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Abstract

In the 65 years since its formal specification, information theory has become an established 

statistical paradigm, providing powerful tools for quantifying probabilistic relationships. Behavior 

analysis has begun to adopt these tools as a novel means of measuring the interrelations between 

behavior, stimuli, and contingent outcomes. This approach holds great promise for making more 

precise determinations about the causes of behavior and the forms in which conditioning may be 

encoded by organisms. In addition to providing an introduction to the basics of information theory, 

we review some of the ways that information theory has informed the studies of Pavlovian 

conditioning, operant conditioning, and behavioral neuroscience. In addition to enriching each of 

these empirical domains, information theory has the potential to act as a common statistical 

framework by which results from different domains may be integrated, compared, and ultimately 

unified.
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The business of the brain is computation, and the task it faces is monumental. It must take 

sensory inputs from the external world, translate this information into a computationally 

accessible form, then use the results to make decisions about which course of action is 

appropriate given the most probable state of the world. It must then communicate this state 

of affairs to appropriate efferent channels, so that the selected action can take place.

Even this description is a gross oversimplification. At any given moment, the brain 

continuously processes imperfect signals from a noisy world, and initiates and channels 

activity given the available information, doing so in a distributed fashion. Our knowledge of 

this computation is incomplete. We know details about transduction of sensory stimulation 

as well as some aspects of how that signal is transformed as it travels through various stages 

of processing. How then, does the brain use seemingly binary all-or-nothing action 

potentials, or “spikes,” to manage the information needed for the extremely complicated 

computations it must carry out? Moreover, how can this information be extracted and these 

computations be made “on the fly,” as they so often must be? Because it is impossible a 
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priori to exactly represent all of the possible states of the real world (or to even know what 

states need to be represented), and even harder to accurately extrapolate the future, the brain 

must rely on an imperfect, plausible-seeming approximation of the world given available 

evidence and prior assumptions.

One of the central challenges in behavioral neuroscience is to frame general statements like 

those above in adequately specific terms. What is meant by “an imperfect approximation of 

the world?” How does one quantify “available evidence?” Without operationalizing these 

concepts, a quantitative approach to the neurobiological analysis of behavior is impossible. 

In this regard we believe that behavior analysis has much to contribute to creating a 

successful neuroscience (Ward, Simpson, Kandel, & Balsam, 2011). In particular, the 

precise specification of behavioral processes is necessary for a successful mapping between 

neurobiology and behavior. In this review, we suggest that an information-theoretic approach 

benefits behavioral analysis greatly, as well as providing the foundation for a deeper 

understanding of the neural mechanisms of behavior.

In practice, behavior analysts (and psychologists in general) have developed frameworks 

specific to domains of interest. For example, there have been few attempts to unite the 

approaches used in the study of Pavlovian and operant conditioning into a common 

paradigm. The analyses of operant choice and stimulus control not only emphasize different 

parameters of behavior, but also employ different technical language; the relation between 

the two is thus uncertain. While this by no means invalidates the analyses, it has complicated 

attempts to relate and unify different branches of the literature. Historically, such 

reconciliation was attempted in rhetorical terms by attempting to translate one form of 

conditioning into the other (e.g. Colwill, 1994; Smith, 1954), or to translate both paradigms 

into a hybrid framework (e.g. Guilhardi, Keen, MacInnis, & Church, 2005; Maia, 2010). 

Throughout, these projects have sought to evaluate observable events (i.e. “evidence”) and 

relate these to behavior. The need for common terminology is readily apparent in these 

projects, which devote considerable space to translating between technical terminologies.

We propose that information theory has the potential to both integrate and unify a broad 

range of phenomena into a single framework, while also facilitating specific hypothesis 

testing in all areas of behavior analysis. As a branch of mathematics arising from probability 

theory, information theory already underlies statistical inference taken for granted 

throughout psychology. It can readily be applied to behavior analysis, as was observed 

almost from its inception (Miller, 1953), and it has achieved considerable traction in 

neurobiology (Rieke, Warland, de Ruyter van Steveninck, & Bialek, 1997). Furthermore, 

because its most fundamental operations involve the objective definition and measurement 

of information itself, it provides behavior analysts with metrics for assessing not only how 

information is processed in the brain, but also how much information is objectively available 

in the environment.

Before we outline some of the benefits of information theory, we first address two common 

misunderstandings.
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Misunderstanding One: “Information Theory Is Mentalistic”

Behavior analysts routinely take strident positions against so-called “cognitive” or 

“mentalistic” theories of behavior. This backlash was originally driven by the intractable 

subjectivity of “experimental introspection” in the 1910s and ‘20s (Leahey, 1992), and was 

rekindled by the vague metaphors of the cognitive revolution (Skinner, 1985). 

Fundamentally, this is a rejection of speculation about internal, unseen causes of behavior, in 

favor of measuring environmental and contextual features that control behavior. Mentalistic 

theories are also accused of relying on intervening variables, many of which are 

psychological constructs with no known physical realization in the brain.

Thus, at first glance, information-theoretic approaches might seem inconsistent with 

behavior analysis. However, there are two ways in which we think information-theoretic 

accounts have much to add to the understanding of behavioral processes. The first relates to 

their description of environmental contingencies. “Information” is not, in this framework, a 

rhetorical metaphor that changes form to suit the author, but is instead a technical term 

involved in measures of probabilistic relationships. It is in this very precise sense that a CS 

conveys information about a US or that a reinforcer conveys information about the response 

that precedes it.

The second benefit offered by information theory is the way in which it allows one to 

analyze the neurobiological bases of behavior. Skinner (1985) accused cognitive theories of 

being “premature neurology,” but information metrics instead provide formally rigorous 

characterizations of observed brain activity. Invoking a “computation” in information-

theoretic terms refers not to conscious manipulation of symbols, but instead to distributed 

processing carried out by networks of neurons. Thus, any and all computations we refer to 

are made at the neuronal level. If a computational operation like averaging is performed, no 

mentalistic homunculus is implied. This fundamental difference puts information theory 

accounts on solid biological footing already appreciated by anatomists and physiologists 

(Quiroga & Panzeri, 2009).

Misunderstanding Two: “Information Theories Are Optimality Theories”

Another approach that behavior analysts routinely oppose is that of “optimality theories.” 

The common feature of optimality theories is to assert what an organism should do, as 

opposed to characterizing how organisms actually behave. A wide range of disciplines favor 

the “normative” approach, most notably classical economics (Herrnstein, 1990), but 

normative theories have also recently seen flashes of popularity among psychologists, 

behavioral ecologists, and evolutionary theorists (Staddon, 2007). A common criticism of 

information theory is to assert that it requires that organisms respond in an optimal fashion 

(e.g. Miller, 2012).

Crucially, however, information theory itself is principally concerned with measurement, and 

although it provides objective metrics of the information that an organism could use, it 

makes no prescription that this information must be used. Although these metrics could 

serve as the basis for proposed normative strategies, it can also be used to measure which 
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sources of evidence influence behavior, and how strongly. In fact, information theory places 

strong constraints on putative optimality theories, because organisms do not generally have 

prescient access to the schedules governing their environments. Information theory has 

already severely undermined optimality claims in other domains, such as classical 

economics (e.g. Radner & Stiglitz, 1984). Since subjects cannot be presumed to be psychic, 

and must instead subjectively process the evidence made available to them, an analyst’s 

ability to correctly quantify that evidence is essential to understanding the manner in which 

available evidence is exploited.

It is important, then, to distinguish between optimality theories (which need not be 

information-theoretic) and analyses that benefit from measuring information (but need not 

require optimal responding). Since the two are orthogonal, there is no need to conflate these 

unrelated goals.

