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Background. Neurocognitive disorders remain common among human immunodeficiency virus (HIV)–positive adults, per-
haps owing to persistent HIV-1 RNA in cerebrospinal fluid (CSF) during antiretroviral therapy (ART).

Methods. Using a single-copy assay, we measured HIV-1 RNA levels in CSF and plasma specimens from 220 HIV-positive
adults who were taking suppressive ART. Fifty-five participants were tested twice.

Results. HIV-1 RNA was detected in 42.3% of CSF and 65.2% of plasma samples. Correlates of higher CSF HIV-1 RNA levels
included higher nadir and current CD4+ T-cell counts, a plasma HIV-1 RNA level of ≥ 1 copy/mL, and a lower central nervous
system penetration-effectiveness score (model P < .001). Worse neurocognitive performance was associated with discordance in
HIV-1 RNA detection between plasma and CSF, lower overall CSF HIV-1 RNA level, and longer ART duration, among others
(model P < .001). In the longitudinal subgroup, CSF HIV-1 RNA persisted in most participants (69%) over 7 months.

Conclusions. Low-level HIV-1 RNA in CSF is common during suppressive ART and is associated with low-level HIV-1 RNA in
blood, better immune status, and lower ART drug distribution into CSF. The association between HIV-1 RNA discordance and HIV-
associated neurocognitive disorder (HAND) may reflect compartmentalization. The relationship between HAND, lower HIV-1 RNA
levels in CSF, and lower CD4+ T-cell counts may reflect disturbances in the immune response to HIV-1 in the CNS.

Keywords. HIV; cerebrospinal fluid; cognitive disorders; antiretroviral therapy.

Human immunodeficiency virus (HIV)–associated neurocogni-
tive disorder (HAND) is common, with a prevalence ranging
from 30% to 70% among HIV-infected adults, including
those taking combination antiretroviral therapy (cART) [1–3].
Several explanations may account for this, including advancing
age [4, 5], longer duration of exposure to HIV, comorbid condi-
tions [6, 7], and more-advanced immune suppression [8, 9].An-
other, nonexclusive explanation for high HAND prevalence
among treated individuals is incomplete effectiveness or toxicity
of ART in the central nervous system (CNS) [10].

HIV-1 enters the CNS soon after infection and can be pro-
tected in this compartment from immune and drug pressure
[11, 12]. Autopsy and neuroimaging studies have identified
that HIV-1 can localize in the basal ganglia and hippocampus
[13, 14], even during the first weeks of infection [15]. Potent
ART can reduce the HIV-1 level in blood and cerebrospinal
fluid (CSF) below the quantification limit of commercially

available assays, but HIV-1 might continue to replicate at low
levels, increasing the risk for viral compartmentalization in
the CNS [16]. Persistent low-level HIV-1 replication could
also lead to glial activation and neuronal injury.

Published reports have identified that low-level HIV-1 is pre-
sent in CSF in up to 28% of adults taking ART [17, 18] but have
not found associations with estimated ART drug distribution
into the CNS or neurocognitive outcomes. Limitations of
these projects included their small sample size and the assay
method. This method required ultracentrifugation of up to
12 mL of CSF and could therefore be prone to inaccuracy. Sim-
pler methods, such as one that uses molecular beacons and does
not require ultracentrifugation, might yield different results.

The objectives of this project were to determine how fre-
quently HIV-1 RNA was present at low levels in CSF during
suppressive ART and whether low-level HIV-1 RNA in CSF
was associated with worse estimated ART drug distribution
into the CNS and worse neurocognitive performance.

METHODS

Participants and Procedures
The CNS HIV-1 Antiretroviral Therapy Effects Research
(CHARTER) cohort is composed of 1555 HIV-1–infected
adults who provided written informed consent for all study pro-
cedures. All subjects completed venipuncture, neuromedical
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assessment, and comprehensive neurocognitive testing. The
Human Subjects Protection Committees of each institution ap-
proved all procedures. A total of 220 participants were selected
for this project on the basis of 4 criteria: use of 3-drug cART,
HIV-1 RNA levels of ≤50 copies/mL in plasma and CSF, ab-
sence of comorbid conditions of sufficient severity to account
for impaired neurocognitive performance [2], and availability
of at least 2 mL of plasma and CSF stored at −70°C. Selected
participants had been assessed between October 2003 and
May 2008. To assess changes in low-level HIV-1 RNA over
time, a second CSF sample was assayed in 55 participants
whose ART regimen was stable and who had HIV-1 RNA levels
of ≤50 copies/mL in plasma and CSF at the second time point.

