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Metastasis is the leading cause of
cancer mortality, resulting from

changes in the tumor microenvironment
which increases tumor cell migration,
dispersal to distant organs, and subse-
quent survival. This is accompanied by
changes in tumor collagen which may
allow cells to travel more efficiently
away from a primary tumor and invade
the surrounding tissue. Second Har-
monic generation (SHG) is an intrinsic
optical signal that has expanded our
understanding of collagen evolution
throughout tumor progression. This
article addresses current research into
tumor progression using SHG, as well
as the future prospects of using SHG to
advance our understanding of the tumor
microenvironment.

Introduction

Tumor metastasis is a multistep, low-
efficiency process that remains the leading
cause of cancer mortality throughout the
United States.1 Increasing our under-
standing of the dynamic changes that
occur throughout tumor progression, and
accompany the generation of metastases,
may create opportunities to increase detec-
tion capabilities, personalize medical diag-
nostics, and develop new targeted
therapies. As first suggested by Steven
Paget with his “Seed and Soil Hypoth-
esis,”2 understanding tumor progression
not only involves studying the tumor cells
themselves, but also the cells and struc-
tures surrounding them. Consequently,
studying the stromal changes throughout
tumor progression is critical for under-
standing microenvironmental changes
that may lead to increased metastasis.

Current clinical methods of monitoring
tumor progression are often incapable of
monitoring stromal changes with adequate
temporal and spatial resolution: Imaging
of H&E or immunohistochemically
stained tissue sections provides high reso-
lution visualization of stromal changes
occurring in the tumor, but only provides
a “snapshot” of tumor progression in
time. Other methods of intravital imag-
ing, such as Positron Emission Tomogro-
phy (PET), Magnetic Resonance Imaging
(MRI), or ultrasound have improved
tumor detection significantly over the
course of the last few years, and can moni-
tor temporal changes,3-5 but lack spatial
resolution and/or molecular sensitivity.
The gap existing between these techniques
is filled by intravital microscopy and espe-
cially multiphoton microscopy (MPM).
In this perspective we will provide insight
into the development and current role of
Second Harmonic Generation imaging in
the study of the stroma during tumor
progression.

Multiphoton and Second
Harmonic Generation Imaging

In 1839 Rudolf Wagner pioneered the
concept of in vivo imaging by using
microscopy to study leukocyte interactions
with vessel walls.6 This revolutionized the
study of biological processes, allowing for
the analysis of tissue dynamics in real
time. Fluorescence microscopy was
invented in the early 1900 s, and its
molecular specificity rendered it an impor-
tant tool in the cancer biology field. How-
ever, this technique is not optimal for
intravital imaging because of the high level
of background fluorescence captured
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when imaging a field within thick tissue.7

This limits the signal to noise ratio as well
as the imaging depth. The field of intravi-
tal microscopy took a significant step for-
ward with the invention of the MPM,
which enabled 3D imaging with high
spatial resolution and significant depth
penetration in tissue.8 MPM has been
used to excite both exogenous and
endogenous fluorescence signals to study
tumor progression in vivo, including stud-
ies of angiogenesis,9,10 metastasis,11–13

and extracellular matrix (ECM)
modification.14,15

Within a few years of its development,
MPM also became a tool for imaging
intrinsic signals using the scattering phe-
nomena of Second Harmonic Generation
(SHG). In the process of SHG light is
scattered by non-centrosymmetric struc-
tures to combine 2 incoming photons into
one outgoing photon without the loss of
energy due to a Stoke’s shift as seen in
fluorescence (Fig. 1a). Hence the outgoing
photon has the same total energy as the
incoming photons, and half the incoming
wavelength. SHG was first discovered in
crystals in 1961 16 and later used to image
collagen fibers in vitro.17 In 1999 Cam-
pagnola et al. imaged cell membranes
with SHG to monitor physiological
changes in cancerous cells and healthy
fibroblasts.18 Soon after, SHG techniques
were applied to human disease models of
collagen rich tissue such as skin,19 as well
as in 3 dimensional collagenous tissue cul-
ture models.20 Intravital SHG was subse-
quently exploited in vivo to image rat
mammary adenocarcinoma progression
through an acute skin flap21 and to study
collagen structure in human melanoma
using a chronic mouse dorsal skin fold
chamber, thereby initiating the use of
SHG in the study of tumor progression.22

Current Applications of SHG
Imaging in Tumor Progression

SHG is currently applied in vivo, in
vitro and ex vivo, most commonly to
understand mechanisms of tumor progres-
sion as well as to attempt to detect and
diagnose cancer based upon optical signa-
tures (Fig. 2).

