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Two-Layer Elastographic 3-D 
Traction Force Microscopy
Begoña Álvarez-González1,2, Shun Zhang2, Manuel Gómez-González2, Ruedi Meili1,2, 
Richard A. Firtel1, Juan C. Lasheras2,3,4 & Juan C. del Álamo2,4

Cellular traction force microscopy (TFM) requires knowledge of the mechanical properties of 
the substratum where the cells adhere to calculate cell-generated forces from measurements of 
substratum deformation. Polymer-based hydrogels are broadly used for TFM due to their linearly 
elastic behavior in the range of measured deformations. However, the calculated stresses, particularly 
their spatial patterns, can be highly sensitive to the substratum’s Poisson’s ratio. We present two-
layer elastographic TFM (2LETFM), a method that allows for simultaneously measuring the Poisson’s 
ratio of the substratum while also determining the cell-generated forces. The new method exploits 
the analytical solution of the elastostatic equation and deformation measurements from two layers 
of the substratum. We perform an in silico analysis of 2LETFM concluding that this technique is robust 
with respect to TFM experimental parameters, and remains accurate even for noisy measurement 
data. We also provide experimental proof of principle of 2LETFM by simultaneously measuring the 
stresses exerted by migrating Physarum amoeboae on the surface of polyacrylamide substrata, and the 
Poisson’s ratio of the substrata. The 2LETFM method could be generalized to concurrently determine 
the mechanical properties and cell-generated forces in more physiologically relevant extracellular 
environments, opening new possibilities to study cell-matrix interactions.

The mechanical properties of the extracellular environment affect cellular behavior and processes such as cell 
migration, proliferation, growth, differentiation, and spreading1–3. Cells can feel the mechanical properties of 
their extracellular environment and regulate their adhesions by a process known as mechanosensing4–6. Traction 
forces exerted by the cells are known to regulate not only cell locomotion but also many other cellular processes7,8. 
Several traction force microscopy methods have been developed to measure the forces exerted by stationary and/
or migrating cells on flat elastic polymer-based hydrogels9–15. These gels exhibit a linearly elastic behavior in the 
range of the small deformations produced by the cells16–18. The calculation of the traction forces in these TFM 
methods requires a precise knowledge of the constitutive equations of the substratum, which for linearly elastic 
materials depend only on two parameters: the Young’s modulus of elasticity and the Poisson’s ratio19. The Young’s 
modulus of polyacrylamide and other elastic materials commonly used in these TFM methods are well-known, 
and there are established methods for their measurement17. On the other hand, the value of their Poisson’s ratio 
is often not well characterized.

Flexible polymer hydrogels have been shown to exhibit Poisson’s ratios close to 0.5. However, a wide range 
of values has been reported for these gels in the literature (0.27–0.49), depending on their specific composition 
and method of preparation20–22. Pioneering TFM studies that assumed 2-D substratum deformation and infinite 
substratum thickness reported a weak dependence of the traction stresses on the Poisson’s ratio23. However, more 
recent analyses that consider the finite thickness of the substratum and three-dimensional deformations have 
indicated that this dependence is stronger than previously believed24. The uncertainty in the Poisson’s ratio poses 
an important limitation to TFM methods since for a given deformation field, not only the magnitude but also the 
spatial distribution of the traction forces depends on the Poisson’s ratio25. To address this issue, we have developed 
a new traction force microscopy method that enables the simultaneous calculation of the Poisson’s ratio of the gel 
and the traction forces that a cell exerts on it. Furthermore, this method allows for measuring the Poisson’s ratio 
at each specific measurement time and location, in order to account for possible spatial and temporal variations 
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of the mechanical properties of the substratum when measuring cellular traction forces, cell-cell tensions25,26, and 
potentially other biomechanical quantities of interest.

When cells adhere to an elastic substratum, they apply forces on its surface producing deformations deep 
throughout the substratum27. These deformations depend on the value of the Poisson’s ratio of the substratum’s 
material, σ24. If the Poisson’s ratio is known, it is possible to solve the elastostatic equation

σ− ∇ + ∇ ∇ ⋅ =u u(1 2 ) ( ) 0 (1)2

to determine the 3-D deformation everywhere inside the substratum, u(x, y, z), from the 3-D deformation meas-
ured on a single plane, u(x, y, z =​ constant)24. Thus, knowing the 3-D substratum deformation on two different 
planes, u(x, y, z =​ h0) and u(x, y, z =​ h1), makes equation (1) highly overdetermined. In this paper, we exploit 
this overdetermination to develop a two-layer elastographic traction force microscopy (2LETFM) method that 
allows us to estimate σ while simultaneously calculating the traction forces exerted by the cell. It is important to 
note, however, that this method cannot determine the Young’s modulus of the substratum because this parameter 
modulates the deformations in the same manner everywhere in the substratum and, thus, it does not affect the 
deformation patterns.