Laboratory Assessment
HIV-1 infection was diagnosed by an enzyme-linked immuno-
sorbent assay, with confirmation by a Western blot. Routine
clinical chemistry panels, complete blood counts, rapid plasma
reagin (RPR) tests, hepatitis C virus (HCV) antibody tests, and
CD4+ T-cell analysis (by flow cytometry) were performed at
each site’s Clinical Laboratory Improvement Amendments–
certified laboratory. HIV-1 RNA levels were measured centrally
in plasma and CSF by reverse-transcription polymerase chain
reaction (Roche Amplicor, version 1.5; lower limit of quantifi-
cation, 50 copies/mL).

To measure HIV-1 RNA levels of <50 copies/mL, a validated
single-copy assay procedure that has been used in other studies
of HIV-1 RNA detection in CSF was used [19]. The HIV-1
SuperLow Assay (bioMONTR Labs) is a proprietary, modified
version of the NucliSENS EasyQ assay (bioMèrieux) and is ca-
pable of quantifying HIV-1 levels as low as 1 copy/mL. The
standard EasyQ assay was modified by extraction of 2 mL of
fluid, using magnetic bead technology (miniMAG system
from bioMèrieux). A total of 25 µL of extracted eluate, 20 µL
of primer, and 5 µL of 2× enzyme in place of standard kit vol-
umes were used. Molecular beacons targeting the pol/gag region
of HIV-1 RNA are used for amplification and detection by iso-
thermal reactions at 41°C. The HIV-1 RNA level was quantified
using a proprietary reduction algorithm in conjunction with the
NucliSENS EasyQ H HIV-1, version 2.0, Director software [20].

Neuromedical Assessment
This assessment included medical history, structured neurolog-
ical and medical examination, and body fluid collection. Partic-
ipants in this project reported use of 57 different ART
combinations, the most common of which are summarized in
the Supplementary Materials. Four-day ART adherence was
estimated by self-report. ART drug distribution into the CNS
was estimated by the CNS penetration-effectiveness (CPE)
method [21].

Neurobehavioral Assessment
The comprehensive neurocognitive test battery assessed 7
cognitive domains affected by HIV-1 disease [2]. The best

available normative standards were used, which adjusted for
effects of age, education level, sex, and ethnicity. To classify
the presence and severity of neurocognitive impairment, a
published objective algorithm was used that requires presence
of at least mild impairment in at least 2 cognitive domains,
conforms to the Frascati criteria for diagnosing HAND [1],
and yielded excellent interrater reliability in prior studies
[22]. Neurocognitive performance was then summarized by
the global clinical rating, a validated method that integrates
relevant information about the 7 neurocognitive domains
and yields a value between 1 (for normal performance) and
9 (for severely impaired performance), with a value of 5 indi-
cating definite, mild impairment [23]. Frascati guidelines were
also used to classify comorbid neuropsychiatric conditions,
the most common of which are summarized in the Supple-
mentary Materials.

Data Analyses
Statistical methods included Pearson correlation, t tests, multi-
variable regression, and recursive partitioning. Data distribu-
tions were inspected, and data were transformed to improve
the symmetry of their distributions as needed. When transfor-
mation did not adequately improve the distribution of highly
skewed data distributions, nonparametric statistical tests were
used. When appropriate, the Cohen d value was calculated to
estimate effect size [24]. Multivariable regression was per-
formed in 4 stages. First, candidate covariates were screened
using a selection α of 0.15. Candidates included age, current
and nadir CD4+ T-cell count, estimated duration of HIV-1 dis-
ease, duration of the current ART regimen, CPE of the current
regimen, total number of previous ART regimens, ART adher-
ence, HCV serostatus, and RPR reactivity status. Second, all
candidate covariates that met the selection criterion were in-
cluded in a full model. Third, the Akaike information criterion
(AIC) was used to identify the best model, using stepwise selec-
tion. Finally, first-order interactions were evaluated among re-
tained covariates. When statistically significant interactions
were found, the nature of the interaction was investigated
with recursive partitioning. Analyses were performed in the
total sample, as well as in the subgroup that tested negative
for HCV and had nonreactive RPR tests (n = 155). Statistical
analyses were performed using JMP, version 12 (SAS Institute,
Cary, NC).

