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Abstract

A marker-less 2D video algorithm measured hand kinematics (location, velocity, and acceleration) 

in a paced repetitive laboratory task for varying hand activity levels (HAL). The decision tree (DT) 

algorithm identified the trajectory of the hand using spatiotemporal relationships during the 

exertion and rest states. The feature vector training (FVT) method utilized the k-nearest 

neighborhood classifier, trained using a set of samples or the first cycle. The average duty cycle 

error using the DT algorithm was 2.7%. The FVT algorithm had an average 3.3% error when 

trained using the first cycle sample of each repetitive task, and had a 2.8% average error when 

trained using several representative repetitive cycles. Error for HAL was 0.1 for both algorithms, 

which was considered negligible. Elemental time, stratified by task and subject, were not 

statistically different from ground truth (p < .05). Both algorithms performed well for 

automatically measuring elapsed time, duty cycle and HAL.

Practitioner Summary

A completely automated approach for measuring elapsed time and duty cycle was developed using 

marker-less video tracking and the tracked kinematic record. Such an approach is automatic, 

repeatable, objective, unobtrusive, and is suitable for evaluating repetitive exertions, muscle 

fatigue, and manual tasks.

Keywords

repetitive motion; work related musculoskeletal disorders; exposure assessment; time and motion 
study

1. Introduction

Duty cycle (DC) is one of the primary measures used in ergonomics for evaluating repetitive 

exertions, muscle fatigue, and manual materials handling tasks. It is defined as the 
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proportion of time spent in actual task-related activities, and is typically calculated as the 

exertion time divided by the total time spent doing the task, including rest periods. DC has 

become an important metric for quantifying work activity and manual exertions in the 

workplace for optimizing work-rest periods for preventing fatigue and injuries.

DC has played a major role in predicting fatigue and its prevention (Rohmert 1973a; 

Rohmert, 1973b; Hagg and Milerad, 1997; Ding et al., 2002). Rohmert (1973a) described 

the phenomena of fatigue and recovery to determine work-rest cycles and their influence on 

workers’ strain and stress. A study on continuous and intermittent isometric contractions 

linked load and work/rest ratio limits to indicators of localized muscle fatigue (Bystrom et 

al. 1994). Woods at al. (1997) considered the work-rest allowance effect on muscle fatigue 

and predicted an optimum work-rest schedule to minimize this effect. Potvin (2012) more 

recently created an equation based on DC from a meta-analysis of numerous studies in the 

literature to estimate maximum acceptable force in repetitive manual tasks.

DC has also been used for quantifying exposure to physical stress in repetitive manual work. 

The strain index, which is used for evaluating repetitive manual tasks, included DC as one of 

its parameters (Moore & Garg, 1995). A prospective study of biomechanical risk factors for 

carpal tunnel syndrome found DC for forceful hand exertions was a significant risk factor 

(Harris-Adamson et al., (2014). Latko at al. (1997) introduced a method for quantifying 

repetitive hand motion, the hand activity level (HAL), which was also related to DC.

HAL applies to mono-cycle tasks and is an observational visual-analogue metric which an 

observer subjectively assesses on a scale from 0 to 10, anchored between the “hand idle 

most of the time and no regular exertions” and “rapid, steady motions/exertion; difficulty 

keeping up.” The HAL scale is part of the American Conference for Government Industrial 

Hygienists (ACGIH) threshold limit value (TLV™) for evaluating the risk of work related 

distal upper extremity musculoskeletal disorders (ACGIH Worldwide, 2001). The HAL 

rating can also be evaluated by directly measuring the exertion frequency and DC against a 

look-up table. Radwin et al. (2015) developed an equation for estimating HAL from these 

parameters as an alternative to the TLV™ table.