2LETFM is rooted in the analytical solution to the elastostatic equation (1) developed for Fourier Traction 
Force Microscopy10,24,28. We use this solution together with the deformation measured at the first plane (z =​ h0) 
to calculate the deformation on the second plane (z =​ h1) as a function of the Poisson’s ratio. Then, we determine 
the Poisson’s ratio by iteratively minimizing the least-squares error between the measured and calculated defor-
mations at z =​ h1. The obtained value of σ is subsequently used to calculate the 3-D traction stresses exerted by 
the cell following the approach described by del Álamo et al.24. To test the accuracy and robustness of the new 
2LETFM method, we use synthetic deformation fields with prescribed background noise. This analysis indicates 
that, in the range of values of the Poisson’s ratio typically encountered in experiments (σ >​ 0.3), 2LETFM can 
accurately and robustly determine σ for a wide range of experimental design parameters, and even in the pres-
ence of significant measurement noise. As way of illustration, we perform 2LETFM experiments on Physarum 
microamoebae migrating on the flat surface of polyacrylamide substrata. The elastographic TFM analysis can be 
immediately extended to the case of cells embedded inside linearly elastic 3-D matrices.

Methods
Two-layer elastographic traction force microscopy analysis.  Consider the two-layer TFM setup in 
Fig. 1a, where the 3-D deformation of the substratum is measured at two separate horizontal planes, u0 =​ u(x, y, 
z =​ h0) and u1 =​ u(x, y, z =​ h1). For this exposition, we will consider that h ≥​ h0 >​ h1 where h is the substratum 
thickness. Using u0 as boundary condition together with zero deformation at the bottom of the substratum, it is 
possible to find an exact solution to the elastostatic equation (1) where the Poisson’s ratio is a free parameter24. 
This solution provides the full 3-D deformation vector field everywhere inside the substratum, including at the 
second measurement plane z =​ h1.

The solution procedure, which was explained in detail by del Álamo et al.24,28, is summarized as follows. We 
expand the deformation vector field in Fourier series in the x and y directions,
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where Nx and Ny are respectively the number of measurement points in x and y, and α and β are the correspond-
ing wavenumbers. This transformation allows us to obtain a second-order, ordinary boundary value problem for 
 zu( ). The solution to this problem is
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where Uαβ(z; σ) is the resolvant matrix of the boundary value problem, which can be found in closed analytical 
form in ref. 24, and αβ hu ( )0  are the Fourier coefficients of the deformation measured at z =​ h0. By plugging z =​ h1 
in equations (2–3), we calculate the substratum deformation at the second measurement plane from the substra-
tum deformation measured at the first plane,
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which is equivalent to σ σ=α β αβ αβ αβ
−

 U h U h hu u( ; ) ( ; ) ( )1
2, , 1 0 0 . The Poisson’s ratio appears as a free parameter 

in the calculation of u2. Thus, comparing u2(x, y; σ) with the deformations measured at the second plane, u1(x, y), 
allows for estimating the value of the Poisson’s ratio σr that maximizes their agreement.

The resolvant matrix of the traction force microscopy problem has a form that can amplify or suppress experi-
mental noise28,29. Specifically, it is straightforward to see that deformations with spatial patterns of wavelength 
λ π α β= +2 / 2 2 much smaller than substratum thickness (λ ≪​ h) vary as as λ∼ −λ αβ� �� h z hu uexp[( )/ ] ( )h 0 0

28. 
This dependence justifies our choice h0 >​ h1, which naturally introduces a low-pass filter for the noise contained in 
the deformations measured at z =​ h0. Note that the alternative option, h0 <​ h1, would exponentially amplify measure-
ment noise. Experimental errors can be decreased further given that the comparison u2(x, y; σ) =​ u1(x, y) is done at 
Nx ×​ Ny different points (see eq. 4). Having Nx ×​ Ny conditions to estimate one single parameter makes the calcula-
tion of σr highly overdetermined and renders the error of the recovered Poisson’s ratio significantly lower than that 
of the traction stresses themselves, as is shown below. To solve the overdetermined problem, we followed a 
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least-squares approach using an iterative Levenberg-Marquardt algorithm that minimized a global cost function to 
calculate σ. This iterative algorithm is similar to those employed in our previous studies30–32 and is summarized in 
Fig. 1b.

We tested two different cost functions,
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= − − −

J
J R R R

u u u u v v v v w w w w
u u v v w w

[( ) , ( ) , ( ) ] ,
[1 ( , ),1 ( , ),1 ( , ))] , (5)

2 1 2 1 2 1 2 1 2 1 2 1

2 1 2 1 2 1

1

2

where R stands for the correlation coefficient. The main difference between these two functions is that J1 penalizes 
differences in magnitude whereas J2 penalizes differences in spatial patterns.

Once the value of σr has been estimated, the traction stresses at the cell-substratum interface are obtained as 
described by del Álamo et al.24. Specifically, these stresses are determined from the calculated displacements and 
their z-derivatives by applying Hooke’s law in Fourier space,
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where the 6 ×​ 3 matrix Hαβ , which only depends on the material properties of the substratum (E and σr) and the 
wavenumbers of each Fourier mode, was given in the Supporting Information of del Álamo et al.24.