Basics Of Information Theory

Information theory has its origins in the analysis of an unsolved practical problem. 

Shannon’s foundational paper (1948) was motivated by the engineering problem of 

measuring and maximizing telecommunications efficiency. Shannon’s insight was to 

recognize that the signal capacity of any system could be precisely measured, and that both 

signals and the channels through which they are transmitted display mathematical 

properties. The resulting framework follows directly from probability theory, of which it can 

be considered a branch.

The fundamental measure in information theory is entropy, which corresponds to the 

uncertainty associated with a signal. The terms “entropy” and “information” are used 

interchangeably, because the uncertainty about an outcome before it is observed corresponds 

to the information gained by observing it. For example, flipping a coin provides a “signal” of 

either Heads or Tails, and the set of outcomes (Heads + Tails) is the “channel” in which the 

signal is embedded. If the coin is fair, an observer can do no better than chance in predicting 

the next signal, so each observation yields information not previously held. If, on the other 

hand, the coin came up Heads 99% of the time, an observer can reliably predict the outcome, 

and so learns little from making the observation.

Shannon’s theory measures the entropy of a signal using the function H():

(1)

Here, for each outcome x in the set X, p(x) is the probability of that outcome. Because this 

equation uses a base-2 logarithm, this entropy is measured in bits. Flipping a fair coin has an 

entropy of-((0.5 log2 0.5) + (0.5 log2 0.5)) =-log2 (0.5) = 1 bit. If we were to instead draw a 

card from a well-shuffled deck of 54 cards, each card’s probability would be , so the 

entropy associated with the draw would be 5.75 bits.
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Scenarios where all outcomes are equally likely have maximal entropy (hereafter denoted as 

Hmax), and the maximal entropy associated with a channel is referred to as its “capacity,” 

which is an important limiting factor in the transmission of information (as originally 

observed by Hartley, 1928). Given the Hmax of a coin flip and a card draw, it would take at 

least six coin tosses to communicate the amount of information conveyed by a single card 

draw.

Complex interactions among signals can also be specified. For example, consider a simple 

Pavlovian conditioning paradigm in which the probability of a food pellet delivery (which 

we shall call F) depends on a red light (called R). When the red light is off, there is a 1% 

chance of a pellet being delivered per second, but when the red light is on, there is a 70% 

chance of a pellet delivery per second. This example is laid out in Table 1. Provided the 

relative odds of the light being on are also known, information theory provides three formal 

measures of entropy in this system: the joint entropy, the conditional entropies, and the 

mutual information.

Joint entropy is a measure of the total uncertainty in the entire system. For every 

combination of the events x and y (in sets X and Y, respectively), the joint entropy is 

computed as follows:

(2)

Suppose that the red light stays on for an average of 5 seconds, and then stays off for an 

average of 45 seconds before coming on again. Let “¬“ denote the “not” operator. The 

entropy associated with the light is therefore H(R) =−[(0.9 log2 0.9) + (0.1 log2 0.1)] =0.469 

bits. In such a scenario, the overall probability of a food pellet delivery is 7.9%, so H(F) 

=0.399. There are four possible combinations of outcomes considering both the light and the 

pellets. The joint probabilities for these four events are: p(¬R, ¬F) = .891, p(¬R,F) = .009, 

p(R, ¬F) = .03, and p(R,F) = .07. Plugging these four probabilities into Equation 2 yields 

H(R,F) = 0.630. There is therefore somewhat more entropy when the light and the pellet are 

considered together than when the light or food are considered alone.

The joint entropy between two signals can be decomposed into three quantities: the two 

conditional entropies of each signal and the mutual information shared by the two. The 

conditional entropy corresponds to the uncertainty about X when all uncertainty about Y has 

been factored out, as measured by the following equation:

(3)
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The mutual information between signals represents the entropy shared by the signals, 

denoted by I():

(4)

Mutual information measures the interdependence of random variables, while conditional 

entropy provides measures of the entropy associated with each variable independent of the 

other.

Since the entropy associated with the red light alone is H(R) = 0.469 bits, and the joint 

entropy given the red light and food pellet together is H(R,F) = 0.630 bits, it follows that the 

entropy of the food pellet conditional on the red light is H(F|R) = H(R,F) − H(R) = 0.630 – 

0.469 = 0.161 bits. Thus, our uncertainty about the food pellet’s delivery when we know its 

relationship to the red light is less than half of H(F) = 0.399. Knowledge of the food pellet 

delivery can also be used to predict the state of the red light: H(R|F) =0.231 bits, also less 

than half the light’s entropy in isolation. The shared entropy between the two works out to 

I(R;F) = 0.238 bits.

These calculations reveal several important details about the schedule, which are visually 

represented in Figure 1 (Left), in which the area of each object represents an amount of 

uncertainty. Although the light does not perfectly predict the delivery of food, knowledge of 

the light greatly reduces the uncertainty of a pellet being delivered, from H(F) to H(F|R). In 

effect, what the mutual information I(R;F) measures is how much information an ideal 

observer can learn about the relationship between R and F per second, while the conditional 

entropies measure the uncertainty that remains even when the mutual information is known.

As a contrasting example, consider a different schedule: A green light (G) illuminates for an 

average of 10 seconds, followed by a variable 30-second inter-trial interval. When the green 

light is off, a dipper delivering evaporated milk (M) has a 2% chance per second of being 

raised, and when the green light is on, there is a 25% chance per second of the dipper being 

raised. Thus, the four joint probabilities for this second schedule are: p(¬G,¬M) =.735, 

p(¬G,M) =.015, p(G,¬M)=.188, and p(G,M) = .063. This example is also presented in Table 

1.
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The entropy associated with milk delivery is H(M) = 0.393 bits, almost identical to that of 

food pellet delivery. This can also be seen from the nearly identical joint probabilities: Both 

p(R,F) and p(G,M) have values between 6% and 7%. However, the entropy associated with 

the green light is much higher than that of the red light: H(G) = 0.811 bits; this is because it 

is harder to forecast whether the light will be on or off. The joint entropy between the two is 

even higher: H(G,M) = 1.120 bits. Despite the increased uncertainty, the two outcomes share 

much less mutual information: I(G;M) = 0.084 bits. These relationships are visualized in 

Figure 1 (Right).

If the rate at which an organism learns the relationship between a CS and a US is a function 

of the mutual information between the CS and the US, then the schedule (G + M) should 

take about three times as long to learn as (R + F), because I(G;M) is only about a third the 

value of I(R;F). In effect, each trial provides a certain cumulative amount of evidence about 

the joint relationships between events, and those schedules that provide more evidence are 

expected to be learned more rapidly. The task for a theory of learning is to infer 

experimentally (1) whether this evidence is detected by subjects, (2) how detected evidence 

is encoded in memory, and (3) the manner in which this encoding motivates future behavior.

Information-theoretic analyses of the sort described above can be extended to study 

relationships of arbitrary complexity, so long as there is a means of computing the 

appropriate conditional probabilities. For example, although the English alphabet has 26 

letters (giving it a maximum entropy of 4.7 bits per character), the English language in 

practice only communicates between 1.0 and 1.5 bits per character because the distribution 

and ordering of letters is highly structured, and thus much less uncertain (Schneider, 1996). 

At a higher level of analysis, the approximate entropy per word in English is about 5.7 bits 

(Montemurro & Zanette, 2011), almost identical to a card drawn from a well-shuffled deck.