Common ways for measuring DC include time and motion studies, manual video coding, 

observational methods, and self-reports. Among these, times studies and video coding are 

the most accurate, whereas observations and self-reports lack consistency and reliability 

(Fan 2014). Bao et al. (2006) observed disagreement between observer rated frequency-DC 

estimates and detailed time study analyzes. In another study, Garg and Kapellusch (2011) 

discuss the lack of consistency between the methods of evaluating HAL, from observer rated 

assessment and table look-up values, and address the need for a consistent method of 

evaluation. Kapellusch at al. (2013) stated a similar need for a robust technique. Moreover 

Wells at. al. (2007) explains that estimating exposures related to time is difficult, in which 

self-reports are inconsistent while direct measurements are time and resource consuming. 

An objective, automated method for evaluating DC could help resolve these issues.

Yen and Radwin (1999) looked at using signal pattern recognition for automatically 

quantifying cyclical tasks from wrist electrogoniometer signals and concluded that such an 
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approach may be useful, using interactive fine-tuning. Recent advances in computer vision 

enable HAL to be measured non-invasively without instruments, using automated video 

processing that employs semi-automatic marker-less tracking of a region of interest (ROI) 

located near the hand in order to measure frequency and duty cycle (Chen et al., 2013). Such 

an approach is automatic, repeatable, objective, unobtrusive, and is suitable for a real-time, 

direct reading assessment.

We previously demonstrated that hand root mean square (RMS) speed while exerting force, 

and DC measures were well suited for automatically estimating HAL and had good 

agreement with independent observational ratings of videos for actual industry jobs (Akkas 

et al., 2015) using DC obtained manually using Multimedia Video Task Analysis™ 

(MVTA™) frame-by-frame analysis (Yen and Radwin, 1995). We hypothesize that a 

completely automated approach for measuring DC could be achieved using the tracked 

kinematic record. The current study advances an automatic method to measure DC using 

marker-less video tracking.

Chen et al. (2013) previously calculated DC for a repetitive load transfer task performed in 

the laboratory. In this method, the local minima of absolute velocity values were first 

identified. If the acceleration between successive local minima points exceeded a preset 

threshold, it was determined that the hand was loaded during the period between the pair of 

local minima points. Such a definition of hand loading was based on observations made for 

the specific load-transfer task (moving a lead filled bottle from a tray to a rotating turntable). 

The DC values obtained using that approach were 1.27 times greater than those measured 

manually using MVTA (R2 = 0.63).

We advance automatic measure of DC by studying two different approaches: (1) a decision 

tree (DT) algorithm and (2) a feature vector training (FVT) algorithm. Both methods utilized 

kinematic properties (i.e. location, velocity and acceleration) of a video marker-less tracked 

ROI. Each method was developed and used for estimating DC from a simulated repetitive 

hand intensive task performed in the laboratory. Ground truth time measurements of DC 

were ascertained utilizing manual frame-by-frame MVTA analysis and compared.

2. Methods

2.1 Task Simulation

In order to develop and test the algorithms for automatically measuring DC, we simulated a 

prototypical repetitive motion task in the laboratory. A subject grasps a ball from one 

location, moves it to a specified location, releases it, and reaches for another ball. An 

apparatus (Figure 1) was fabricated using an electromechanical linear actuator for indexing 

the balls that are obtained and deposited for a paced sequence. The device is comprised of an 

840 mm travel length linear belt drive actuator (Misumi MSS-625) driven by a bi-polar 

stepper motor (ElectroCraft Model TPP34 with 560 N cm torque) and controlled by a 

stepper motor controller (IMS MX-CS101–401). The device was capable of moving a 2 kg 

object every 0.5 s across the actuator length of travel.
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The participant stands in front of the apparatus, gets a ball at point A, and transfers it to 

another specified location (Figure 2). The balls weighed 59 g and had a 6.5 cm diameter. 

Distance was calibrated against a measured grid in the image (Figure 2).

A fourth generation i7 quad-core computer recorded video of the task performed. A 

Logitech C920 fixed focal length web camera was used for imaging the color video stream 

that was stored as an AVI video file (Xvid compressed) with 640 × 480 pixels resolution at 

the frame rate of 30 frames per second.