RESULTS

Demographic and Disease Characteristics
As summarized in Table 1, the median age of participants was
44 years (interquartile range [IQR], 39–50 years) and >75%
were men. Subjects were from diverse racial/ethnic back-
grounds. Most subjects had been infected for >10 years, had ex-
perienced advanced immune suppression in the past, and had
an improved immune status during ART. About 25% were
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taking their initial cART regimen, and >50% had been receiving
their current cART regimen for >1 year. Supplementary Mate-
rials include a summary of differences between this group and
the larger CHARTER cohort.

Correlates of Low-Level HIV-1 in CSF
Primary Analyses

Ninety-three subjects (42.3%) had at least 1 copy/mL of HIV-1
RNA in CSF. Since the distribution of values was highly skewed
(median, 0 copies/mL; mean, 2.75 copies/mL; Shapiro-Wilk
W = 0.42; Figure 1A), categorical analyses (ie, binary trans-
formation into subjects with <1 copy/mL and those with
≥1 copy/mL) were performed in addition to analyses of contin-
uous HIV-1 RNA values. Table 1 summarizes the differences
between participants who had ≥1 copy/mL of HIV-1 in CSF
and those who did not.

In the initial stage of multivariable logistic regression model-
ing of CSF HIV-1 RNA loads of ≥ 1 copy/mL (ie, the binary
variable) that included all explanatory variables identified by
univariate screening, only CD4+ T-cell count had a parameter
estimate P value of < .05 (model R2 = 0.07; P = .01). In the next
stage, AIC values selected higher current CD4+ T-cell counts
(P = .005), lower CPE values (P = .009), HCV seronegativity
(P = .08), and shorter duration of all ART regimens (P = .09)
as associated with CSF HIV-1 RNA loads of ≥ 1 copy/mL
(model R2 = 0.06; P < .001). Interaction modeling identified
that higher CD4+ T-cell counts were only associated with CSF
HIV-1 RNA loads of≥ 1 copy/mL when CPE values were <7
(model R2 = 0.07; P < .001).

In analyses of continuous (instead of binary) CSF HIV-1
RNA levels, higher current CD4+ T-cell counts (P = .05)
and lower CPE values (P < .001) were again selected in

Table 1. Demographic and Clinical Characteristics of the Sample, Overall and by Human Immunodeficiency Virus Type 1 (HIV-1) RNA Level in
Cerebrospinal Fluid (CSF)

Characteristic Overall (n = 220)

By CSF HIV-1 RNA Level, Copies /mL

P Value≥ 1 (n = 93) <1 (n = 127)

Demographic

Age, y 44.0 (39–50) 44.0 (38–51) 44.0 (40–50) .31

Female sex 22.6 24.5 21.3 .57

Race/ethnicity .70

Black 36.2 38.3 34.6

Hispanic 11.3 11.7 11.2

White 50.2 48.9 51.2

Other 2.3 1.1 3.2

HIV-1 disease and coinfection

Time since HIV-1 diagnosis, mo 121.5 (69–198) 111.0 (66–190) 139.9 (73–202) .39

CD4+ T-cell count

Current, cells/µL 503.0 (326–728) 575.5 (348–788) 451.0 (269–679) .01a

Nadir

Overall, cells/µL 150.0 (36–261) 176.5 (50–280) 133.0 (27–225) .06a

<200 cells/µL 62.4 53.2 69.3 .01a

Plasma HIV-1 RNA level ≥ 1 copy/mL 65.2 69.2 62.2 .28

AIDS diagnosis 68.8 61.7 74.0 .05a

RPR reactive 7.7 7.4 7.9 .90

HCV seropositive 25.8 19.2 30.7 .05a

ART

Receiving first regimen 22.2 22.3 22.0 .96

Duration of current regimen, mo 16.1 (7–32) 19.4 (5–33) 14.9 (7–31) .56

Total duration of all regimens, mo 70.0 (35–106) 59.6 (32–104) 73.5 (41–108) .14a

Current regimen

NNRTI containing 44.8 46.8 43.3 .60

PI containing 54.3 54.3 54.3 .99

Took≥ 95% of doses in past 4 d 91.9 92.6 91.3 .74

CPE

Overall, mean ± SD 7.1 ± 1.3 6.8 ± 1.2 7.2 ± 1.3 .02a

Greater than or equal to median CPE (7) 72.2 59.6 71.6 .06a

Data are percentage of subjects or median value (interquartile range) unless otherwise specified.