This ability to measure entropy in complicated and disparate scenarios stems from the 

arbitrarily extendable character of Equations 1 – 4. Thus, it can be used to measure how 

informative any combination of stimuli are with respect to any other. These measures are 

objective measures of probability, so they do not obligate a particular pattern of responding. 

However, they can then be compared to behavior in order to identify which relationships are 

actually used by subjects.

For instance, the calculations for the two simple schedules described above assume that all 

interevent intervals are exponentially distributed, and as such are maximally uncertain with 

respect to the passage of time. Any other distribution of times, however, would introduce 

additional conditional probabilities with respect to time; put another way, only exponentially 

distributed intervals have a flat hazard function with respect to time. Nonexponential 

intervals introduce additional information about the passage of time, sharing some mutual 

information with each of the quantities listed above. Whether such information is used in 

learning is an empirical question, and being able to precisely measure the informativeness of 

the passage of time is a prerequisite to asking such a question. We will return to this topic in 

our treatment of Pavlovian conditioning in a later section.
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Entropy as a Descriptive Statistic

Measures of entropy can be used to ask basic questions about the properties of data that are 

not necessarily clear from more traditional descriptive statistics. Whereas measures like 

means and standard deviations are only suited for describing a collection of values drawn 

from a continuous distribution, entropy may also be measured for the frequency distributions 

of categorical data that often come up in behavior analysis, such as distributions of choice 

among some set of response alternatives. Information metrics also describe conditional 

relationships in ways not captured by conventional correlations.

U-Value: percentage of maximum entropy

Shannon’s measure of entropy H (Eq. 1) is a foundational measure for information theory, 

but it must always be understood as a measure of the entropy in a signal. This means there is 

considerable ambiguity about the channel in which the signal is embedded. For example, the 

repeating string “AAABABBBAB…” conveys a fixed amount of information regardless of 

whether other symbols, such as C or D, are available.

The U-value (Miller & Frick, 1949) is a measure of the entropy in a signal as a percentage of 

the maximum entropy possible in principle given a set of symbols. It is calculated using the 

following equation:

(5)

Here, the numerator of the equation is simply the calculation of H in the set X, taken from 

Equation 1. The denominator corresponds to a calculation of entropy where all possible 

symbols in X occur with equal frequency, which is the maximum possible value for H. As 

such, U may be described as the percentage of maximum entropy for a particular set of 

observations, given a particular set of symbols.

The principle of the U-value may be extended to comparing interdependent structures as 

well. As noted in the preceding section, two signals X and Y are independent of one another 

if their mutual information (Eq. 4) is zero. This information can be used to specify the 

conditional U-value, as follows:

(6)
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As with the conventional U-value, this conditional U-value has a value between 0.0 and 1.0, 

and it denotes the degree to which the joint signal from X and Y is uncertain, relative to X 
and Y. For example, given the Pavlovian schedules described in our example above, U (R;F) 

= (0.630–0.238)/(0.630) = .622 and U(G; M) = (1.120–0.084)/(1.120) = .925. This captures 

the intuition that the relationship between R and F is much more structured than the 

relationship between G and M, because the latter’s conditional U-value is much closer to 

1.0. This metric can also be used to compare a signal X to itself in time. For example, 

measuring U(Xi; Xi−1) provides a measure of whether consecutive pairs of responses are 

random relative to the frequencies predicted by the overall entropy in X. This logic can be 

applied to other streams of observations such as response sequences, as a way of describing 

whether they have underlying structure (Gottman & Roy, 1990).

U values are primarily descriptive in their application, putting the relationship between joint 

entropy and mutual information onto a unit scale that is easy to interpret. However, as a ratio 

of entropies, it is a “unitless” measure since the bits cancel out of the fraction. Measuring the 

divergence between distributions in terms of entropy requires a different approach.

Kullback-Leibler divergence: comparing observation to expectation

Often, an experiment is conducted in which a particular distribution of behavior is expected. 

The Kullback-Leibler divergence (DKL) provides an objective metric of how far observation 

and expectation diverge (Kullback & Leibler, 1951). DKL considers two probability 

distributions, P and Q. Here, P represents a distribution of observations, such as a subject’s 

distribution of choices, and is often called the “subject distribution.” The distribution Q 
represents a hypothetical or theoretical distribution, and is commonly called the “reference 

distribution.” Both distributions are presumed, if discrete, to consist of the same number of 

items. DKL is computed using the following equation:

(7)

What the divergence communicates is the number of additional bits needed to encode the 

signal in P in terms of Q. When P = Q DKL = 0, because no additional bits are needed. As 

the distributions diverge, more and more information is needed to make up the difference. 

Note that for the purposes of calculation, 0.0 × log2(0.0) is presumed to equal zero. DKL is 

undefined if Q(i) = 0.

The measure provided by DKL is closely related to that of mutual information (Eq. 4), as can 

be seen from its similar structure. In the case of mutual information, Q represents how x and 

y should be distributed if the two are independent, whereas P represents how x and y are 

actually distributed. DKL provides a general form for comparing any subject distribution P to 
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any reference distribution Q, provided that the two consist of the same number of possible 

elements and that all elements in Q are nonzero. This makes it a powerful nonparametric 

measure with a wide range of applications.

DKL is useful when comparing an observation to a hypothesis (“Did group A display more 

response stereotypy than group B?”), but it is a nonsymmetrical measure because DKL(P||Q) 

≠ DKL (Q||P) for most distributions. As such, it isn’t well suited to comparing two sets of 

observations, where neither has theoretical priority. When comparing two sample 

distributions P1 and P2, a related measure called the Jensen-Shannon Divergence (DJS) may 

be used (Lin, 1991):

(8)

DJS is symmetrical, and (DJS)0.5 fulfills the requirements of a distance metric. It has also 

been called the “information radius” between two distributions (Manning & Schütze, 1999).

Stored information: prediction based on past observation

The measures discussed thus far are of a static and summary nature, treating variables as 

stationary random processes without consideration of their temporal dynamics. For many 

aspects of behavior, however, it is essential to consider how present observations depend on 

past observations.

A simple model for stable probabilistic processes is the stationary Markov process, in which 

X consists of a set of possible outcomes determined by some number of past steps. For 

example, a stationary Markov process of order 1 depends on the previous state, but is 

independent of state two steps previous (that is, p(xn+1| xn) = p(xn+1|xn, xn−1), such that the 

event xn−1 has no effect). Markov processes of larger orders depend on more preceding 

steps, and need not correspond to the immediately preceding states: Hereafter, we will 

denote the series of k events beginning j events previously as xn
(j,k) = (xn−j, xn−j−1, …, 

xn−j−k+1). So, for example, “the two previous events” would be denoted by xn
(2.2) (two 

events, starting two events ago), whereas “three consecutive events, starting 10 events ago” 

would be xn
(10,3). A classic stationary Markov process of order k therefore arises whenever 

p(xn+1|xn
(j,k)) = p(xn+1|xn

(j,k+1)); that is, the process is “stationary” whenever events 

conditioned on k events have the same probability as when they are conditioned on k + 1 

events.

Insofar as a stationary Markov process deviates from stochastic expectation, it can be said to 

depend on past information. This stored information (Martien, Pope, Scott, & Shaw, 1985) 

can be specified by using a variation of the Kullback-Leibler divergence (Eq. 7) to quantify 

the degree of divergence:

(9)
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Here, TX
(j,k) denotes the stored information about the next event from set X in a series of 

events of length k beginning j events in the past, based on N total observations. Intuitively, if 

p(xn+1) does not depend on xn
(j,k) then all of the elements summed in TX

(j,k) will be 

multiplied by log(1), resulting in a score of zero.