Estimation of DC requires identifying instances when the hand is loaded and exerts force 

against an object in a work cycle. In this simulated task, exertions occur during the time 

elapsed after the ball is grasped, moved, and until it is released. The sequence of this task 

can be described as Reach-Grasp-Move-Release- (Figure 3). After the subject grasps a ball, 

the Move element starts and continues until the ball is released. We further define the 

sequence Move--Release as “Put”, and the sequence Reach--Grasp as “Get” (Figure 3). Thus 

Put time represents exertion time, Get time represents rest time when the hand is not 

interacting with the object, while the total task time cycle time is the sum of the elapsed Put 

and Get times. The DC for the task is therefore the percentage time: Put / (Put + Get).

We recruited 19 university student volunteers (6 males and 13 females) with informed 

consent and IRB approval. They were each video recorded while performing 15 cycles of the 

Get-Put task paced at various frequencies; exertion and rest times were controlled using an 

auditory cue. The paced frequencies and DC for each task are given in Table 1. We 

calculated the paced HAL values for each task based on these frequencies and DC using the 

equation for HAL in Radwin, et al. (2015), which are also provided in Table 1. The observed 

HAL for each participant in every task was calculated from frequency and DC measured 

using MVTA (Table 1). These HAL values were used as ground truth measures for testing 

the computer vision algorithms.

Each subject performed 10-paced tasks in random order. A set of practice tests were 

provided for each condition. A one-minute rest was provided between each condition to 

prevent fatigue. Each video clip had a length ranging from 10 seconds to 80 seconds, and 

consisted of 15 cycles of task execution. Some participants were unable to accomplish every 

pace and those cases were excluded from the analysis. This was due to combination of 

challenging experimental conditions or failures. Failures occurred when the subject missed 

or dropped the ball. The total number of error-free video clips are listed in Table 2.

2.2 Training and Test Data

In developing the algorithms, the entire video data were divided into non-overlapping 

training and test data sets. A total of 41 video clips of the repetitive laboratory task 

performed by the first 5 subjects (nine clips were excluded due to failures) were reserved for 

the training data and used for training and validating the developed algorithms. There were 

87 video clips available for the remaining 14 subjects (53 clips were excluded due to task 

incompleteness or failures) were reserved as the test data set. The same data partitioning was 

applied to both the DT algorithm and the FVT algorithm. The training videos were used for 

the DT algorithm to facilitate manually tuning the threshold parameters in order to achieve 
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the best performance. The training videos for the FVT algorithm were first used to identify 

features and then they were used to develop the algorithm.

Actual factory jobs involve different workflows so in practice few training video clips may 

be available for training the algorithm. Therefore, in developing the FVT method, we also 

experimented with a first cycle data partition method. Specifically, we manually labeled the 

Get and Put elements for the first cycle of the repetitive task in the video and used it for 

training the FVT algorithm. Then, we tested the algorithm on remaining cycles in the video 

as the test data.

2.3 Ground Truth Data

Trained analysts extracted ground truth DC measures from the videos of each task using 

singe frame video coding and MVTA software. They marked each frame when they 

identified a change from Get to Put or from Put to Get. After a frame was marked, all the 

remaining frames were marked using the same label until the next change occurred. The 

start of an exertion (i.e. start of Put) was identified as the instant when the hands contacted 

the ball while the end of and exertion (i.e. start of Get) was identified as the instant when the 

ball no longer made contact with the hand.

2.4 Feature Vectors

The hand location on each video framewas tracked using the marker-less video tracking 

algorithm described in Chen et al. (2013; 2015) and Chen, Hu & Radwin (2014). The 

analyst initially identifies a rectangular region of interest (ROI) covering the image of the 

entire hand, which was tracked for each frame by the computer. A cross-correlation template 

matching tracking algorithm tracks the ROI center trajectory (xi, yi) over subsequent video 

frames.