Collagen reorganization in tumor
progression

Tumor metastasis is commonly divided
into several stages of progression includ-
ing: development of the primary tumor,
invasion of the tumor cells into the sur-
rounding tissue, intravasation into blood
or lymphatic vessels, survival of tumor
cells in the vessel, extravasation from the
vessel, and the development of a secondary
tumor.23-25 TPEF and SHG imaging of
tumor progression often focus on the
initial steps of this process, where SHG
has the benefit of highlighting the changes
in the stromal collagen structure through-
out progression of the primary tumor
toward metastasis. One of the pivotal find-
ings in the field of SHG and tumor pro-
gression is that tumor cells travel along
SHGC fibers as a means of collective or
individual cell migration toward blood or
lymph vessels.21,26,27 Throughout breast
tumor progression collagen fibers display
a series of characteristic morphologies,
entitled Tumor Associated Collagen Sig-
natures (TACS),26,28 which may affect the
efficiency of metastasis. In TACS-1 colla-
gen density is increased surrounding the
tumor/host interface. These fibers
straighten out to form a border circumfer-
entially surrounding the tumor in TACS-
2. In TACS-3 tumor collagen fibers are
reorganized so that they protrude out per-
pendicularly from the tumor border,
allowing cells to travel along the fibers
toward surrounding blood vessels.26 This
SHG-based assessment of collagen mor-
phology during breast cancer progression
hints at a previously hidden dynamic con-
trol of collagen morphology and demon-
strates the importance of studying the role
of collagen in the tumor microenviron-
ment to determine the mechanisms of
tumor progression, with the goals of tar-
geting this process as well as exploiting
this in the clinic to assess tumor
progression.

Collagen density, which correlates with
tissue stiffness,29,30 has been shown to
affect the probability of developing breast
cancer, as well as subsequently affecting
the aggressiveness of that tumor.31,32

Tumors exhibiting high stiffness show
more metastatic tendencies, possibly as a
function of their ability to reorganize the

fibers to increase cell motility26,33-35 and
the abilities of individual cells to travel
along these fibers.36,37 SHG imaging is
playing a major role in elucidating the
mechanistic processes of ECM remodeling
in the tumor microenvironment. One key
regulator of tumor matrix stiffness is lysyl
oxidase, which causes specific collagen
crosslinking that has been shown, through
SHG imaging, to result in the lineariza-
tion of collagen fibers.38 SHG imaging of
tumor explants, xenografts, or individual
cells seeded in collagen gels have shown
that matrix reorganization is dependent
on the ROCK39,40 and FAK41 pathways.
SHG imaging of relatively “clean” colla-
gen gel systems allows for parsing out
these pathways in great detail, showing
that significant molecules in these path-
ways include upstream Caveolin-1, which
aids in remodeling the tumor ECM
through the Rho/ROCK pathway.36 In a
mouse model of tumorigenesis in the
involuting mammary gland microenviron-
ment, inhibition of COX-2 reduces the
collagen fibrillogenesis that is shown by
SHG to be associated with involution, as
well as the resultant tumor growth and
metastasis.42 On the level of organism-
wide signaling, mouse models of emo-
tional stress reveal that a2-adrenergic
receptor activation promotes breast tumor
progression and this progression is associ-
ated with alterations in collagen structure
as shown by SHG.43 Likewise, tumor col-
lagen morphology can be altered by sys-
temic application of the hormone relaxin,
as demonstrated by in vivo SHG imag-
ing.22 In vivo SHG imaging also revealed
that relaxin treatment increased the inter-
action of tumor associated fibroblasts
(TAFs) with collagen fibers via TAF
expression of b1 integrin, and this integ-
rin expression is necessary for TAF/SHGC

fiber association and subsequent fiber
remodeling.44

Matrix metalloproteinases are enzymes
responsible for matrix degradation and
have been shown to play a significant role
in tumor cell/ collagen interactions.45,46

Mammary tumors developing in MMP13
knockout mice, a stromal MMP capable
of cleaving collagen types I - III, have sig-
nificantly elevated numbers of distant
metastases as well as altered orientation
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and structure, quantified
through changes in the SHG
signal directionality (see
below). This revealed that
MMP13 has a significant
effect on tumor invasiveness
and matrix structure.47

SHG imaging of tumor cells
in collagen gels has shown
that membrane bound
MMPs play a significant and
necessary role in collagen
reorganization and invasion.
Membrane-anchored pro-
teases, i.e. types 1, 2, and 3
metalloproteinases, aid in
tumor cell penetration
through the basement mem-
brane as well as invasion
through conventionally
cross-linked tissue.48,49

Although it is not yet clear
what other stromal compo-
nents are necessary for
tumor invasion, it is very
clear what a significant role
SHG imaging is having on
this field.