Abbreviations: ART, combination antiretroviral therapy; CPE, central nervous system penetration effectiveness; HCV, hepatitis C virus; NNRTI, nonnucleoside reverse transcriptase inhibitor; PI,
protease inhibitor; RPR, rapid plasma reagin.
a Included in multivariable analyses.
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the best models. The best model also included HIV-1 RNA
levels in plasma of ≥1 copy/mL (P = .04), race/ethnicity
(higher CSF HIV-1 RNA levels were observed in participants
who identified as black or Hispanic; P = .006), and higher
nadir CD4+ T-cell counts (P = .08 [model R2 = 0.13;
P < .001]). Interaction modeling identified that black or His-
panic participants who took regimens with a lower CPE (ie,
those with values of <7) had the highest HIV-1 RNA levels
in CSF.

Since HIV-1 RNA levels in CSF were associated with the
presence of HIV-1 RNA in plasma (Figure 1B) in the strongest
models, we categorized participants into 4 groups on the basis
of the presence or absence of HIV-1 RNA in each body fluid.
Two categories were concordant (ie, detectable [+; n = 65] or
undetectable [−; n = 48] in both fluids) and 2 were discordant
(detectable in CSF but undetectable in plasma [CSF+Plasma−;
n = 28] or undetectable in CSF and detectable in plasma
[CSF−Plasma+; n = 79]).

Secondary Analyses

Supplementary Materials include secondary analyses, including
comparisons of CSF HIV-1 RNA with HCV and RPR serosta-
tus, a subgroup analysis in participants who were HCV seroneg-
ative and RPR nonreactive, and comparisons with CSF
inflammation-associated biomarkers, CSF protein, and CSF
leukocytes.

Correlates of Neurocognitive Performance
Primary Analyses

Table 2 summarizes the analysis of global neurocognitive per-
formance. Univariate analyses identified that worse neurocog-
nitive performance was associated with lower CSF HIV-1
RNA levels, contributing neuropsychiatric conditions, HCV se-
ropositivity, AIDS, and longer total duration of ART. Four other
variables had P values between .05 and .15 and were included as
candidate covariates in multivariable modeling. The initial
model identified that the strongest covariates were CSF HIV-1
RNA level (Figure 2A), CSF+Plasma− discordance (Figure 2B),
and HCV (model R2 = 0.13; P < .001). The AIC selection model
(AIC model 1 in Table 2) identified associations between worse
neurocognitive performance and 5 covariates (model R2 = 0.11;
P < .001), including both lower CSF HIV-1 RNA level and the
presence of CSF+Plasma− discordance. Interaction analysis
(AIC model 2 in Table 2; model R2 = 0.18; P < .001) identified
that lower HIV-1 RNA levels correlated with worse neurocog-
nitive performance in HCV-seronegative participants
(r = −0.25; P = .001) but not in HCV-seropositive participants
(r = −0.02; P = .86).

Among the 7 cognitive domains assessed, lower HIV-1 RNA
levels in CSF were most strongly associated with worse perfor-
mance in speed of information processing (r =−0.23; P = .004),
learning (r =−0.20; P = .02), and working memory (r = −0.20;
P = .01). In contrast, CSF + Plasma− discordance was associated
with worse performance in 2 other cognitive domains, verbal
fluency (P = .03) and possibly executive functioning (P = .09),
suggesting that the mechanisms of injury for these 2 conditions
are distinct.

Secondary Analyses

Supplementary Materials include comparisons of neurocogni-
tive performance with HCV and RPR status, ART drug classes,
and individual ART drugs.

Longitudinal Analysis of Low-Level HIV-1 in CSF Over Time
In the 55 subjects who had a second CSF specimen assayed, the
median duration between visits was 7 months (IQR, 5.7–8.9
months). Forty-three subjects (78%) had HIV-1 RNA levels
in CSF of≥ 1 copy/mL at their first visit, and, among subjects
in this group, HIV-1 RNA levels remained ≥1 copy/mL at
the second visit in 38 (88%). Among the 12 subjects who had
HIV-1 RNA levels of <1 copy/mL at the first visit, levels in 3
(25%) remained at <1 copy/mL at the second visit. Figure 3
shows the 4 groups defined by the presence or absence of