Based on the trajectory, other kinematic features may be derived:

We also computed the spatiotemporal curvature . The curvature function k is sensitive to the 

change of the direction of a curve relative to its arc length. It is defined as;
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where (x(t), y(t)) is a planar curve (Flanders et al., 1970; Flanders et al., 1974). This function 

is useful for detecting discontinuities in a movement based on velocity, acceleration and 

position (Rubin and Richards, 1985). The spatiotemporal curvature index peaks when there 

is a significant change in the action, such as changing direction, stopping or starting to 

move. These changes correspond to instances in motions such as grasps or releases (Rao et 

al., 2002). The curvature index Ki is:

A representative set of feature vectors for the laboratory task are shown in Figure 4, 

including corresponding location, velocity, acceleration, and spatiotemporal curvature.

2.5 Duty Cycle and HAL Measurement

The DC estimation process was divided into two phases. In the first phase, the hand 

movement in each video frame was classified as one of two states (Get and Put). The DC for 

the nth cycle DCn was estimated as:

Since each video consisted of multiple cycles, multiple estimates of the DC were measured. 

The overall DC estimates were evaluated using the average of these individually estimated 

DC.

After the average DC estimate was obtained for a given task and participant, the 

corresponding HAL can be calculated using the equation from Akkas at. al. (2014).

where s is RMS speed in mm/s.

2.6 Decision Tree Algorithm

The DT algorithm first used the frame-by-frame curvature score to determine the transition 

from Move to Release or Reach to Grasp. In order to accomplish this, we identified the peak 

curvature scores and their associated frame numbers for a given video clip and then 

determined if the state changed to Reach or Move by utilizing the velocity and location 
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signal (Figure 4). Note that in Figure 4 the x trajectory clearly exhibits a periodic sinusoidal 

waveform while the y trajectory, the speed, and the magnitude of acceleration contains 

multiple peaks in one cycle. Also note that the curvature score peaks when the hand motion 

changes directions. Hence, the curvature and x trajectory signals used as characteristic 

features in the DT algorithm.

The algorithm was developed by first testing several pilot videos in order to determine the 

threshold velocity for state changes between Get and Put, identified by the experimenter 

using the 41 training video clips. The least error was gained for 200 mm/s velocity and the 

same velocity is used for all the test data. The transition point (Grasp or Release), velocity 

was close to zero (Figure 4). But for some faster tasks we observed that velocity was close to 

zero but never reached zero. Given the video sampling rate was 30 frames per second and 

the velocity calculation involved the central difference approximation using a previous and 

next frame, it may not be possible to always observe zero velocity, especially for high speed 

tasks. Additional noise might also be introduced from the tracking algorithm.

To overcome this, we added location criteria to the algorithm. The goal was to predict 

locations where the subject grasps the ball and releases the ball. This involves finding 

densest area within the tracked locations. To do this we divided the region into bins and 

counted the number of points within each bin. We automatically determined the bin width 

and length per video, based on the size of the tracking region. The next step was to 

determine if the hand is inside one of these locations.

Knowing that the first state is a Grasp we were able to detect transition states (e.g. Release, 

Grasp) using the above logic. The state remains the same until the next transition occurs 

when a subject grasps a ball, and the Move state starts. All frames are annotated as Move 

until a Release state is observed. After the Release state is reached, all frames until the next 

Grasp are annotated as Reach. The algorithm continues to annotate each frame until it 

reaches the end of the clip.

We then calculated the time elapsed between each transition, providing both cycle time 

(Grasp to Grasp) and exertion time (Move to Release). The DC was obtained by dividing 

exertion time (time elapsed between Move and Release) by total cycle time to calculate the 

percent time in an exertion. The steps are described in Algorithm 1. This algorithm was 

applied directly to the 87 test video clips from the remaining 14 subjects without further 

adjustment.

Algorithm 1

Decision Tree Algorithm

inputs: feature vectors, video frame number from hand tracking

output: states (Get or Put) for each video frame

1 Find local maxima curvature index values and associated frames.

2 For each frame, check if the frame has local maxima curvature index point.

3 If a frame is identified as a local maxima, then check the location that 
corresponds to the frame number to see if the location is inside a grasp 
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region or release region. If the location is inside one of these regions then 
use the previous state to annotate as next state (Put if previous state was 
Get, or Get if previous state was Put).