In addition to providing
insight into the key molecu-
lar players, SHG imaging
has also helped elucidate the
cellular players expressing or
responding to these enzymes
and signals. Intravital SHG
imaging has produced key
insights into the related pro-
cesses of mammary gland
development50 and mam-
mary tumor progression,51

and revealed a key role for
the macrophage in both pro-
cesses. The rate of tumor cell
motility along SHGC fibers,
and the rate of intravasation
into blood vessels, was
shown to be dependent
upon proximity to macro-
phages.52 Macrophages may
also play a role in altering
the structure of the fibers
themselves: in a mouse
mammary tumor model, ablation of stro-
mal macrophages altered collagen struc-
ture as reported by SHG and reduced
metastatic output, further implicating the

macrophage and its collagen remodeling
as a player in the metastatic process.53 The
aforementioned demonstration that the
hormone relaxin promotes TAF/SHGC

fiber association and fiber degradation
suggests that macrophages may promote
matrix remodeling via modulation of TAF
behavior.44

Figure 1. (a) Jablonski diagram of (from left to right) one-photon excited fluorescence, 2-photon excited fluores-
cence and Second Harmonic Generation, depicting the differences in excitation processes between these 3 optical
processes. (b) Sample image of type I collagen antibody staining imaged with TPEF (green) overlapped with SHG
imaging of collagen fibers (blue). This image demonstrates that SHG is produced by type I collagen, but not all type
I collagen produces a significant SHG signal.
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Differentiating healthy and tumor
tissue: morphology and SHG intensity

SHG signals have been used not only
to study the molecular and cellular regula-
tion of collagen structure as described
above, but also to differentiate between
healthy and tumor tissue for a variety of
different cancer types in an attempt to
improve clinical detection and diagnosis
of cancer. For example, SHG intensity
and polarization properties were used to
distinguish osteosarcoma, breast carci-
noma, and melanoma from normal tis-
sues.54 SHG imaging of human tissue has
been shown to be capable of differentiat-
ing between healthy and tumor tissue in
breast cancer using collagen morphol-
ogy.55 Likewise basal cell carcinoma was
distinguished from normal skin using the
ratio of the intensity of the SHG signal to
autofluorescence intensity.56 Using the
same ratio measurement healthy and
tumor ovarian tissue have been differenti-
ated in vivo through a laproscopic stick
objective.57 By analyzing the orientation

of collagen fibers, as embodied in the
Tumor Associated Collagen Signatures
discussed above, one can predict survival
rates of breast cancer patients.28 The cur-
rent field of SHG imaging has shown sig-
nificant potential to increase clinical
cancer diagnostic capabilities, by being
able to locate areas of tumor presence
within various tissue types, as well as to
distinguish tumors by grade and meta-
static ability.

Differentiating healthy and tumor tissue:
SHG directionality

The methods described above face
potential challenges in reproducibly excit-
ing the same SHG intensity (for intensity
based measurements) or in requiring
trained observers or robust image analysis
algorithms (to consistently outline fibers
or analyze fiber orientation). An alterna-
tive method is to measure the directional-
ity of the SHG signal. SHG emission is
coherent, hence the directionality, inten-
sity, and polarization of the outgoing light

is sensitive to properties of
the scatterers including scat-
terer order, spacing, angle,
and the overall spatial extent
of the scatterer distribution
along the laser axis.58–60 In
collagen this translates to
“microstructural” properties
of the fibers, including: fibril
diameter, spacing, and order
versus disorder in fibril pack-
ing within the fiber.58,59,61,62