Figure 1. A, Distribution of human immunodeficiency virus type 1 (HIV-1) RNA
levels among the 93 participants with values of ≥1 copy/mL. B, Although HIV-1
RNA levels in cerebrospinal fluid (CSF) did not correlate with those in plasma
(not shown), participants who had HIV-1 RNA levels of ≥1 copy/mL in plasma
had higher HIV-1 RNA levels in CSF. For clarity, the bars indicating mean values
and 95% confidence intervals are shown next to the data points, rather than super-
imposed over them.
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HIV-1 RNA in CSF at the first or second visit against the change
in global rating, identifying that the 3 subjects (5%) who main-
tained HIV-1 RNA levels of <1 copy/mL in CSF had improved
neurocognitive performance, compared with those who had
HIV-1 RNA levels of ≥1 copy/mL in CSF from at least 1 visit.
No secondary analyses were performed in this subgroup be-
cause of the small sample size.

DISCUSSION

HAND continues to commonly occur, even in adults who are
taking suppressive ART [2]. Consistent with this observation,
substantial evidence has accumulated that systemic and end-
organ inflammation can also persist during virologic suppres-
sion, perhaps as a result of production of HIV-1 RNA below
the quantification limit of commercial assays [25]. These find-
ings support the need to improve understanding of the mecha-
nisms of CNS injury in the cART era.

In our study of 220 HIV-positive adults with HIV-1 RNA
levels of ≤50 copies/mL in both plasma and CSF, we found
low-level HIV-1 RNA in the CSF of approximately 4 of 10 par-
ticipants. This proportion is higher than in prior studies, which
have reported proportions up to 28% [17, 18, 26]. Explanations
for this apparent disagreement include differences in the assay
used, the sample size, and cohort characteristics. Our study is
the largest to date, which may make our estimates more repre-
sentative of clinical populations. While we used a different assay
than prior studies, its accuracy has been previously validated in

CSF [19]. CHARTER was designed to generalize to US clinical
populations, but our study participants were a subgroup of the
larger CHARTER cohort. For this reason, selection bias could
also explain why our findings differ from those from other
reports.

The finding that nearly two thirds of participants had HIV-1
RNA levels in blood of ≥1 copy/mL more closely matches prior
reports from HIV-positive adults taking suppressive ART [27].
This low-level circulating HIV-1 is associated with chronic in-
flammation in both adults who take suppressive ART and in
those who spontaneously control HIV [28, 29]. A similar sce-
nario may occur in the CNS, in which low levels of HIV-1
RNA (or proteins) act as immune stimuli, resulting in chronic
inflammation and injury of glia and neurons. Lymphocytes and
monocytes that migrate into the CNS from the systemic circu-
lation may be the source of low-level HIV-1 RNA in CSF in
some cases, but the presence of HIV-1 RNA in CSF in the ab-
sence of detectable HIV-1 in blood suggests that viral compart-
mentalization in the CNS has occurred. Our study showed that
approximately 1 in 8 participants (28 of 220 [12.7%]) had dis-
cordant HIV-1 RNA findings, with levels ≥1 copy/mL in CSF
and <1 copy/mL in blood. Since these groups differ by as little
as 1 copy of HIV RNA per milliliter of CSF or blood, the finding
could theoretically occur because of differences in specimen
processing or assay performance. However, the statistically sig-
nificant associations between this discordant condition and sev-
eral other characteristics support that it results from biological

Table 2. Correlates of Worse Neurocognitive Performance in All 220 Participants

Correlate Risk Direction Univariable Analysis Full Model AIC Model 1 AIC Model 2

CSF HIV-1 RNA level Lower .002 .003 .001 .06a

HCV serostatus Positive .01 .07 .02 .02a

Neuropsychiatric conditions Contributing .02 .16 .09 .05a

Duration of all ART regimens Longer .03 .28 . . . . . .

Duration of current ART regimen Longer .04 .14 .08 .05a

RPR reactivity Reactive .07 .28 . . . . . .

AIDS diagnosis Present .11 .35 . . . . . .

Plasma HIV-1 RNA level <1 copy/mL .14 .72 . . . . . .

CSF-plasma discordance group CSF+Plasma−b .14 .07 .03 .04

CPE . . . .18 . . . . . . . . .

Nadir CD4+ T-cell count . . . .20 . . . . . . . . .

Duration of HIV-1 disease . . . .25 . . . . . . . . .