4 If above criteria do not apply, check the corresponding velocity and 
compare to the velocity threshold. If the current velocity is under treshold, 
then use the previous state (Put if previous state was Get, or Get if previous 
state was Put).

5 If none of above criteria apply, then annotate as same state as the previous 
one.

6 The estimated duty cycle is computed by (# of Put)/((# of Get) + (# of Put))

2.7 Feature Vector Training Algorithm (FVT)

We have developed a FVT algorithm to automatically select a subset of features in order to 

optimize DC estimation performance. The FVT algorithm employed machine-learning 

procedures to systematically develop the duty cycle estimator and hence potentially demands 

less manual tuning efforts. This is desirable when large amounts of repetitive hand 

movement videos from different factory work environments are to be analyzed 

automatically.

We first used cross-validation and the maximum error of DC estimation as the performance 

criterion to judge whether a specific subset of nine features (Table 2) was most desirable. 

Maximum error was the absolute difference between the estimated DC and ground truth DC. 

Utilizing the 41 training videos, we employed a feature selection procedure to train the 

algorithm on 40 videos, and then tested the result on the remaining video in the set. We 

rotated this process for different video clips 41 times and averaged the performance 

evaluated on the testing video. Since there were 29 = 512 combinations of the 9 features 

described above, it would be too tedious to try every combination exhaustively. Instead, we 

opted to use a greedy backward subset selection method described in Couvreur, (1999).

We start with evaluating the performance (maximum DC estimation error) using the entire 

set of nine features. Then we evaluate the performance of the nine different subsets of eight 

features each with one feature excluded from the currently selected nine features. And we 

select the eight-feature subset that produces the best DC estimate. We then repeated this 

process in order to select the best seven feature subset out of the previously selected best 

eight feature subset. This process is repeated until there is only one feature remaining. We 

compared the accuracies of the estimated DC values from these selected subset of features 

and choose the one that yielded the best performance.

Using this process, the nine features are ranked from one to nine, with nine being the most 

important feature appearing in all nine subsets, and one being the least important feature 

discarded first when eight features were selected among the nine. The ranking of these nine 

features are given in Table 2. The performance (maximum error of DC estimates) of nine 

different feature subsets are plotted in Figure 5 where smaller DC estimation error indicates 

better performance. Based on these results, we selected the following subset of six features 

(x, y, vx, vy, |v|, K) to be used in the FVT training algorithm. We observed that vx (rank = 9) 

was the most important feature and ax (rank = 1) was the least important feature.
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Since these features had quite different ranges, in order to avoid one feature with large 

magnitudes dominating another feature, a normalization step was applied to ensure that the 

extracted feature values were approximately zero mean with a sample variance equal to 

unity.

In this work, we use the k nearest neighbor (kNN) classifier as the state estimator. In a kNN 

classifier, all training data (feature vectors) and corresponding labels (Get, Put) are stored in 

the classifier. For each test feature vector, a set of k (usually chosen as an odd number to 

facilitate majority voting) training vectors that are most similar to the test vector are 

identified using a similarity metric. Then the training vector dominant label (by majority 

voting of the k labels) is assigned to the test vector. In these experiments, we choose k = 5 

when training with the 41 training videos, and used the Euclidean distance between the 

training and the test feature vectors as the similarity metric. When training with the first 

cycle samples, we choose k = 1 since in practice there may be few training samples available 

other than the first cycle.

As previously discussed, two different approaches of training and testing were applied to the 

FVT based algorithm. The first used the 41 video clip training data set and testing the kNN 

classifier with the 87 testing data set (kNN_r). The second approach, called first cycle 

training, used the feature vectors and corresponding labels of the first cycle of a test video 

clip as the training data and estimated the DC of the remaining cycles of the same test video 

clip (kNN_f). The 41 training video clips were not used by the kNN classifier in the first 

cycle training approach. Detailed steps of the training based DC estimation algorithm are 

summarized in Algorithm 2.