Figure 1.  (a) Sketch of the configuration of the experiment. The substratum has a layer embedded with red 
beads at the surface and another layer embedded with green beads in a plane below the surface. As a cell 
adheres to the substratum, the deformations that it applies in both layers embedded with beads are measured. 
(b) Overview of the method. Diagram indicating the steps followed in this method for the calculation of the 
Poisson’s ratio of the substratum.
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Cell culture.  We cultured Physarum polycephalum plasmodia in agarose plates with oatmeal33,34. We excised 
small pieces from the parent plasmodium, and grew them on agarose plates without oatmeal during 10 hours. We 
subsequently excised 200-μm sized pieces with a scalpel and placed them over the polyacrylamide gel. This pro-
cess produces highly motile amoebae35,36. We then removed the surrounding water using a small glass capillary 
tube, and covered the polyacrylamide gel with the amoebae using an agar cap. To fabricate the agar cap, we boiled 
a 100 mM agar solution and poured 100 μl of this solution on a glass coverslip mounted with a 12-mm washer, 
and waited until the agar solidified. The weight of the agar cap generated a pressure on the amoebae comparable 
to but smaller than the traction stresses generated by the cells, thus generating a gentle confinement36. Such con-
finement prevented the gel from drying out and rendered the cell easier to visualize, while still allowing the cell to 
exert significant deformations in the substratum.

Substratum fabrication.  We fabricated 12-mm diameter polyacrylamide gels of 5% acrylamide and 0.225% 
bisacrylamide (Young’s modulus approximately 8 KPa37) mounted on 22-mm square # 1 glass coverslips38,39. To 
independently measure the substratum deformation at a plane near its surface (z =​ h0) and at a second plane 
below the surface (z =​ h1), we fabricated a polyacrylamide substratum with four layers: the bottom layer con-
tained no beads, the second layer contained 0.07% carboxylate modified yellow latex beads of 0.5 μm diam-
eter (Fluospheres, Invitrogen, Carlsbad CA), the third layer contained no beads, and the top layer contained 
0.07% carboxylate modified red latex beads of 0.5 μm diameter (Fluospheres, Invitrogen, Carlsbad CA). Figure 1a 
shows a sketch of the experimental configuration. The layers were verified to adhere well to each other under 
experimental conditions by confirming continuity of deformation across different layers, similar to our previ-
ous work24. To further establish if the layers were properly attached to each other so that there were no jumps 
in deformation across different layers, we verified the continuity of the substratum deformation in x −​ z planes 
under the cells (see Figure S1 in the Supplementary Information). We mounted the coverslips with the gels in 
Petri dishes with circular openings at their bottom using silicon grease (Dow Corning, Midland, Michigan). We 
made the gels physiologically compatible by cross-linking collagen I to the surface of the polyacrylamide. We used 
1 mM Sulfo-SANPAH (Thermo Sci, Rockford, Il) after UV activation to cross-link 0.25 mg/ml collagen I. The 
gels were incubated overnight at room temperature. After washing, the gels were stored in 0.05 M HEPES buffer 
and antibiotic (40 μM Ampicillin) for up to a week. The thickness of the gels was approximately 100 μm and the 
distance between the two layers containing beads was approximately 15 μm. In each experiment, we measured 
the exact thickness of the gel and the distance between the two layers containing beads. The thickness of the gel 
was measured by locating the top and bottom planes and subtracting their z-positions and, in a similar manner, 
the distance between the two layers containing beads was measured by locating these layers and subtracting their 
z-positions.

Microscopy.  The 3-D deformation of the substratum at two different planes beneath the surface, z =​ h0 and 
z =​ h1, was measured by tracking respectively the red and yellow fluorescent beads. We acquired time-lapse 
sequences of image z-stacks using a Leica DMI6000 B inverted microscope (Leica Microsystems, Inc., Buffalo 
Grove, IL) equipped with a Zyla 4.2 sCMOS camera (Andor Technology Ltd., Belfast, UK) and a 20x objective 
lens. The imaging setup was controlled by the open source microscopy software Micro-Manager40,41. Each z-stack 
consisted of 20 images at 0.5 μm increments, and was vertically centered at the plane of maximum fluorescence 
intensity as determined by the autofocus system. The position and shape of the cell at each instant of time was 
recorded with an additional bright-field phase contrast image. We acquired the two fluorescent z-stacks and the 
phase-contrast image of the cell every 60 seconds.

Measurement of substratum deformation.  We determined independently the 3-D deformation at the 
center plane of the two imaged z-stacks by analyzing the images of the red and yellow beads separately. For each 
color, we cross-correlated an instantaneous z-stack with the cell in the center of the x −​ y field of view, and a 
reference z-stack that was obtained after the highly motile cell had moved away of the field of view, similar to 
our previous works8,24,28,36,42–46. Enough time was given for the cell to move away from the field of view so that 
the edges of the reference images were non-deformed. We note that the agar cap was not removed to acquire the 
reference z-stack, and thus the polyacrylamide gel was still supporting the weight of the cap. However, this does 
not preclude the calculation of the traction stresses because the weight exerted by the agar cap is constant, and the 
polyacrylamide gel behaves linearly (see detailed demonstration in the Supplementary Information). To measure 
deformation, both the instantaneous and reference z-stacks were divided into smaller 3-D interrogation boxes, as 
is done in particle image velocimetry47. In order to balance spatial resolution and signal-to-noise ratio while mini-
mizing phototoxic effects, we chose interrogation boxes of size 64 ×​ 64 ×​ 20 pixels in the x, y and z directions, with 
50% overlap in the x and y directions. The resulting spatial resolution (20 μm) was sufficient for the Physarum 
amoebae considered in our experiments, which had a typical size of 200-μm.