No. of ART regimens . . . .30 . . . . . . . . .

PI-containing regimen . . . .90 . . . . . . . . .

Current CD4+ T-cell count . . . .91 . . . . . . . . .

NNRTI-containing ART regimen . . . .91

4-day ART adherence . . . .99 . . . . . . . . .

Multivariable model statistics . . . . . . < .001; R2 = 0.13 < .001; R2 = 0.11 < .001; R2 = 0.18

Data are P values, unless otherwise indicated.

Abbreviations: AIC, Akaike information criterion; ART, antiretroviral therapy; CPE, central nervous system penetration effectiveness; CSF, cerebrospinal fluid; HCV, hepatitis C virus; HIV-1,
human immunodeficiency virus type1; NNRTI, nonnucleoside reverse transcriptase inhibitor; PI, protease inhibitor; RPR, rapid plasma reagin.
a Covariate is included in a first-order interaction term. An interaction with HCV was the only one to include CSF HIV RNA level. The others were between HCV and either (1) duration of the
current ART regimen or (2) neuropsychiatric conditions.
b HIV-1 RNA level of ≥1 copy/mL in CSF and <1 copy/mL in plasma.
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processes. Such discordance may be part of a spectrum of con-
ditions recognized in more-severe forms as CSF viral escape,
which also occurs in approximately 10% of adults taking
suppressive ART [26, 30]. Our study demonstrated that
CSF+Plasma− discordance was independently associated with
worse global neurocognitive performance, although this associ-
ation weakened when participants who were either HCV sero-
negative or RPR nonreactive were excluded. Combined, our
findings support that syphilis, HCV infection, and HIV-1 es-
cape in CSF could contribute to HAND in at least a subgroup
of adults taking suppressive ART.

Several studies have reported that ART regimens that have
greater estimated distribution into the CNS are associated
with lower HIV-1 RNA levels in CSF [31, 32]. An important
limitation of prior analyses, though, has been inclusion of par-
ticipants who had plasma HIV-1 RNA levels of >50 copy/mL.

Our study directly addresses this limitation by including only
participants who were taking ART and had plasma HIV-1
RNA levels of ≤ 50 copy/mL. We again found that higher
CPE values were statistically significantly associated with
lower HIV-1 RNA levels in CSF, even in multivariable analyses.
While reports linking CPE to HIV-1 RNA levels in CSF have
had consistent findings, those comparing CPE to neurocogni-
tive performance or neuroimaging findings have not. For in-
stance, some reports have found that regimens yielded higher
CPE values were associated with better neurocognitive out-
comes [33], while others have found evidence of worse out-
comes [34]. While differences in design and power account
for at least some of these inconsistencies [35], disagreement be-
tween studies could also reflect that HIV-1 RNA levels in CSF
relate differently to neurocognitive outcomes during treatment
with today’s potent regimens than in the past.

Our analyses also found that lower HIV-1 RNA levels in CSF
were associated with worse neurocognitive performance, the di-
rection of which is contrary to our hypothesis. Since higher CPE
regimens may sometimes be prescribed for HAND and were as-
sociated with lower HIV-1 RNA levels in CSF in this project,
one possible explanation for this unexpected, cross-sectional
finding is that some participants had preexisting HAND that
had not fully responded to ART [36]. Consistent with this, sec-
ondary analyses in a subgroup of 109 participants who had been
previously assessed supported that neurocognitive impairment
was not improving (Supplementary Materials). This could be
due to ongoing disturbances in the CNS immune response,
which may be particularly prominent in patients whose CD4+

T-cell counts have previously declined to low levels.
The relationship between low CD4+ T-cell counts and low

HIV-1 RNA levels provides another clue about how low HIV-
1 RNA levels in CSF might predispose to HAND. Multiple

Figure 2. A, Lower human immunodeficiency virus type 1 (HIV-1) RNA levels in
cerebrospinal fluid (CSF) correlated with worse global neurocognitive performance.
B, The discordant group with an HIV-1 RNA of ≥1 copy/mL in CSF but a level of <1
copy in plasma (the CSF+Plasma− group) had worse neurocognitive performance
than the group with an HIV-1 RNA level of ≥ 1 copy/mL in both fluids (the CSF+
Plasma+ group). The dashed line indicates the threshold value for impairment (5).
Global impairment was present in 60.7% of the CSF+Plasma− group, compared
with 41.5% of the CSF+Plasma+ group (P = .09).