The most obvious application of stored information is as a way to quantify the structure of 

response sequences (Horner, 2002), and can potentially play a similar role to the conditional 

U-value when applied in this way. In general, events further in the past (i.e. for growing 

values of j in Eq. 9) will have a diminishing impact on current events. However, the most 

important application of stored information is to provide a baseline against which to test 

whether some other event had an influence on behavior, as part of a flow of information 

called transfer entropy.

Transfer entropy: information used for causal inference

A powerful inference that can be drawn from calculating the entropy of complex systems is 

to infer causal direction. Building on the principle of “probabilistic causation” put forward 

by Granger (1969), information-theoretic metrics are fundamental to the enterprise of not 

only measuring probabilistic contingency, but also making principled inferences about 

which events are caused by which others, and to what degree (see Hlaváčková-Schindler, 

Paluš, Vejmelka, & Bhattacharya, 2007, for review).

A simple information-theoretic causal measure is transfer entropy (Schreiber, 2000). The 

principle behind this measure is that when assessing the relationship between two events, X 
and Y, a causal signal in the past states of Y is one that adds information to the prediction 

made by the past states of X. For example, when the interval between US deliveries is fixed, 

subjects tend to increase their response rates as the US delivery approaches, thus displaying 

a “timed” anticipatory response, here denoted by X. If a brief CS presentation (denoted by 

Y) also precedes the US delivery, it is ambiguous whether the increase in responding was 

simply due to the timed response structure of X, or whether Y provided additional 

information.

As with Equation 9, this can be accomplished with a variation on the Kullback-Leibler 

divergence that uses stored information as the reference distribution:

(10)

In the same way that stored information (Eq. 9) assesses the predictive strength of past 

events in X relative to a stochastic prediction, Equation 10 compares the prediction made by 

the stored information alone to the prediction made by also considering the past states of Y. 

It could therefore be used to distinguish the degree to which a CS Y influenced the future 

states of a response process X in ways not merely explained by the overall temporal 

structure of X.
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Although transfer entropy permits a causal inference to be made, it cannot account for 

hidden variables. Consequently, causal claims based on transfer entropy should avoid 

theoretical overreach. The identification of information flow from Y to X does not 

necessitate a direct causal link; instead, such a result may be mediated by additional 

variables, or may be the result of third-variable influences without any phenomenological 

connection between Y and X. As in all other empirical work, statistics constrain and inform 

theory, but cannot act as a substitute for it.

In Pavlovian schedules, the causal direction is generally unidirectional: A schedule presents 

outcomes without any influence from the subject, and the subject’s responses are thus 

unambiguously “dependent variables” in the conventional sense. This relationship is much 

less clear in operant schedules, however, because responses and corresponding outcomes 

depend on one another. Transfer entropy provides a nonparametric measurement of the 

amount of information flowing between responses and corresponding outcomes, a topic 

revisited in the section on operant conditioning, below.

Fisher information: measuring the uncertainty of observations

Information theory is intimately connected to the fundamentals of traditional statistics. For 

example, Fisher information (typically denoted by ) corresponds to the amount of 

information a set of observations provides about an unknown distribution. It is the inverse of 

the “variance of the score,” as it corresponds to the uncertainty associated with parameter 

estimates (for example, standard error as it relates to an estimated mean is ( )−0..5).

Fisher information provides a bridge between traditional frequentist methods (where it is 

essential to maximum likelihood estimation) and Bayesian methods (where it provides a 

measure of the prior evidence). A statistic that minimizes the variance can equivalently be 

said to maximize the Fisher information, making it central to the mathematical proofs that 

support frequentist techniques. There is also a close relationship between the “comparison of 

evidence” approach of Bayesian statistics and the “information similarity” approach of 

information metrics (Gallistel & King, 2010). The comparative nature of Fisher information 

is not only thematically similar to the divergence metrics noted above; it is, in fact, the 

second derivative of DKL.

Because Fisher information is fundamental to the central limit theorem, it is implicit in most 

forms of statistical inference, even when not directly invoked. It may be invoked explicitly in 

some cases, such as exploratory analysis (see Frieden & Gatenby, 2007, for an overview), 

but often it operates “under the hood” as part of the theoretical support for analyses largely 

taken for granted. We include it for the sake of completeness, and to emphasize that 

information theory is not an esoteric set of tools, but rather a vital organ in the body of 

statistical analysis.

Information in the Brain

The computational potential of networks of neurons has long been beyond doubt. Almost 

immediately after the existence of the synapse was established experimentally, McCulloch 

and Pitts (1943) showed that a network consisting of simplified “logical neurons” (abstract 
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network nodes whose only function is to sum excitatory and inhibitory inputs and to output a 

binary value based on whether that sum exceeds a threshold) could perform any logical 

operation and, by extension, any mathematical operation. This strictly abstract conception of 

the neuron has given way to more complicated machinery as empirical evidence has 

accumulated, but the computational potential of the neuron is beyond question. In seeming 

contradiction to the all-or-none logical character of the traditional neuron, humans and 

animals behave and reason probabilistically (Neuringer, 2002). Furthermore, recent studies 

suggest that, far from being deterministic, the firing of neurons is adaptively probabilistic 

(Glimcher, 2005). Consequently, in order to decipher the neural code, researchers must 

identify not only neural responses, but also analyze the specific relationship between those 

neural responses and the conditions upon which they are contingent.

For example, Yang and Shadlen (2007) trained monkeys to perform a probabilistic 

categorization task in which eye movements to one of two color targets (red or green) were 

rewarded depending on the probability of reward signaled by a sequence of four shapes (out 

of a possible ten), which were presented at the beginning of each trial. They found that the 

choice behavior of the monkeys was governed by the probability of reward for choice of one 

of the two target choices (red vs. green). Additionally, the firing rate of neurons in the lateral 

intraparietal area (LIP) was modulated by the weight of evidence that reward would be given 

for choosing red versus green (in this case, the log likelihood ratio). Furthermore, the firing 

rates corresponded to accumulated evidence over the sequential presentation of the four 

shapes that signaled the differential probability of reward for the subsequent choice. This 

suggests that neuronal circuits are able to quantify cumulative probabilistic evidence over 

multiple presentations of stimuli. Another study (Janssen & Shadlen, 2005) found that when 

the time between presentation of a target and a cue that signaled the response (the ‘go’ 

signal) varied randomly according to a consistent Gaussian probability distribution, firing of 

neurons in area LIP represented both the elapsed time and the hazard rate, which is the 

probability that the ‘go’ signal would appear given that it had not already appeared in the 

interval.

The capacity of neural systems to do computation is even richer than the McCulloch/Pitts 

logical neuron (consisting of a host of inputs and a single output) implies. The discovery that 

dendritic trees in individual neurons very likely have the capacity to perform computations 

(Euler & Denk, 2001; Koch & Segev, 2000) adds considerably to the computational capacity 

of the nervous system. Substantial evidence (London & Häusser, 2005) now shows that the 

structure and biophysical properties of dendrites are sufficiently complex to implement 

computational operations and information processing within a single neuron. For example, 

dendrites can filter incoming signals, such that high voltage incoming currents are smoothed 

and attenuated within the dendritic tree, acting as a low-pass filter before reaching the soma 

(Rall, 1964). Dendritic branches are also capable of summing and partitioning inputs from 

their subprocesses in a way that leads to the implementation of Boolean logical operations 

(e.g., AND-NOT, OR), governing whether the branch will generate an excitatory or 

inhibitory influence on overall neuronal activity (Koch, Poggio, & Torre, 1983; Rall, 1964; 

for review and more examples of dendritic computation, see London & Häusser, 2005).
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Although theory suggests that dendrites are physiologically capable of carrying out these 

types of computations, providing in vivo evidence of such computations is difficult. 