Algorithm 2

Feature Vector Training Algorithm

Training Phase

inputs: feature vectors, state labels (Get and Put)

1 Nomalize all features into zero mean and unit variance, and store the 
normalization factors for testing phase.

2 Train the k-nearest neighborhood classifier by using the chosen feature 
vectors and the MVTA labels of the training data.

Testing Phase

inputs: frame number, feature vectors

output: states (Get or Put) for each frame

1 Normalize all features with the normalizartion factors from training phase.

2 Input the feature vectors into the classifier trained in the training phase 
frame by frame to classify each frame to be Get or Put.

3 The estimated duty cycle is computed by (# of Put)/((# of Get) + (# of Put))

In addition to using the DT and FVT algorithms, we also implemented the DC estimation 

algorithm previously used in Chen et al. (2013). This algorithm (CH) used threshold velocity 

and acceleration values to estimate the loaded duration in a cycle for a given task and then 
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estimated the DC. We applied this algorithm to the 87 test video clips. We experimented 

with different settings and by trial and error chose a 90% acceleration threshold value.

3. Results

3.1 Put and Get Element Time

We summarize the error distribution of Get and Put state estimations for the three methods: 

DT, FVT with the 41 video training set (kNN_r), and FVT trained with first cycle (kNN_f) 

in Table 3. The first column represents the ground truth get and put times calculated from 

manual single frame coding. The sample mean and standard deviation (in parentheses) of the 

Get and Put duration estimation errors, which were the absolute difference between 

estimated and ground truth time, are listed in Table 3.

A two tailed t-test was performed to examine if ground truth Get and Put times were 

statistically different from predicted Get and Put times. All three algorithms predicted Get 

and Put times that were not significantly different from ground truth Get and Put times (p > .

05).

3.2 DC and Corresponding HAL Estimates

DC estimate error (%), was calculated as the average absolute difference between ground 

truth DC (%) and predicted DC (%) for the four algorithms (CH, DT, kNN_r, kNN_f). We 

provide a summary of the DC estimation errors of these four methods in Table 4. The Max 

and Min give the maximum and minimum absolute values of estimate errors. The Mean and 

SD give the mean and standard deviation of the estimate errors. We also calculated the HAL 

estimation errors in Table 5. To better understand the HAL estimation outcome, we also 

provide scatter plots of the HAL estimation outcome by the DT, kNN_r, kNN_f algorithms 

versus the ground truth HAL values, as well as the coefficient of determination, and 

summarize the results in Figure 6.

4. Discussion

In this study we utilized marker-less video tracked hand kinematics data to automatically 

estimate DC. We started with a simple laboratory task consisting of four basic elements, 

Grasp-Move-Release-Reach. Our aim was to automatically measure exertion time (i.e. time 

elapsed between Move and Release) in order to calculate DC. The algorithms were used to 

predict DC for 87 cases. The small average errors of 2.7% for DT algorithm and 2.8% for 

FVT algorithm appear promising.

An exertion occurs when the hands are loaded and is defined as an action associated with 

muscle contractions in the hands and arms. The objective is to identify when exertions are 

made by using kinematic data measured from the tracked ROI. The algorithms in this study 

identify the distinctive activity of the ROI (i.e. location, velocity and acceleration) that occur 

during exertions when the muscles are contracting and the hands are loaded, and affect the 

ROI kinematic properties. This works because repetitive tasks are cyclical. Since they repeat 

over and over, distinct characteristics in their kinematic properties can be used to ascertain 

when exertions occur and when they do not occur in a cycle.
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We also calculated HAL based on the predicted duty cycle and RMS speed. The comparison 

of HAL ratings against ground truth calculated HAL ratings had an average error of 0.1 for 

both algorithms which may be considered negligible.

Chen et al. (2013) reported an algorithm for estimating DC based on threshold crossings for 

speed and acceleration in a laboratory load transfer task. The task used in Chen et al. (2013) 

was elementally similar to our task where subjects get a bottle and put it on a rotating table. 

The algorithm reported in Chen, et al (2013) was implemented here in order to serve as a 

baseline comparison against the new algorithms developed in this work. We conclude that 

the new algorithms performed considerably better.