Results
Synthetic-field analysis of 2LETFM.  As discussed in the Methods section, the relative position of the 
measurement planes may influence the performance of 2LETFM in the presence of experimental noise. The 
Poisson’s ratio and the nature (tangential vs. normal) of the cell-generated traction forces could also affect the 
accuracy of the new technique, because they modulate how stress and deformation propagate throughout the sub-
stratum24. To systematically determinate the accuracy and robustness of 2LETFM as a function of these parame-
ters, we applied the new method to synthetic deformation fields with prescribed noise. The synthetic deformation 
fields were defined by the equations



www.nature.com/scientificreports/

5Scientific Reports | 7:39315 | DOI: 10.1038/srep39315

= −

= −

= + −

µ µ

µ µ

µ µ µ

− −∆ + − +∆ +

− + −∆ − + +∆

− −∆ + − +∆ + − +

u U e e

v U e e

w W e e e

{ },

{ },

2
{ 2 },

(7)

x y x y

x y x y

x y x y x y

0 0
[( ) ]/ [ ( ) ]/

0 0
[ ( ) ]/ [ ( ) ]/

0
0 [( ) ]/ [ ( ) ]/ ( )/

2 2 2 2 2 2

2 2 2 2 2 2

2 2 2 2 2 2 2 2 2

and are shown in Fig. 2. These synthetic data mimic the substratum deformation generated by migrating amoe-
boid cells13, including the Physarum amoebae reported in the Results Section below (see also ref. 36). The param-
eter μ in these equations represents the length scale of the deformation patterns, whereas the parameters U0 and 
W0 represent the magnitude of the deformations. To simplify the analysis, we reduced the number of parameters 
by assuming that the top measurement plane was located at the surface of the substratum, h =​ h0.

We used the synthetic deformation field u0 as boundary conditions for the elastostatic equation, and calcu-
lated u1(x, y) at z =​ h1 from eq. 4 for given values of the Poisson’s ratio σe that was considered as exact. Then, we 
studied how accurately the two-layer algorithm could recover σe under different conditions.

Effect of Experimental Noise.  To model experimental noise, we used u0 and u1 as ground truth data, and 
added an independent random field on each of these deformation fields. Noise fields unois with spatial patterns 
that resembled experimental conditions were generated in the Fourier domain, with a Gaussian spectrum of 
wavenumber width δ, i.e.

φδ
π

δ= − ku exp( /2),
(8)noise

2 2

Figure 2.  Example of the synthetic deformations used for the in silico analysis of 2LETFM. (a) Ground  
truth synthetic deformation, u0 =​ (u0, v0, w0) at the surface of the substratum, given by eq. 7. The parameters  
Δ​ (distance between positive and negative deformation patterns) and μ (size of each the deformation pattern) 
are explained in the plot. (b) Noise containing synthetic field obtained by adding a normally distributed random 
field that has been low-pass filtered with a Gaussian filter of size μ/2. The signal-to-noise ratio of this example 
is S2N =​ 1. The in-plane (u0, v0) and out-of-plane (w0) deformations are given normalized with U0 and W0 
respectively, and their values correspond to the colorbars at the bottom of each column.
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where α β= +k 2 2, and uniformly random phase. The noise fields generated by this model are also Gaussian 
in the physical domain (x, y), and have a characteristic length scale δ. Unless otherwise specified, we used δ =​ μ/2 
in our simulations so that the length scales of the noise and the ground truth are comparable. Note that this is a 
conservative scenario that makes it challenging to low-pass or high-pass filter the noise without affecting the 
ground truth measurements. Additional simulations were performed for other values of δ. The results of these 
simulations, reported in Figure S3 in the Supplementary Information, indicate that the conclusions presented 
here are independent of δ. The S2N of the noise-containing fields was defined as the ratio between the ground 
truth fields and the root mean squares of the noise,

φ
= =S N

u
u

u
2 ,

(9)noise

and was varied in the range 0.25 ≤​ S2N ≤​ 10 via the coefficient φ in eq. (8). An example of a 3-D noise-containing 
deformation field with signal-to-noise ratio (S2N) equal to one is shown in Fig. 2b.

We simulated gels with values of the Poisson’s ratio in the range 0.1 <​ σe <​ 0.5. This range was chosen for com-
pleteness, even though values σ <​ 0.3 have not been reported for the elastic hydrogels used in TFM. For each pair 
of values of σe and S2N, we ran N =​ 100 realizations with different random noise distributions. We plugged the 
noise-containing deformation fields into the least-squares iterative procedure described in Fig. 1 to recover the 
Poisson’s ratio of the substratum, σr, and compared the result to σe. In these simulations, we kept the positions of 
the two measurement planes fixed at h1 =​ 0.85 h and h0 =​ h. The effect of the relative position of the measurement 
planes, h0 −​ h1 is discussed below.

Figure 3 shows the statistics (mean ±​ standard deviation) of the recovered Poisson’s ratio σr as a function of the 
exact value σe and the S2N for the two different cost functions presented in equation 5. The data show that 
2LETFM can accurately determine the Poisson’s ratio even for noisy displacement fields. The method is particu-
larly accurate and robust for the values of the Poisson’s ratio typically found in TFM substrata (i.e. σ .0 4e ). In 
this range, both |σr −​ σe| and the standard deviation of σr are less than 10% of σe for S2Ns as low as 0.5. When the 
S2N is lower than 0.5, the Poisson’s ratio can be underestimated for σe ≥​ 0.2 −​ 0.3, while it is overestimated for 
lower values of σe (Fig. 3a,d). It is worth noting that the determination of σ by 2LETFM is substantially more 
accurate than the calculation of the traction stresses when the same level of noise is present in the measured 
deformations. In fact, comparing Fig. 3b,e with Figure S3 in the Supplementary Information reveals that the error 
in σr is about 10 times lower than the error in the traction stresses.