Consequently, there is currently little evidence directly linking dendritic computations to 

actual behavior. Further work is needed to understand the role of dendrites in information 

processing and computation, but it nevertheless increases the likelihood that even simple 

networks of neurons may be able to perform complex signal processing.

The above examples provide evidence that groups of neurons can perform complex 

computational operations that take into account the probabilities of external events and map 

these probabilities onto neuronal firing in real time (see Kable & Glimcher, 2009, for 

review). The entropy of spike trains can be analyzed with respect to their total number, 

temporal pattern, overall rates, correlation, and other properties (Rieke et al., 1997; Ohyama, 

Nores, Murphy, & Mauk, 2003), and these properties can be further examined, conditioned 

on informative contextual cues. The “channel capacity” of spike trains provides a strong 

constraint on the potential signals and channels that could participate in information 

communication at the neural level.

Information-theoretic approaches also permit formal comparison of how congruent a neural 

signal pattern is with a variety of candidate stimuli. A particular pattern of firing might be 

more likely given one stimulus than it is given another; additionally, the degree of 

correspondence between the features of that pattern and the different stimulus dimensions 

can be measured. For example, local field potential recording in primary visual cortex will 

be influenced by many different stimulus properties (such as contrast and orientation), and 

these can be effectively decomposed using information-theoretic measures, providing clues 

about local circuits (Ince, Mazzoni, Bartels, Logothetis, & Panzeri, 2010). Although 

measuring joint entropy (Eq. 2) and mutual information (Eq. 4) between stimuli and 

corresponding neural activity does not automatically imply a causal relationship, these 

measures also have an important property that traditional correlations lack: The total 

available information in a system is finite, so even if both correlate with behavior, these 

metrics provide a measure of the degree to which either source of information is redundant. 

Judiciously applied, these measures can be used to make causal inferences about the 

interrelationships, as in the case of Dynamic Causal Modeling (Daunizeau, David, & 

Stephan, 2011). Information measures can thus provide insight into the probable signal 

processing mechanisms utilized by the brain (e.g., Latham & Nirenberg, 2005; Nirenberg & 

Latham, 2003).

In sum, the brain has the biophysical properties necessary to carry out computations 

sufficiently complex for animals to extract and store information about the world and to 

regulate behavior based on those computations. An information-theoretic approach allows us 

to use the same units to both describe the structure of the world and its “representations” in 

the nervous system. Behavioral analyses in these terms can quantitatively specify the 

necessary computational frameworks that underlie the way the brain processes information. 

As such, it represents a useful conceptual and practical tool for behavior analysts and for the 

science of behavior, in general.
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Information in Theories Of Behavior

Thus far, information theory has been described as providing ways to quantify the objective 

information about experimental designs and observations, independent of how much of that 

information is actually used by organisms. In addition, we have reviewed evidence that 

implicates some of the possible neurobiological machinery used by the brain to extract this 

information and update it in real time. What is missing, then, is an account of how the 

organism uses the information provided by the experimental protocol to make decisions 

about the probable state of the world and selects which of the available behaviors are 

appropriate given the information received.

Shannon’s information theory objectively specifies the amount of information contained in a 

signal. How then, does the animal use this evidence to decrease its uncertainty about a 

particular state of affairs in the world? There are a number of inferential models that have 

been proposed to answer this question, but the one that follows most intuitively from 

information theory is a Bayesian approach.

A full explication of a Bayesian approach to decision making is beyond the scope of this 

paper (for more detailed accounts, see Gallistel & King, 2010; Kruschke, 2006). The general 

tenet of the approach is that organisms enter any given situation with some knowledge or 

expectation (limited as it may be) of the probability of a particular state of affairs (the prior 

probability). As organisms interact with the environment in a particular situation, they 

perceive informative events, which are then used to update their probability estimates (the 

posterior probability). This new estimate serves as the prior for subsequent updating. Given 

sufficient data, this updating framework results in a more or less accurate representation of 

the actual state of affairs in the world. Because updating is an ongoing and dynamical 

process in which new evidence interacts with prior assumptions, it may help to explain why 

informative evidence is sometimes disregarded; for example, in blocking preparations, the 

simultaneously-presented CSs both objectively carry identical information, but the evidence 

that the added CS is informative can be said to conflict with a contradictory prior probability 

arising from the animal’s learning history (Courville, Daw, & Touretzky, 2006). Bayesian 

models of human learning have also achieved some success (for review, see Jacobs & 

Kruschke, 2011), characterizing basic phenomena in a quantitatively rigorous fashion.

It is also possible, using a Bayesian approach, to construct and implement a variety of 

specific decision rules, which govern the relationship between the acquisition of evidence 

and the resulting change in behavior (for examples, see Gallistel, Mark, King, & Latham, 

2001; Sakai, Okamoto, & Fukai, 2006). Although these applications are more theoretically 

narrow, they lend themselves well to probabilistic simulation. Consequently, Bayesian 

decision rules are suited to making specific predictions about novel scenarios that can be 

tested experimentally.

The integration of Bayesian and information-theoretic frameworks is a natural fit, as both 

arise from basic probability theory. Theories of behavior that exploit this hybrid approach 

have the potential to provide both a rigorous conceptual and mathematical framework with 

which to understand the changing representations of the world that motivate behavior.
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Pavlovian Conditioning

The central enterprise of Pavlovian theorizing is to characterize the processes by which an 

organism learns about the relationship between stimuli. The predominant approach for this 

form of learning is for the experimenter to infer associations made by organisms on the basis 

of their behavior. Although this approach has a rich legacy of results and an ongoing 

tradition of experimental rigor, there remains a conceptual difficulty in bridging the gap 

between associations, a theoretical construct inferred from behavior, and associability, those 

features of the environment that permit learning to occur in some scenarios but not in others. 

We propose that there is much to be gained from bridging this gap with information theory.

In our information-theoretic approach to Pavlovian conditioning, a stimulus will support 

conditioned responding to the extent that it tells the animal something it does not already 

know about the time to the next unconditioned stimulus (US) (see Balsam, Drew, & 

Gallistel, 2010; Ward, Gallistel, & Balsam, 2013, for reviews). The information conveyed by 

a potential conditioned stimulus (CS) in a given protocol can be measured objectively in 

terms of bits. When multiple sources of information are available, not only can their 

individual informativeness be measured, but so too can metrics like joint entropy, 

conditional entropy, and mutual information (Eqs. 2, 3, 4), essential to understanding the 

interaction between CSs and USs.

Although there is no conflict between information theory and the results of Pavlovian 

conditioning experiments, the information-theoretic view of conditioning contrasts sharply 

with traditional theories of conditioning. According to associative accounts, close temporal 

contiguity between the CS and the US enables the formation of associations between the CS 

and US, which are incremented in strength on a trial-by-trial basis based on the prediction 

error of all cues present during a reinforced trial (e.g. Rescorla & Wagner, 1972). Although 

associative learning models vary considerably in the details, contiguity as the determinant of 

increments and decrements in associative strength on a trial-by-trial basis is the conceptual 

foundation that underlies all major theorizing in the field, and has been the guiding principle 

in the search for the neurobiological basis of learning and memory for the past 50 years 

(Schultz, 2006).