The Chen et al. (2013) threshold algorithm detected peak acceleration and associated local 

minima velocity points to identify the hand loaded elements. However that method was 

specific to the particular load transfer laboratory task kinematics and may not be applicable 

to a more arbitrary tasks. Our improvement in the current study used more global features in 

order to detect hand loaded and unloaded elements for various tasks, provided that the tasks 

correspond to simple Get and Put elements. Since these algorithms are more generic, we 

anticipate that they can be extended to more generalized tasks. This will be tested in future 

studies.

The selection of simple kinematic features measured using robust marker-less tracking 

methods should be applicable to tasks found in industrial settings. Since these algorithm are 

not dependent on accurately tracking multiple markers and body linkages, they have the 

potential to be useful in workplace environments where the tracking may present more 

challenges, such as obstructions, burred images, and movements out of the video window.

The current algorithm was developed using only Get and Put elements. Get involves 

movement while unloaded whereas Put involves movement while loaded. In order to 

estimate DC for more generalized tasks in future studies, we propose using a four-state 

transition model to describe the repetitive sequence of hand motion. Additional elements 

such as Wait and Hold were not considered. Wait involves no movement while unladed 

whereas Hold involves no movement while loaded (i.e. static forces). The current study is a 

proof of concept. Future research will consider these additional elements. While Get and Put 

elements present the different stages of the simulated repetitive hand motion task performed 

in the laboratory, this model may not always be applicable to more complex tasks. The 

transition from one state to another is boded by the previous state. For instance a Hold or Put 

can only come after a Get. In the case of the current laboratory task, after Get ball, a subject 

can only Move it or Hold it, but cannot Wait. The distinguishing feature between Move and 

Hold is the motion or velocity of the region of interest (ROI). Similarly, Wait or Reach can 

follow Put, but Hold cannot. The Wait and Reach state are also distinguished by the velocity 

of the ROI. In the next phase of this research we plan to use this logic into to predict states 

of Wait and Hold.

The HAL measure is intended for mono tasks and our study only considers mono tasks. This 

is typical of many industrial tasks. The DT algorithm and FVT algorithms were tasked to 

classify each video frame as Get or Put states. Hence the performance of each classification 
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impacts directly on the subsequent duty cycle estimation and HAL estimation results. These 

algorithms will undoubtedly perform best when movements are regularly repeating rather 

than arbitrary movements. Since our laboratory participants were not experienced manual 

workers and were trained for only a few trials, their hand motion was not always as rhythmic 

as it might be for an experienced worker doing a repetitive tasks day in and day out. We 

anticipate that using better trained subjects exhibiting regular motions may in some cases 

result in as good or better performance.

Conceivably the DT algorithm does not require training other than selecting a prototypical 

cycle for establishing the exertion and non-exertion elements. The FVT algorithm requires 

training but might be more adaptive to different tasks. Future research will next test the 

algorithms using actual industrial tasks. While the feature vector machine learning algorithm 

may be useful for more arbitrary tasks, the amount of learning required for the FVT 

algorithm might be a limitation. Consequently machine learning using the first cycle method 

should be less dependent on training data and although performance was poorer for the 

laboratory task, the potential advantage is its flexibility in adapting to videos of different 

manufacturing jobs.

Automatic detection of duty cycle from hand kinematics using computer video processing is 

not only useful for calculating elemental time, but may also useful for estimating maximum 

acceptable exertion levels (i.e. ratio of force to strength). Potvin (2012) modeled maximum 

acceptable exertion in repetitive manual tasks based on DC by doing a meta-analysis from 

numerous studies in the literature. The automatic detection of loaded and unloaded states 

(i.e. DC) may be applied to the Potvin equation for establishing maximum acceptable 

exertion levels as well as measuring acceptable rest and work periods based on automatic 

video processing. The application of Potvin’s equation if practice necessitates knowledge of 

exertion forces as well as an estimate of strength for a specific exertion.