These properties affect the
directionality of SHG sig-
nals, which can be measured
through the ratio of forward
to backward propagating
light (F/B ratio), which is
inherently insensitive to var-
iations in excitation effi-
ciency. Measurement of F/B
has been used to differentiate
healthy and tumor tissue in
ovarian cancer.61 Recently,
F/B ratio was used to differ-
entiate invasive breast cancer
from in situ breast cancer
and healthy breast tissue,
and was shown to vary with
tumor stage and grade,
revealing the power of this

technique in a clinical setting.63

Measuring the true emitted F/B ratio
in vivo is difficult due to the thickness of
the tissue, because scattering of emitted
SHG photons within the tissue affects the
measured signals, and capturing a forward
propagating signal intravitally can be
essentially impossible due to the presence
of tissue in between the plane of interest
and the detection optics. Consequently
direct measurement of the emitted F/B
ratio is usually conducted using the direct
capture of signals from thin tissue sec-
tions. Therefore it has been of interest
in the field to explore methods to measure
the F/B ratio from thick tissue sections, or
even intact tissue. One method is to use
collagen gels to study in detail how the
measured F/B ratio changes as a function
of depth, how different types of collagen
types fibers affect the F/B measurements
throughout gels, and hence how best to
interpret forward and backward propagat-
ing detected SHG signals.64 After measur-
ing the F/B ratio as a function of depth

Figure 2. Summary of the major work being conducted in the application of SHG to tumor progression. (a) The
tumor collagen framework undergoes significant restructuring which can increase the efficiency of cell travel away
from the primary tumor. Morphological analysis of restructuring can subsequently be utilized to predict survival
rates in breast cancer patients.28 Furthermore, analysis of scattering directionality can be used to understand how
matrix microstructure changes with progression. 63 (b) SHG is being used to monitor how tumor cells and host cells
such as macrophages interact in the tumor microenvironment while using collagen as a framework to move
toward blood vessels.52 (c) Many in vivo and ex vivo studies are underway to better understand the pathways con-
necting tumor cells, macrophages, fibroblasts and the reorganization of collagen in the ECM.44,53
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into a tissue with known scattering prop-
erties, Monte Carlo simulations can be
used to extrapolate to the true F/B
ratio.59,61 As an alternative solution Han
et al. developed a method to measure the
F/B ratio using just the backward scatter-
ing signal by incorporating confocal pin-
holes of different diameters to determine
the amount of forward propagating signal
that is being scattered backward into the
epi-detection lens.65 This allows for the
intravital measurement of the emitted F/B
ratio, from the surface of intact tumor tis-
sue, over time. The application of either
thick tissue technique to intravital systems
would aid in measuring microstructural
changes in collagen fibers throughout
tumor progression, in vivo or in explants.

The Future of SHG in Tumor
Progression

Based on the current progress in the
field there are a variety of possible future
applications of SHG in the study of tumor
progression. Three of the most promising
are using SHG in chronic window models
to create and evaluate therapeutics that
target the ECM, implementing SHG with
molecular diagnostic techniques to pro-
duce more complete clinical diagnostics,
and using SHG methods to find positive
tumor borders on tumor biopsies.

Creation and evaluation of drug
treatments

The study of the cellular interactions
and molecular pathways affecting matrix
structure, as revealed by SHG and
described above, has created a new win-
dow into the matrix and hence an oppor-
tunity to discover new therapeutic targets
to inhibit metastasis. SHG has already
been used to monitor tumor progression
in animal models, consequently candidate
therapeutic drugs can be administered in
one of these models, and monitored with
SHG, to determine how the candidate
changes those aspects of collagen structure
that influence SHG. This process is
already starting, as demonstrated by the
testing of Losartan treatment in mouse
dorsal skin-fold chambers and the use of
SHG to monitor changes in collagen
structure, as well as subsequent

therapeutic invasion into the tumor.66

One possible class of therapeutic targets to
explore with SHG is the membrane-
bound MMPs. MMPs have been a poten-
tial drug target for over 30 y due to their
obvious connections to matrix remodel-
ing, but have thus far failed to produce
efficient solutions for decreasing tumor
invasiveness.67 Through imaging of
changes in type I collagen, membrane
type 1 metalloprotease has been shown to
play a necessary role in tumor invasion
into the surrounding matrix ECM in
covalently crosslinked collagen net-
works.49 Membrane bound MMPs there-
fore provide a new target to explore for
possible therapeutics using SHG, with the
goal of inhibiting tumor invasion through
the ECM through the use of these
enzymes. Other alternatives to targeting
MMPs include inhibiting the ROCK and
FAK pathways, or their effectors, which
have been shown to play significant roles
in matrix reorganization throughout
tumor progression.39-41