Notwithstanding the prevalence of contiguity-based learning rules in associative modeling, 

contiguity has long been shown to be neither necessary nor sufficient as an explanation of 

conditioned responding (see Balsam et al., 2010, Ward et al., 2013, for review). Rescorla 

(1968) showed early on that the temporal pairing of the CS and US was not sufficient to 

engender conditioned responding if the presentation of the US was not also positively 

contingent on the presentation of the CS (see also Kamin, 1969; Reynolds, 1961; Wagner, 

Logan, & Haberlandt, 1968). Thus, what matters is the degree to which the US can be 

predicted given the occurrence of the CS. Put another way, what matters is the degree to 

which the occurrence of the CS provides information about the occurrence of the next US. 

The simple Pavlovian example presented earlier in this review (Fig. 1) provides an example 

of this: The overall probability of contiguity between each stimulus and its associated 

reinforcer was approximately equal: p(R,F) ≈ p(G,M) ≈ 6.6% per second. However, the 
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mutual information (i.e. the contingency) was much higher in one case (I(R;F) = 0.238 bits) 

than in the other (I(G, M)= 0.084 bits).

Presently, converging lines of evidence from multiple experimental fields have reasserted the 

inadequacy of contiguity as a sufficient condition for learning. Researchers studying 

“Pavlovian association” are, in principle, examining the same phenomena as those studying 

“causal inference” (reviewed in Penn & Povinelli, 2007), which investigates how organisms 

infer the causal interrelation between events. Thus, although these lines of research lie on 

opposite sides of the cognitive/behavioral theoretical divide, they are both concerned with 

determining whether it is the codependence between events that dictates what an organism 

learns, or merely their co-occurrence.

As noted in our overview of information theory, co-occurrence does not imply 

codependence; this must instead be assessed in terms of conditional probability. Simple 

information metrics such as conditional entropy and mutual information (Eqs. 3 & 4) 

provide an inroad into these comparisons, which can then be enriched with sophisticated 

measures, such as transfer entropy (Eq. 10). Consequently, information metrics provide the 

means for a common language with which to discuss the conditions under which causal 

relationships are inferred and subsequently come to predict behavior. Put another way, 

information theory allows the contingency between events to be described precisely, and this 

can help to explain phenomena with which traditional theoretical approaches have difficulty 

(Balsam et al., 2010).

Time and information

We suggest that the intervals in time between events are central to the content of learning in 

Pavlovian conditioning protocols (Balsam & Gallistel, 2009). Once learned, these intervals 

are the basis for computation of the expected time to reward, and the emergence of 

conditioned responding occurs when uncertainty about the timing of reward is sufficiently 

reduced by the presentation of a stimulus (Balsam, Sanchez-Castillo, Taylor, Van 

Volkinburg, & Ward, 2009). In other words, stimuli differ in terms of their objective 

informativeness, and the emergence of conditioned responding depends on how much a CS 

reduces uncertainty regarding when the next US will occur, relative to uncertainty about the 

next US in the background context alone (see Balsam & Gallistel, 2009, Balsam et al., 2010, 

Ward et al., 2013, for calculations). Pavlovian conditioning tasks can only be solved by 

accumulating evidence about the relationships between stimuli. Once the animal 

accumulates enough evidence to show that some relationship is reliable, an appropriate 

behavioral response emerges. In terms of responding in Pavlovian protocols, the animal will 

respond once its evidence suggests that the rate of reward in the presence of the CS is greater 

than the overall reward rate in the context.

In addition to responding more in the presence of the CS than in its absence, an animal 

trained with a CS of fixed duration that ends in reward will respond most towards the end of 

the CS, at the time when reward is most temporally proximal (Balsam et al., 2010). 

According to some accounts of acquisition (Gallistel & Gibbon, 2000), these two behavioral 

manifestations reflect two temporally based but independent decisions the animal makes in 

conditioning protocols: whether to respond and when to respond.
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The driver of many current theoretical analyses is to answer the question of how an animal 

decides whether to respond to the CS. Initially, it was thought that the when decision could 

not be made until after the whether decision. However, it has now been repeatedly 

demonstrated that temporal control of conditioned responding appears early during training 

(Balsam et al., 2002; Drew, Zupan, Cooke, Couvillon, & Balsam, 2005; Ward, Gallistel, 

Jensen, Richards, Fairhurst, & Balsam, 2012). Indeed, conditioned responding is often 

temporally controlled from its emergence. This suggests that temporal relations between 

events are encoded from the outset of exposure to such events and that the when decision 

need not follow the whether decision. In one of the most dramatic examples, Ohyama and 

Mauk (2001) trained rabbits in an eye blink conditioning protocol with tone–shock pairings 

and an interstimulus interval of 750 ms. They stopped training before the CS evoked a CR 

and then trained the rabbits on a shorter 250 ms CS until strong conditioned responding was 

established. When subsequently tested with long-duration probe trials (1250 ms), the rabbits 

blinked at both the short and long times since probe onset, indicating that they had learned 

the longer time even though conditioned responding had not previously emerged. Thus, the 

when decision appeared to be independent of the whether decision (see also Guilhardi & 

Church, 2006; Ohyama, Gibbon, Deich, & Balsam, 1999).

The evidence dissociating the decision of whether to respond from the decision of when to 

respond raises the possibility that different aspects of a conditioning protocol control the 

emergence of responding and its temporal control. To test this idea, we assessed speed of 

acquisition in mice using a simple appetitive conditioning paradigm (Ward et al., 2012). The 

experiment parametrically manipulated the objective informativeness of the CS (the degree 

to which the CS reduces uncertainty regarding the timing of the next US) by manipulating 

both the interreinforcement interval, or “cycle time” (C), and the interval between the onset 

of the CS and the delivery of the US, or “trial time” (T). We predicted, and a body of work 

indicates, that acquisition speeds should depend on the C/T ratio (see Balsam et al., 2010, 

for review), because the larger the ratio, the greater the reduction in uncertainty provided by 

CS presentation; in other words, it is the mutual information (Eq. 4) between the CS and the 

US that regulates acquisition speed. We found that the number of trials to acquisition was 

indeed determined by the C/T ratio, and thus that the C/T ratio provides a good measure of 

the “associability” of the schedule (Balsam & Gallistel, 2009).

The dependence of speed of acquisition on the C/T ratio indicates that what matters is the 

relative delay (rather than the absolute delay) to US presentation signaled by the onset of the 

CS. Changes in the C/T ratio change the informativeness of the CS, which impacts 

associability. In order for this to be the case, the animal must be able to compute the 

expected times to reinforcement in both the presence and absence of the CS. These expected 

times and the informational content conveyed by them are readily derived from an analysis 

of the temporal parameters of the conditioning protocol.

Figure 2 provides an overview of the findings of Ward and colleagues (2012). In Experiment 

1 (left plots), subjects learned in one of six conditions, each belonging to one of three C/T 
ratios (4, 10, or 28) and one of two trial times T (8 vs. 24). For the most part, the speed of 

acquisition was determined by the C/T ratio: Most animals exposed to C/T=4 did not acquire 

at all, and acquisition was generally slower given C/T=10 than it was given C/T =28.
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Importantly, the C/T ratio is not the only information objectively available to subjects. We 

showed that a schedule with a fixed T interval and a variable C interval contains 4 bits more 

information than one in which the T interval was variable and the C interval was fixed 

(having either both fixed or both variable results in an intermediary level of 

informativeness). We tested whether subjects used this information in Experiments 2 and 3. 

In Experiment 2, C = 72 and T = 8 were maintained throughout, but these were either fixed 

or variable. Despite the differential information arising from fixing some intervals while 

varying others, learning happened at a consistent rate in all cases. In Experiment 3, this logic 

was extended to comparing two C/T ratios (8 and 24), such that (160variable/20fixed) was 

approximately as objectively informative as a different condition (488fixed/20variable). 