The recovery of the Poisson’s ratio is relatively independent of the cost function employed in the least-squares 
optimization algorithm. However, the cost function based on the difference between deformations (J1, see eq. 5) 
(Fig. 3a–c) performs somewhat better than the one based on cross-correlating the spatial patterns of the deforma-
tions (J2, see eq. 5) (Fig. 3d–f), particularly for very low S2Ns. Unless otherwise indicated, the results presented 
below are obtained using J1.

Effect of the position of the measurement planes.  The position of the second measurement plane, 
z =​ h1, might be a key factor in the experimental design of 2LETFM. To investigate if there is an optimal position 
that maximizes the accuracy of 2LETFM, we ran simulations varying the value of h1 and with the noise-containing 
synthetic fields described above (keeping the S2N =​ 1). The results of these simulations are summarized in Fig. 4 
as a function of h0 −​ h1.

Consistent with the data shown in Fig. 3, the performance of the technique improved as σe approached 0.5, 
both in terms of the average σr (Fig. 4a) and its relative error and relative uncertainty (Fig. 4b,c). Furthermore, 
we found a non-monotonic dependence of these parameters with h0 −​ h1. The algorithm’s performance was opti-
mal when the distance between the two measurement planes, h0 −​ h1 was comparable to the length scale of the 
deformation patterns at the substratum’s surface, μ (see eq. 7). These results can be explained considering that 
when the second plane is located at a distance from the surface much larger than μ, the deformation measured on 
that plane is negligible28. On the other hand, if h1 ≈​ h0, the deformations measured on the two planes are almost 
the same. In both cases, the TFM problem is hardly overdetermined and the accuracy of the two-layer approach 
deteriorates. Despite this non-monotonic behavior, the relative error of the recovered σr remains below 10% in a 
wide range of values of h0 −​ h1.

In the simulations presented so far, the length scale of the ground-truth synthetic displacements was pro-
portional to that of the noise. Specifically, the 1/e-width of the deformation patterns was equal to the root mean 
square of the ground truth synthetic deformation, μ (eq. 7) and the spectral width of the noise distribution was 
fixed as half that value, δ =​ μ/2 (eq. 8). To verify that the optimal inter measurement plane distance is propor-
tional to the length scale of the deformation applied by the cell (μ) and not to the length scale of the noise, (δ), 
we performed simulations varying both δ and μ in addition to h1. Figure 5 shows the average σr as a function 
of h0 −​ h1 for σe =​ 0.45 for varying the values of μ and δ in the range 0.01h0–0.04h0. The figure shows that when 
h0 −​ h1 is is normalized with the length scale of the noise patterns (δ), σr is scattered (Fig. 5a). However, when 
h0 −​ h1 is normalized with the length scale of the ground-truth deformation patterns (μ), the different curves 
collapse reasonably well. Thus, we conclude that the optimal separation between the measurement planes is asso-
ciated with the length scale of the cell-generated deformation and not to the measurement noise. Furthermore, 
the data suggests that σr is closest to σe for h0 −​ h1 ≈​ μ.

Effect of normal/tangential traction force ratio.  When cells apply traction stresses on the surface of 
their substratum, the normal component of the cell-generated deformation decays slower with the distance to the 
surface than the tangential ones24. Because 2LETFM relies on detecting differences in the transmission of defor-
mation throughout the substratum, we hypothesized that this technique will be less accurate when cells exert 
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predominantly normal traction stresses in substrata with σ ≈​ 0.5. To test this hypothesis, we made the synthetic 
horizontal and vertical deformations using two different length scales, U0 and W0 (see eq. 7), and determined 
the dependence of the error of 2LETFM on the ratio W0/U0. The results of this analysis (Fig. 6a–c) confirm our 
hypothesis, and indicate that the error in the recovered Poisson’s ratio increases with the ratio W0/U0. The data 
also indicates that σ can be recovered with reasonable accuracy regardless of W0/U0 as long as σe >​ 0.4.
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Figure 3.  Accuracy and robustness of 2LETFM in the presence of zero-average, normally distributed 
random noise. (a) Value σr of the Poisson’s ratio recovered by 2LETFM using the difference cost function J1 
(eq. 5). The data are plotted as a function of the signal-to-noise ratio S2Nh0 of the deformations prescribed 
at z =​ h0, and represented as mean ±​ standard deviation obtained from N =​ 100 random realizations. Each 
curve is obtained for a different value σe of the exact Poisson’s ratio that is being recovered. This exact value is 
indicated with a dashed horizontal line in each case. (b) Contour plot of the relative error of σr obtained with 
the cost function J1 as a function of S2Nh0 and σe. The relative error is defined as |σr −​ σe|/σe. (c) Contour plot 
of the relative uncertainty of σr obtained with the cost function J1 as a function of S2Nh0 and σe. The relative 
uncertainty is defined as r.m.s.(σr)|/σe. (d) Value σr of the Poisson’s ratio recovered by 2LETFM using the 
correlation cost function J2 (eq. 5). The data are plotted in the same manner as in panel (a). (e) Contour plot of 
the relative error of σr obtained with the cost function J2 as a function of S2Nh0 and σe. (f) Contour plot of the 
relative uncertainty of σr obtained with the cost function J2 as a function of S2Nh0 and σe. The data were obtained 
for h0 −​ h1 =​ 0.15h0 =​ 2.5μ and U0 =​ W0.
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Figure 4.  Accuracy and robustness of 2LETFM as a function of the ratio of the distance between the two 
measurement planes h0 − h1 and the length scale of the deformation field at the top plane μ. (a) Recovered 
value σr of the Poisson’s ratio, plotted as a function of h0 −​ h1. The data are represented as mean ±​ standard 
deviation obtained from N =​ 100 random realizations. Each curve is obtained for a different value σe of the exact 
Poisson’s ratio that is being recovered by 2LETFM. This exact value is indicated with a dashed horizontal line in 
each case. (b) Contour plot of the relative error of σr as a function of h0 −​ h1 and σe. The relative error is defined 
as |σr −​ σe|/σe. (c) Contour plot of the relative uncertainty of σr as a function of h0 −​ h1 and σe. The relative 
uncertainty is defined as r.m.s. (σr)|/σe. The data were obtained for S2N =​ 1 and U0 =​ W0.