The current study was limited to a simple laboratory simulation in order to explore the 

potential of automatic duty cycle processing. The task was performed across a confined 

distance across the sagittal plane, was very stereotypical, highly repeatable, and the loads 

were based solely on inertial loads, with no static loading. Since the paced HAL varied a 

relatively narrow range from 2.9 to 6.4, it is not how the algorithms will perform for work 

having comparably very slow, or very fast tasks with HALs of much less than 3 or greater 

than 6. Tasks involving more complex activities, static loads, and movement across the 

sagittal plane would likely result in greater errors.

Factory videos will inevitably be more challenging due to numerous factors, such as quality 

of the videos as well as irregular motion and interruptions. Adding new feature vectors like 

object positions or object sizes might be useful. In the current simulated task, we used tennis 

balls as the object and once a subject grasp the ball, it is hard to detect it, and thus we could 

not utilize the above features in our algorithms. The methods developed in this study are 

intended for a single video camera because in industrial applications locating a camera at a 

specific vantage point or locating multiple cameras is not always practical.
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The goal of proving the concept, in principle, was accomplished. Future research will 

consider more complex tasks as well as more challenging spatial parameters. The methods 

developed were a very promising first step in the development of a comprehensive and 

flexible method, that could accurately quantify duty cycle for a larger set of task 

characteristics.

5. Conclusions

We conclude that both the DT and FVT algorithms predicted duty cycle with mean error of 

less than 5% for a simulated laboratory task. When HAL was calculated with predicted DC, 

the error was even smaller. In all cases the algorithms performed better than the CH 

prediction algorithm used in Chen, et al. (2013).
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Figure 1. 
Laboratory task simulation apparatus. The participant grasps a ball from location A and 

moves it to either locations B, D, 1, or 2, depending on the specified task.
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Figure 2. 
Representation of grasp and release location
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Figure 3. 
Graphical representation of the simulated task
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Figure 4. 
Representative hand kinematic feature curves for location, velocity, and acceleration aligned 

with the spatiotemporal curvature score measured using ROI marker-less video tracking.
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Figure 5. 
The performance of nine different feature sets based on maximum DC error, max |ground 

truth DC – estimated DC|.
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Figure 6. 
Predicted HAL versus ground truth HAL for the Decision Tree (DT), kth Nearest Neighbor 

(41 video training set) (kNN_r), and kth Nearest Neighbor (First cycle training set) (kNN_f) 

Algorithms, N=87.
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Table 3

Mean (SD) of Estimated Element Time (seconds) Error for Get and Put using the Decision Tree (DT), kth 

Nearest Neighbor (41 video training set) (kNN_r), and kth Nearest Neighbor (First cycle training set) (kNN_f) 

Algorithms

Duration Estimation Error

Element Ground Truth
Time

DT kNN_r
(41 video training set)

kNN_f
(First cycle training set)

Get 5.0 (1.8) 0.4 (0.6) 0.2 (0.2) 0.3 (0.3)

Put 4.6 (1.7) 0.4 (0.6) 0.2 (0.2) 0.3 (0.3)
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Table 4

Duty Cycle Estimation Error Summary (percent) for the Chen et al. (2013) (CH), Decision Tree (DT), kth 

Nearest Neighbor (41 video training set) (kNN_r), and kth Nearest Neighbor (First cycle training set) (kNN_f) 

Algorithms

CH DT kNN_r kNN_f

Max 48.5 7.3 8.8 10.9

Min 0.0 0.1 0.1 0.2

Mean 15.5 2.6 2.8 3.3

SD 10.1 2.0 2.1 2.5
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Table 5

HAL Estimation Error Summary (HAL units) for the Chen et al. (2013) (CH), Decision Tree (DT), kth 

Nearest Neighbor (8417 video training set) (kNN_r), and kth Nearest Neighbor (First cycle training set) 

(kNN_f) Algorithms

CH DT kNN_r kNN_f

Max 2.3 0.3 0.4 0.4

Min 0.0 0.0 0.0 0.0

Mean 0.6 0.1 0.1 0.1

SD 0.4 0.1 0.1 0.1
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