Despite this design, it was the C/T ratio alone, and not the fixed/variable scheduling, that 

provided the crucial information that determined acquisition. This suggests that the ratio of 

overall rates, and not other forms of information, underlie the mechanisms that result in 

conditioned responding. However, the additional information impacted other aspects of 

behavior: In all three experiments, fixed intervals elicited temporally controlled responding 

during the CS.

Given that the critical informational content of a Pavlovian conditioning protocol (CS 

informativeness) can be derived from the temporal parameters of the protocol, it follows that 

one should be able to predict ordinal differences in acquisition of conditioned responding 

based solely on these relative temporal durations of exposure. This idea contrasts with the 

traditional notion that the important determinant of learning and acquisition in conditioning 

protocols is the number of CS– US pairings (Rescorla & Wagner, 1972). If the relevant 

variables are the temporal durations of events in the protocol, this leads to the 

counterintuitive prediction that for a protocol of a given duration, the learning of a 

conditioned response will be determined by cumulative exposure time but unaffected by the 

number of trials (Balsam & Gallistel, 2009). The results of a recent study (Gottleib, 2008) 

confirm this prediction. In a series of experiments, the number of trials was varied while the 

total duration of exposure to all protocol events (CS, ITI) was kept constant. Remarkably, 

over an eight-fold variation, there was no effect of the number of CS–US pairings on 

acquisition of conditioned responding (but see Gottlieb & Prince, 2012, for a scenario in 

which number of trials may matter). These studies provide strong evidence that the content 

of learning in Pavlovian conditioning is the overall interval between events in the protocol, 

and that the information conveyed by these times is the critical determinant of speed of 

acquisition of conditioned responding.

Pavlovian conditioning and information in the brain

The results of the above experiments indicate that speed of acquisition of conditioned 

responding in Pavlovian protocols depends mainly on the ratio between the time to 

reinforcement overall to the time to reinforcement in the presence of the CS. This view is 

supported by recent electrophysiological evidence that neuronal responses in a conditioning 

paradigm depend on the change in rate or probability of reward in the presence of the CS as 

compared to the overall context. Bermudez and Schultz (2010) trained monkeys in a 

Pavlovian conditioning paradigm in which rewards (0.4mL of juice) were presented at 

different rates during the background (ITI) and the CS. Monkeys came to display an 
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anticipatory licking response in the presence of a CS+. Additionally, neurons in the 

amygdala showed differential firing to the CS only during conditions in which the CS 

signaled an increased rate of reward. When the rate of reward was the same during the ITI 

and CS, no differential firing was observed. Because the temporal pairing (contiguity) 

between CS and US was the same across all conditions, this study demonstrates a neural 

circuit that responds to the contingency between CS and US (measurable in terms of 

information), and not the strict contiguity of the temporal pairing, replicating the long-

established results of behavioral experiments described above. This suggests that even at the 

level of neural circuits, learning appears to rely on mutual information (Eq. 4).

Given the importance of contingency to learning, rather than contiguity, it is unlikely that 

temporal coincidence between events is crucial to the neural mechanisms underlying 

Pavlovian conditioning. Despite this, the search for the neural mechanism of associative 

learning has been, and continues to be, dominated by the concept of changes in synaptic 

plasticity that occur as the result of temporal pairing (Lynch, 2004). This tradition dates back 

to Hebb’s (1949) influential hypothesis, in which he suggested that if the firing of a 

presynaptic neuron repeatedly influenced the firing of a postsynaptic neuron, the synaptic 

structure would be modified such that the firing of the presynaptic neuron would be more 

likely to impact activity in the postsynaptic neuron. Thus, it seemed that associations, as 

posited by contiguity theorists, actually existed in the brain, and depended on close temporal 

pairing (see also Gluck & Thompson, 1987).

Despite its intuitive appeal, this contiguity-driven synaptic plasticity, since identified as 

long-term potentiation (LTP; Bliss & Lømo, 1973), fails on several fronts as an explanation 

for associative learning and memory. Specifically, a large and growing literature (see Martin, 

Grimwood, & Morris, 2000, for review) indicates that LTP has difficulty accounting for even 

the most basic properties of associative learning (Gallistel & Matzel, 2013; Shors & Matzel, 

1997). Furthermore, changes in LTP have not been linked conclusively to learning and 

memory in any paradigm (Lynch, 2004; Martin et al., 2000; Shors & Matzel). Instead, what 

has been shown is that manipulations (whether pharmacological or genetic) that impact 

behavior in some paradigms can also impact LTP, but a causal link remains elusive (Lynch). 

Due to the methodological difficulties involved in simultaneously studying LTP and 

behavior in vivo (Lynch; Martin et al., 2000), the vast majority of the thousands of published 

papers on LTP are focused on the cellular and molecular processes that modulate LTP during 

in vitro slice preparations (Baudry, Bi, Gall, & Lynch, 2011; Blundon & Zakherenko, 2008), 

and these rarely contain behavioral manipulations.

Despite LTP’s status as the de facto learning mechanism, the parametric experiments that 

would be necessary to definitively link changes in LTP to corresponding changes in behavior 

have not been conducted. Although some studies have demonstrated increased LTP 

following exposure to Pavlovian conditioning protocols (e.g., Stuber et al., 2008; Whitlock, 

Heynen, Shuler, & Bear, 2006) or have shown that certain transgenic animals differ from 

controls in their ability to learn (e.g. Han et al., 2013), no studies have assessed whether 

differences in strength of LTP correlate with changes in speed of acquisition as a function of 

variation of the temporal parameters of the conditioning protocol (or any other experimental 

manipulation that produces quantitative differences in acquisition speed). If LTP is crucially 
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involved in this aspect of learning, as its proponents argue, there should be measurable 

quantitative differences in LTP that track differences in acquisition speed or other aspects of 

learning (Ward et al., 2012). Furthermore, if Pavlovian conditioning protocols engender 

temporal learning, as we have suggested, then any molecular mechanism underlying such 

learning must somehow encode these durations in a computationally accessible form 

(Gallistel & King, 2010). It is not clear how LTP could accomplish such encoding.

This is not to say that LTP is orthogonal to learning. The last decade has seen dramatic 

developments in the understanding of how plasticity is accomplished by the brain (Morgado-

Bernal, 2011), and LTP is certainly part of that machinery. Given the computational and 

representational complexity of encoding memory, however, we consider it more likely that 

LTP plays a necessary supporting role. For example, LTP has been shown to facilitate the 

development and refinement of dendritic trees (De Roo, Klauser, & Muller, 2008). Given the 

exciting potential of the “dendritic computation” hypothesis discussed above (London & 

Häusser, 2005), this may mean that LTP is not the architecture of memory, but rather plays a 

prominent role on its construction crew.

We argue, along with others (Gallistel & Matzel, 2013), that the search for the 

neurobiological basis of learning and memory requires a paradigm shift. Rather than 

searching the brain for contiguity-based associations, we should instead use information 

theory to formally measure the conditions that give rise to learning. Specifically, because 

information theory provides methods to specify the informational content of associative 

learning, a search can then be made for neuronal processes and circuit organizations capable 

of performing those computations that behavioral experiments indicate must be necessary 

for learned behavior to manifest.

Operant Conditioning

Information theory also provides a fresh perspective on the interpretation and understanding 

of operant schedules. As with Pavlovian conditioning paradigms, the interrelationships 

between context cues, stimuli, responses, and outcomes can be objectively measured using 

an informational paradigm, and these measurements provide a foundation for further 

analysis and theory. The primary casualty of this approach is the classical notion of the 

“reinforcer.” Once thought to possess a special character (presumably of a biological origin) 

that “stamps in” behavior by way of the Law of Effect, clever experimentation is 

increasingly revealing that motivating outcomes are just one of a variety of relevant signals 

directing behavior.