Figure 5.  Recovered value σr of the Poisson’s ratio, obtained for σe = 0.45 and for different values of μ 
and δ, and plotted as a function of inter measurement plane distance h0 − h1. The legend indicates the 
different cases considered. Case 1: μ/h0 =​ 0.02, δ/h0 =​ 0.01. Case 2: μ/h0 =​ 0.02, δ/h0 =​ 0.02. Case 3: μ/h0 =​ 0.02, 
δ/h0 =​ 0.04. Case 4: μ/h0 =​ 0.04, δ/h0 =​ 0.01. Case 5: μ/h0 =​ 0.04, δ/h0 =​ 0.02. Case 6: μ/h0 =​ 0.04, δ/h0 =​ 0.04. 
Case 7: μ/h0 =​ 0.08, δ/h0 =​ 0.01. Case 8: μ/h0 =​ 0.08, δ/h0 =​ 0.02. Case 9: μ/h0 =​ 0.08, δ/h0 =​ 0.04. (a) The inter 
measurement plane distance h0 −​ h1 is normalized with the length scale of the background noise (δ). (b) The 
inter measurement plane distance h0 −​ h1 is normalized with the length scale of the deformation field at the top 
plane (μ). The data were obtained for S2N =​ 1 and U0 =​ W0.
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Experimental demonstration of two-layer elastographic traction force microscopy.  To demon-
strate the experimental feasibility of 2LETFM, we applied this technique to simultaneously measure the traction 
stresses generated by migrating Physarum amoebae and the Poisson’s ratio of the polyacrylamide substrata where 
they adhere. For this purpose, we manufactured polyacrylamide gel substrata embedded with fluorescent beads 
of two different colors in two different layers located at the substratum surface and below it (see Fig. 1). The 3-D 
substratum deformations in these two layers were independently measured by tracking the displacements of 
the two sets of fluorescent beads as described in the Methods Section. Using these data, we implemented the 
two-layer algorithm presented above to estimate the Poisson’s ratio σ of the polyacrylamide gel and, once σ was 
known, determined the traction stresses generated by the cell.

Recovered Poisson’s ratio. Effect on deformations and traction stresses.  Figure 7 shows a rep-
resentative example of a two-layer deformation measurement. Panel (a) shows the experimental measurements, 
including the bright field image used to segment the cell contour (a.1), and the deformations measured at z =​ h0 
(u0, a.2) and z =​ h1 (u1, a.3). We applied the 2LETFM algorithm to these measurements and recovered a value of 
σr =​ 0.44, which agrees well with previous measurements of the Poisson’s ratio of polyacrylamide gels20,48,49. As 
expected, the deformation u2 calculated at z =​ h1 for σr (panel b) agreed with the measured one better than for 
other values of σ ≠​ σr. For reference, panel (c) shows maps of u2 calculated for values of the Poisson’s ratio below 
(σ =​ 0.2, c.1) and above (σ =​ 0.5, c.2) the recovered value.

Apart from offering potentially useful information about the material properties of the substratum, an accu-
rate determination of σ is important to quantify the magnitude and spatial distribution of the traction stresses 
exerted by a cell. To demonstrate this point, we compared the 3-D traction stresses determined from the substra-
tum deformations generated by the same amoeba for the actual value of the Poisson’s ratio recovered by 2LETFM, 
σr, (Fig. 8a), and for two hypothetical values lower (σ =​ 0.2) and and higher (σ =​ 0.5) and than σr (Fig. 8b). It is 
important to note that since the cell is sandwiched between the substratum and an agar cap (see Materials and 
Methods), the computed traction stresses need not balance to zero. The results from these calculations indi-
cate that carrying out the TFM analysis with erroneous values of the Poisson’s ratio leads to an underestimation 
(σ >​ σr) or an overestimation (σ <​ σr) of the traction stresses for the same values of measured deformations. 
Moreover, using inaccurate values of the Poisson’s ratio can also significantly alter the spatial patterns of the 
traction stress.