Figure 3. Having a human immunodeficiency virus type 1 (HIV-1) RNA level
of < 1 copy/mL in cerebrospinal fluid (CSF) at the first and second visits was asso-
ciated with improved neurocognitive performance over time.
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studies have found that a low nadir CD4+ T-cell count increases
the risk for developing HAND and that this risk appears to per-
sist even after immune recovery [9]. This may reflect persistent
disturbances in the CNS immune response, characterized by al-
tered migration and activity of monocytes and lymphocytes that
affect HIV clearance and compartmentalization [37–39]. The
correlation between lower CSF leukocyte number (Supplemen-
tary Materials) and lower HIV-1 RNA level may indicate that
fewer activated, replication-competent cells are being pushed
into the CNS from the periphery and/or that fewer are being
pulled into the CNS by HIV replication in CNS-resident cells
[40]. While an overly robust immune response could injure
the brain [41], the absence of an adequate response could
favor development of compartmentalization [39], could deprive
the brain of neurotrophic factors that would support recovery
from HAND [42], and could worsen control in the CNS of
other pathogens, such as Treponema, HCV, cytomegalovirus,
and Toxoplasma.

Another possible and nonmutually exclusive explanation is
ART neurotoxicity, either directly, via neuronal or glial injury
[32, 43], or indirectly, via metabolic or vascular disease [44,
45]. The observed association between worse neurocognitive
performance and the combination of lower HIV-1 RNA levels
in CSF (as an indicator of more-potent ART) and longer dura-
tions of ART support this conclusion. Weighing against the
explanation of ART neurotoxicity is the absence of an associ-
ation between worse neurocognitive performance and either
higher CPE values or use of individual ART drugs with
known neurotoxicity, such as efavirenz [46, 47]. Subgroup
analyses, while modest in scope, also supported that lower
HIV-1 RNA levels in CSF may be beneficial, such as the lon-
gitudinal analysis or the correlation with lower levels of some
inflammation biomarkers in CSF (data not shown: interleukin
6, ρ = 0.49 [P = .01]; TNF-α, ρ = 0.36 [P = .07]). Any of these
effects (ART-unresponsive HAND, disturbed CNS immune
response, and ART toxicity) could affect patients with contrib-
uting neuropsychiatric conditions to a greater extent than
those with minimal neuropsychiatric comorbidities, consistent
with our findings and the concept of cognitive reserve or vul-
nerability [48].

The discussion thus far has focused on the detrimental effects
of undetectable HIV-1 RNA levels in CSF, but the converse
might also be true. Could the presence of low-level HIV-1
RNA in CSF protect from HAND? If low-level HIV-1 RNA re-
flects persistent HIV-1 replication, then it might be due to the
presence of drug resistance mutations. If these drug resistance
mutations include those that reduce viral fitness, such as
M184V, then this could be associated with better neurocogni-
tive outcomes, as we have previously found [49]. If persistent
HIV-1 replication also stimulates a more effective immune re-
sponse that reduces the size of the CNS reservoir, then the com-
bination of reduced viral fitness and viral clearance from the

CNS should be beneficial. The current analysis does not include
data to directly test this hypothesis.

The strengths of our study include its large sample size, the
comprehensiveness of the assessments, and the sensitivity of the
single-copy assay. Its weaknesses include its cross-sectional de-
sign of the primary study, the post hoc nature of some of the
analyses, the inconsistent direction of the cross-sectional and
longitudinal analyses, the small longitudinal sample size, and
the heterogeneity of the cohort, including nearly 30% having ei-
ther a positive result of HCV antibody testing or a reactive RPR
test. Our selected study population may also be less generaliz-
able to clinical populations than the larger CHARTER cohort.
In addition, our best multivariable models had relatively modest
coefficients of determination, indicating that they explained
<20% of variation in viral or neurocognitive outcomes. Valida-
tion of our findings in an independent cohort is essential.

If correct, our findings support a complex approach for
HAND management in which clinicians should consider fac-
tors such as ART drug characteristics, CD4+ T-cell counts, neu-
ropsychiatric conditions, and coinfections. The best approach
may be the use of ART regimens that balance sufficient potency
in the CNS with the absence of neurotoxicity, similar to those
currently recommended by the US Department of Health and
Human Services [50]. Ultimately, randomized controlled trials
of ART regimens will be needed to inform the clinical manage-
ment of HAND.
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