standard reaction conditions (4% mol of CuBr–SMe2,

6 mol% of L1, 2-MeTHF, -78 �C and slow addition of the

Grignard reagent).

Pace and coworkers developed a highly chemoselective

protocol for transforming iso(thio)cyanates into the corre-

sponding (thio)amides [66–70]; in particular, the treatment

of isocyanates with the in situ generated Schwartz reagent

[71] provides a smooth access to formamides (Scheme 10)

[72]. Both the selection of 2-MeTHF and this hydride

source proved to be pivotal for obtaining high chemocon-

trol on multifunctionalized isocyanates.

Nardi and coworkers reported a chemoselective version

of the classical Luche reduction of a, b-unsaturated car-

bonyl compounds in the presence of substoichiometric

amount of sodium borohydride under erbium triflate cat-

alytic conditions in 2-MeTHF [73]. Under the optimal

conditions [i.e., Er(OTf)3 (5 mol%), NaBH4 (0.75 equiv)],

the desired allylic alcohols are obtained in selectivities up

to 96:4 (Scheme 11).

Maudit’s group developed a new family of phosphine

ligands (DIPPAM) (L2), which promoted a very efficient

Cu-catalyzed 1,4 addition of dialkylzinc to both cyclic and

acyclic enones. The methodology could be adequately

adapted to the analogous 1,6-conjugate addition of

dialkylzinc to cyclic dienones using 2-MeTHF as solvent at

0 �C [74] (Scheme 12).

Use of 2-MeTHF in transition metal catalyzed
chemistry

Mondal et al. reported the application of 2-MeTHF in a Pd-

catalyzed Suzuki type carbonylation reaction via the

cleavage of the C–Cl bond of acid chlorides to yield aryl

ketones (Scheme 13) [75]. The model reaction between

benzoyl chloride and phenylboronic acid clearly evidenced

Scheme 8

Scheme 9
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Scheme 10

Scheme 11
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the superiority of this solvent compared to different ones.

Moreover, using 2-MeTHF the crude mixture of the cross-

coupling product was simply extracted by quenching with

water, followed by the separation of the resulting

2-MeTHF/water phases and drying without the need to use

additional organic solvent during the whole work-up

procedure.

Garg documented the nickel-catalyzed Suzuki–Miyaura

cross-coupling between aryl halides and (hetero)aromatic

boronic acids in 2-MeTHF (Scheme 14) [76]. The scope of

the reaction is broad with respect to both coupling partners

and, the possibility to work at gram scale using low catalyst

loadings renders the protocol highly attractive for industrial

applications.

Furthermore, they extended the procedure to the efficient

formation of aryl C–N bonds under analogous nickel catal-

ysis conditions, thus providing an efficient access to aryl

amines in synthetically useful yields [77] (Scheme 15).

Levahcer et al. described in 2015 the Pd-catalyzed car-

bonylation of (hetero)aryl, alkenyl, and alkyl halides with

N-hydroxysuccinimidyl formate as CO surrogate [78]. A

large range of aryl, vinyl, allyl, and benzyl halides can be

transformed into the corresponding NHS esters in good to

excellent yields under mild conditions (60 �C/10 h/2-

MeTHF; Scheme 16).

Maes et al. developed a novel palladium-catalyzed

aerobic oxidation to access guanidine-containing and

related heterocycles from bisnucleophiles and aliphatic

isocyanides in 2-MeTHF [79] (Scheme 17). The protocol is

highly versatile, thus enabling a fast access to a plethora of

pharmaceutically relevant heterocyclic systems (e.g.,

astemizole and norastemizole). The simplicity of the

experimental procedure, the use of bench (i.e., non distilled

2-MeTHF), the low catalyst loading and atmospheric

pressure render the overall method environmentally

benign.

Scheme 12

Scheme 13
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Scheme 14

Scheme 15
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In 2013 Procter developed the first asymmetric silylation

of unsatured lactams and amides using a Cu(I)-NHC catalyst

and PhMe2SiBpin as silyl donor (Scheme 18) [80]. In the

study, 2-MeTHF proved to be a very attractive alternative to

THF in terms of both reaction yield and enantioselectivity.

The methodology was applied to the synthesis of the (R)-

enantiomer of the nootropic drug oxiracetam.

Carreira’s group reported the first, direct enantioselec-

tive iridium catalyzed substitution of racemic secondary

allylic alcohols with sulfamic acid in 2-MeTHF to yield

optically pure amines (Scheme 19) [81]. The method tol-

erates a wide range of allylic alcohols (aliphatic, aromatic,

heterocyclic) and gives the corresponding amines with very

good enantioselectivities (up to 99%).

Frost et al. reported a ruthenium-catalyzed ortho C–H

alkenylation of a wide range ofN-aryloxazolidinone analogues

in 2-MeTHF [82]. The reaction proceeded with complete

monoselectivity, as indicated by[27 examples (Scheme 20).

Conclusions

The use of 2-MeTHF as a solvent in synthetic chemistry has

constantly raised in the last years: indeed, the beneficial

properties it displays makes it a versatile alternative to the

commonly employed THF. The additional presence of a

methyl group at the 2-position profoundly increases the

Scheme 16

Scheme 17

Scheme 18
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chemical stability towards highly basic organoalkali

reagents, thus allowing to run reactions at higher tempera-

tures and limiting the use of noxious and flammable solvents

such as diethyl ether. From a practical perspective its limited

miscibility with water allows to obtain a dry solvent for

organometallic chemistry through a standard distillation.

Additionally, it should be considered that work-up proce-

dures do not need extraction processes by means of standard

solvents (e.g., halomethanes, esters, or ethers). Taken toge-

ther these properties with the adherence of its employment to

the Green Chemistry principles, it is foreseen more and more

applications of this solvent in organic processes both at

laboratory and pilot scale.
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