Poisson’s ratio of polyacrylamide gels determined by two-layer elastographic TFM.  We applied 
2LETFM to Physarum amoebae migrating over 9 different polyacrylamide gels that were manufactured using the 
same protocol. For each substratum, we obtained several repeated measurements of σ for a period long enough 
for the amoebae to move out of the field of view. Figure 9 shows the results of these experiments for both cost 
functions considered in the optimization algorithm (see eq. 5). When using the cost function J1 based on the dif-
ference between measured and calculated displacements fields, the mean ±​ standard deviation of the recovered 
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Figure 6.  Accuracy and robustness of 2LETFM as a function of the ratio of normal to tangential 
deformation created by the cell on the substrate, W0/U0. (a) Recovered value σr of the Poisson’s ratio, plotted 
as a function of W0/U0. The data are represented as mean ±​ standard deviation obtained from N =​ 100 random 
realizations. Each curve is obtained for a different value σe of the exact Poisson’s ratio that is being recovered by 
2LETFM. This exact value is indicated with a dashed horizontal line in each case. (b) Contour plot of the relative 
error of σr as a function of W0/U0 and σe. The relative error is defined as |σr −​ σe|/σe. (c) Contour plot of the 
relative uncertainty of σr as a function of W0/U0 and σe. The relative uncertainty is defined as r.m.s. (σr)|/σe. The 
data were obtained for S2N =​ 1 and h0 −​ h1 =​ 0.15h0 =​ 2.5 μ.
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Figure 7.  Experimental demonstration of 2LETFM. (a) Experimental measurements of the deformation 
applied by a motile Physarum amoebae, (a.1) bright field image of the amoeba with its detected contour plotted 
in green, (a.2) 3-D substratum deformation generated by the amoeba, u0, measured at the top surface of the 
substratum (z =​ h0 ≈​ h =​ 170 μm), (a.3) 3-D substratum deformation generated by the amoeba, u1, measured 
at a second plane underneath the surface (z =​ h1 =​ 154 μm). (b) 3-D deformation u2 at z =​ h1 calculated from 
the measured u0 for the value of the Poisson’s ratio recovered by the two-layer approach, σr =​ 0.44. (c) 3-D 
deformation u2 at z =​ h1 calculated from the measured u0 for two values of the Poisson’s ratio below and above 
σr. (c.1) σ =​ 0.2. (c.2) σ =​ 0.5. All the deformations are given in microns according to the colorbars at the bottom 
of each column.
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Poisson’s ratio were 0.43 ±​ 0.05, whereas the median, first and third quartiles were respectively 0.44, 0.40 and 
0.47. On the other hand, when using the cost function J2 based on cross-correlation, the mean ±​ standard devi-
ation of the recovered Poisson’s ratio were 0.47 ±​ 0.03, whereas the median, first and third quartiles were respec-
tively 0.47, 0.45 and 0.49. Combining the results obtained from the two different cost functions, we obtain that 
σ =​ 0.45 ±​ 0.06. The two sets of results agree with each other reasonably well, and are also in good agreement with 
previous direct measurements of σ20,48,49.

Discussion
Linearly elastic polymer-based hydrogels such as polyacrylamide are broadly used as substrata to calculate the 
traction stresses exerted by cells. A priori knowledge of the mechanical properties of these substrata is crucial 
for a precise calculation of the traction stresses. In linearly elastic materials the stresses are related to the defor-
mations by two parameters, the Young’s modulus of elasticity (E) and the Poisson’s ratio (σ). Since the traction 
stresses are directly proportional to E, significant efforts have been devoted to characterize this parameter in 
the context of traction force microscopy. There are well-established techniques to accurately measure E such as 
indentation, atomic force microscopy and manipulation of spherical beads50,51. On the other hand, less effort has 

Figure 8.  Effect of Poisson’s ratio on the 3-D traction stresses recovered from measured substratum 
deformation. The data comes from the same Physarum amoebae shown in Fig. 7. (a) 3-D traction stress vector 
(τxz, τyz, τzz) obtained using the value of the Poisson’s ratio recovered by the two-layer approach, σr =​ 0.44. (b) 
3-D traction stress vector obtained for σ ≠​ σr. The two Poisson’s ratios considered are σ =​ 0.2 (b.1) and σ =​ 0.5 
(b.2). All the stresses are given in Pascals according to the colorbars at the bottom of each column.
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been devoted to characterizing σ due to the assumption that this parameter barely influences the traction stresses. 
However, we recently showed that the calculation of the traction stresses exerted by cells can be highly dependent 
on σ, particularly for the nearly incompressible gels with σ ≈​ 0.5 that are used in traction force microscopy24. Of 
note, whereas errors in E only affect the magnitude of the traction stresses, errors in σ also distort their spatial pat-
terns (see Fig. 8). The latter may lead to qualitative misinterpretations of a traction force microscopy experiment.

This work introduces a novel two-layer elastographic 3D traction force microscopy (2LETFM) method to 
measure the Poisson’s ratio of an elastic substratum, while simultaneously calculating at each time point the trac-
tion stresses. The method is based on 3D measurements of substratum deformation performed on two different 
planes beneath the surface. The deformation measured at the first plane is used to calculate the deformation at the 
second plane, which is also measured. Then, it employs an optimization algorithm that recovers σ by iteratively 
minimizing a least-square cost function that penalizes differences between the calculated and measured defor-
mations at the second plane.