Clinical evaluation through SHG and
molecular diagnostics

With the increased capabilities of
molecular diagnostics and genetic analysis,
protein and gene expression profiles are
beginning to play a more significant role
in differentiating tumor characteristics
and determining the best prospective
treatments for a specific patient. As an
example, OncotypeDX is a 21-gene screen
used to help decide which patients will
receive chemotherapy after removal of
their primary breast cancer.68 However,
this is still an expensive and time consum-
ing process. Many of the gene expression
profiles known to indicate higher meta-
static efficiency involve networks and
pathways that control extracellular matrix
structure.69 Hence it is possible that
SHG-based quantification of matrix struc-
ture may provide a readout that integrates
the contribution of many of these net-
works and pathways. Consequently, corre-
lating SHG properties with some of these
genetic profiles could allow for a comple-
mentary, and possibly cheaper and
quicker, method of providing predictions
of tumor progression. For example,
genetic testing has shown that the expres-
sion level of genes such as Snai1, and other

genes related to epithelial to mesenchymal
transition, are predictive of metastatic
breast cancer, resulting from increased epi-
thelial to mesenchymal transition of the
cells.70 Snail induces the expression of
membrane anchored type 1 and type 2
MMPs on tumor cells, facilitating inva-
sion through the surrounding collagen
membrane,71 a process that could be
detected through SHG imaging. An SHG
interrogation could integrate changes in
gene expression without having to per-
form genetic testing, providing a quicker
method of determining similar or compli-
mentary information. Combining genetic
research such as this with SHG imaging
could increase diagnostic capabilities and
aid in understanding the true physical
consequences of the changes in genetic
expression in the context of tumor
development.

Role of SHG imaging in tumor
margin evaluation

As the clinical aim of breast cancer sur-
gery transitions from mastectomy to
lumpectomy for maximum preservation
of healthy tissue, precisely defining the
tumor margins and ensuring full removal
of the primary tumor during the initial
surgery have become increasingly impor-
tant concerns in order to avoid secondary
surgeries and cancer reoccurrence. The
current standard for analyzing tumor mar-
gins involves removing and staining sec-
tions of the tumor, so a pathologist may
analyze multiple sections to quantify nega-
tive, close, and positive tumor margins.
This process, which requires several days,
means patients will need to return for sec-
ondary surgeries if the borders are found
to be positive for the presence of tumor
tissue. Efforts to improve this process
include various intraoperative techniques
such as imprint cytology,72 gross examina-
tion,73 and ultrasound imaging.74 How-
ever no extant method balances the
accuracy, speed and ease of use required to
achieve an ideal method of intraoperative
analysis, and all present methods still
result in 20–55% of removals requiring a
secondary surgery.75-77 The ability of
SHG F/B to readily distinguish tumor
from healthy tissue61,63 coupled with the
fact that it is a quantitative, intrinsic sig-
nal, suggests that it may provide useful
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information to assist with margin assess-
ment. Implementing F/B SHG techniques
to detect different collagen profiles
between healthy and tumor tissue along
the border of the removed tissue would
allow for the immediate analysis of the
biopsy upon removal from the patient
without the extensive staining and section-
ing required for traditional pathological
analysis. It has previously been demon-
strated that fresh, human ovarian biopsies
imaged with an MPM system showed dif-
ferences in collagen morphology between
healthy and abnormal tissue.78 By com-
bining this with quantitative methods of
differentiating ovarian and breast tumor
tissue from healthy tissue,61,63 this could
create an automated system of analyzing
tumor biopsies for positive margins. The
creation of a system that could rapidly
image the surface of a tumor biopsy would
hold the potential to significantly decrease
the amount of secondary surgeries neces-
sary after tumor removal, saving patients
from unnecessary physical and emotional
stress.

Conclusion

Over the past 15 y Second Harmonic
Generation imaging has advanced from its
first imaging of cellular structures to rou-
tine use as an intravital imaging technique
that can monitor cellular processes
throughout tumor progression. Advance-
ments in this field have illuminated neces-
sary molecular pathways for collagen
reorganization, increased knowledge about
stromal evolution in cellular interactions,
and created a new potential tool for cancer
diagnosis. Many challenges still remain in
regards to expanding our understanding
of the tumor “soil,” perfecting in vivo
imaging methods, and translating this
research to clinical applications. Overall
SHG has proven to be a viable technique
for identifying tumor location while pro-
viding a means of monitoring tumor pro-
gression intravitally with high spatial and
temporal resolution.
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