We have simulated this new 2LETFM method in silico using synthetic 3D fields that mimic the deformation 
caused by large motile amoebae36, including random noise of different levels. By means of these simulations, we 
have studied the effect of several algorithmic and experimental parameters on the accuracy and robustness of 
2LETFM. The results suggest that 2LETFM can accurately determine the substratum Poisson’s ratio even for noisy 
experimental data with signal-to-noise ratios lower than one. These simulations show that the error in the recov-
ered Poisson’s ratio is in fact much lower than that of the recovered traction stresses, consistent with the recovery 
of σ being highly overdetermined. The method performs particularly well for σ ≥​ 0.4, which coincides with the 
range of reported values of the Poisson’s ratio of hydrogels used in traction force microscopy. We found these 
results to be relatively independent of the cost function used in the optimization algorithm. Our in silico analysis 
with zero-mean random noise shows that a cost function based on the difference between deformations slightly 
over-performs a cost function based on cross-correlation. However, additional simulations (not shown) suggest 
that cross-correlation may be better suited to compare deformations that contain systematic errors.

We have also found that, while the position of the second measurement plane only has a modest influence 
on the efficacy of 2LETFM, there is an optimal inter measurement plane distance that minimizes the error of 
the technique. Our simulations suggest that this optimal distance is similar to the size of the spatial patterns of 

Figure 9.  Statistics of Poisson’s ratio values determined in nine different experiments using polyacrylamide 
(PA) substrata. The data are presented in the form of boxplots showing the median, the lower and upper 
quartiles, and the minimum and maximum values of the distribution. The distribution of values for each case 
is represented scattered to the right of each boxplot. Each data point corresponds to an instantaneous 2LETFM 
measurement as the cell migrates over the substratum. Each individual substratum is represented by a boxplot, 
whereas all the data are pooled in the last panel at the right of the graph. The Poisson’s ratios were obtained 
using the cost functions J1 and J2 (eq. 5) in panels (a) and (b) respectively.
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the deformation measured the top plane (the 1/e witdh μ, see Fig. 2). According to del Álamo et al.28, that is the 
characteristic distance of propagation of the cell-generated deformations into the substratum. Thus, if the second 
plane is located below the optimal position, the deformation measured at that plane would be very small. On the 
other hand, if the second plane is located above the optimal distance, the difference between the deformations 
measured at the two planes becomes hard to distinguish from the background noise. Consistently, the error in 
the recovered Poisson’s ratio increases when the cell-generated normal traction stresses are larger in magnitude 
than the tangential ones, because the substratum deformation changes little between the measurement planes in 
that case. We argued that this behavior is due to the fact that cell-generated stresses propagate deeper into the 
substratum when they are applied in the direction normal to the substratum surface24,52. Overall, our simulations 
allowed us to determine the experimental parameter values that minimize the error of the recovered σ, and also 
showed that 2LETFM can accurately and robustly recover σ for a wide range of experimental parameter values.

To provide proof of principle of 2LETFM, we carried out experiments with motile Physarum amoebae crawl-
ing on top of polyacrylamide gels, and jointly recovered the 3-D cell generated traction stresses and the gel 
Poisson’s ratio. Overall, these experiments resulted in σ =​ 0.45 ±​ 0.06, which agrees well with previously reported 
values of σ obtained by direct measuring methods15. For polyacrylamide gels with similar composition as in 
our experiments, Takigawa reported that σ =​ 0.46 by measuring the stretch ratio between the elongation of the 
gel in the directions perpendicular and parallel to the mechanically stretched one48. Also, Bodou et al. deter-
mined a value of 0.49 by measuring the deformation exerted through micropipette aspiration experiments49. 
More recently, Chippada measured the displacements of non-spherical magnetic inclusions moved by a magnetic 
manipulator to obtain a value close to 0.520.

In all these methods, an external force is applied to the substratum by a relatively invasive apparatus prior to 
recovering the Poisson’s ratio. It is important to note that in 2LETFM, the external force is generated in the least 
possible disruptive manner (i.e. by the cell itself), and at the site of interest. This poses an advantage with respect 
to existing methods since the internal microstructure of polyacrylamide gels is not perfectly uniform53,54. The 
differences in the internal composition increase with the ratio of cross-linking to monomer53, and this inhomo-
geneous gel microstructure has an effect on its mechanical properties. Additionally, it has been suggested that the 
percentage of acrylamide and bisacrylamide and the amount of ammonium per sulfate influence the value of the 
Poisson’s ratio20,21.

Two-layer ETFM works by applying a mechanical equilibrium constraint on a set of over-determined sub-
stratum deformation measurements. This same principle, either using the same or a different mathematical for-
mulation, could be exploited in a wide range of different scenarios. For example, one could adapt the current 
formulation to determine the 3D traction stresses generated by a cell from 2D-only measurements of the defor-
mation in two planes. Fibrous extracellular matrices (ECMs) formed by collagen or fibrin are more physiolog-
ically relevant environments than polymer hydrogels55. However, the material properties of these matrices are 
non-linear and may also be anisotropic depending on the orientation of the fibers56,57. Extending 2LETFM to 
these ECMs would require reformulating the mechanical equation of equilibrium (1) to take into account large 
strain and anisotropy. Another potential extension of 2LETFM could be the study of the interaction between 
tumor cells and the ECM. Oncogenic processes commonly trigger ECM remodeling by the secretion of metallo-
proteinases and other ECM digestive enzymes58,59. Our method could be extended to characterize the spatial and 
temporal changes in the ECM in migrating cancer cells and could aid in the understanding of the involvement of 
the ECM in tumor development60,61.
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