Although responding is readily manipulated by contingent reinforcement, the underlying 

causal mechanisms responsible for responding have long been a source of theoretical 

frustration. Early models of operant behavior were presumed to be reflexive in character, but 

evidence that responses were variable soon pushed operant models towards being 

intrinsically probabilistic (Scharff, 1982). Skinner’s three-term contingency model of 

operant responding, in particular, transitioned gradually from implying a mechanistic 

relationship to being explicitly interpreted in terms of probability (Moxley, 1996). Although 

reliant on the relationship between responding and reinforcement, operant doctrine has, 
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since the 1950s, insisted on representing these relationships in the language of conditional 

probabilities rather than mechanical reflexes (Moxley, 1998).

The concept of the probabilistic operant has not, however, limited debate over what causal 

factors contribute to operant behavior. A particularly important disagreement has unfolded 

between those who favor “molar” methods of analysis in which distributions of events are 

aggregated over time (Baum, 2002) and “molecular” methods that approach analysis in 

moment-by-moment terms (Shimp, Fremouw, Ingebritsen, & Long, 1994). On the one hand, 

molar analyses can account for much of the variance in behavior with simple models that 

can provide insight into the mechanisms by which disparate sets of events are aggregated in 

memory. On the other hand, there is unambiguous evidence that subjects exploit real-time 

conditional probabilities associated with their own patterns of responding. Although 

compromise (or at least armistice) between the two approaches has been proposed (e.g. 

“multiscale models,” Hineline, 2001), these perspectives generally produce different kinds 

of models that can be a challenge to reconcile.

Although there has been little direct application of information theory to the topic of operant 

responding (although see Cantor & Wilson, 1981; Frick & Miller, 1951; Horner, 2002), 

many experimental results suggest that such analyses would enhance our understanding. Our 

approach here is to illustrate this by asking the question, “What are the measurable sources 

of information that reliably permit a prediction to be made about responding?”

Reinforcer information: concurrent schedules

Although many perfectly valid operant experiments have been performed using single 

schedules of reinforcement (such as a lever programmed to deliver a pellet according to a VI 

schedule), such experiments do not reveal very much about how organisms parse the 

multiple and complex subject–environment feedback loops present outside the laboratory. A 

much richer paradigm for doing so is to use concurrent schedules, which require subjects to 

not only judge whether and when to respond, but also which response to make.

For example, Jensen & Neuringer (2008) performed experiments in which pigeons 

responded to three-operandum concurrent schedules in which food became available for 

collection probabilistically. In addition, each operandum had a “probability of retaining 

food,” referred to succinctly as “hold.” When hold = 1.0, the schedule was directly 

analogous to a concurrent VI (except that responses, and not time, advanced the schedule), 

and matching response proportions to reinforcer proportions was approximately optimal. 

When hold = 0.0, the schedule was a traditional concurrent VR, and exclusive selection of 

the richest alternative was optimal.

Overall, subjects in all conditions showed very little response structure, as measured by 

conditional U-values of consecutive responses (Eq. 6), which are pooled across experiments 

in Figure 3. These were close to 1.0 (the maximum predicted from a uniform stochastic 

process). This effect was consistent across the range of values for hold, although with a 

somewhat larger range when hold = 0.0. In other words, each response depended minimally 

on the stored information (Eq. 9) of previous responses. Despite this high level of 

stochasticity, a molecular analysis showed a bias toward switching between operanda when 
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hold was high, and a bias toward repeating responses when hold was low. These biases were 

strategically appropriate, insofar as they increased obtained rates of food delivery given the 

particulars of each schedule.

The precision with which subjects were sensitive to the information provided by context, 

responding, and outcomes can be seen in a study by Cowie, Davison, and Elliffe (2011). In 

their experiments, pigeons responded to two VI schedules that manipulated conditional 

probabilities of food delivery in terms of both spatial and temporal interrelationships. Food 

could be delivered at multiple locations, and subjects learned that delivery at one location (in 

some conditions) predicted the later appearance of food at another location, according to a 

particular interval. Consequently, whether the food increased or decreased the probability of 

a subsequent repetition of that response depended on the conditional probabilities, and not 

on a simplistic reinforcer-as-response-strengthener basis. Thus, contrary to the role 

traditionally assumed by the Law of Effect, the authors instead describe the role of 

reinforcing outcomes in terms of “signaling,” conveying to the subject where, when, and 

with what intensity to respond.

In a similar study, Davison and colleagues showed that temporal control of preference could 

efficiently accommodate intermixing fixed and variable intervals (Davison, Cowie, & Elliffe, 

2013). On any given trial, pigeons earned food by responding to one of two keys; the first 

key scheduled food according to a fixed interval, the second key did so according to an 

exponentially variable interval. Crucially, only one schedule was active on each trial, which 

persisted until food was delivered. When the expected (mean) interval on the two keys was 

identical, subjects began the trial by checking the variable key, then gradually transitioned to 

the fixed key (with a peak response rate at the expected time), followed by a transition back 

to the variable key. When the expected intervals of the two keys differed, the temporally 

precise selection interacted functionally with the proportional distribution of effort. As in the 

spatial case above, this suggests that the “reinforcer” is not simply stamping in some 

behavior, but rather is acting as an informative signal for how to map effort onto the world.

Although their analysis is strictly descriptive, the theoretical account presented by Davison 

and colleagues is entirely compatible with an information-theoretic account of operant 

behavior. Their results are part of a series that demonstrates “preference pulses,” which can 

best be understood as changes in the information being signaled to subjects by food 

deliveries (e.g., Boutros, Davison, & Elliffe, 2009; Davison & Baum, 2003). Not only do 

these results undermine the orthodox interpretation of “reinforcement” (Baum, 2012), but 

they also provide additional evidence suggesting that “reinforcement” can be reframed in 

informational terms (Ward et al., 2013).

Subjects also exploit available sources of information about shifts in the schedules of 

reinforcement. In a concurrent VI experiment, Gallistel et al. (2001) showed that mice 

detected sudden changes in the rate of reward almost as rapidly as a “statistically ideal” 

detector. In their framework, subjects changed their behaviors as soon as an independently 

calculated Bayes Factor favored a change, and not before. This analysis was extended by 

Gallistel et al. (2007), showing again that performance was consistent with the hypothesis 
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that subjects compared observation against expectation in an automatic and seemingly innate 

fashion.

In summary, a growing body of evidence from the study of responding under concurrent 

schedules suggests that operant responding is best understood in terms of informative cues. 

Although the direct application of information theory is as yet uncommon in this field, the 

diversity of analytic tools it provides can be expected to yield both new theoretical insights 

and new lines of investigation.

Learning in the absence of informative reinforcement

One topic that showcases the advantages of information theory over traditional methods of 

behavior analysis is extinction. Without discrete reinforcing events providing a measurable 

independent variable, associative models of extinction must operate by inference. This is 

especially challenging because of the central role of contiguity in associative models 

(discussed above). If new learning necessarily arises from contiguity, then what does it mean 

for a “nonevent” to be contiguous with an associated context? By what mechanisms could an 

organism be said to detect a “nonevent?”

In a wide-ranging overview of the problem, Gallistel (2012) proposes a different approach to 

extinction, focusing on solving the empirical problems it presents, by combining information 

theory and Bayesian analysis in a manner similar to his approach to concurrent schedules. 

Because a Bayesian model requires that both the current evidence and the prior assumptions 

be assigned their own respective probability distributions, extinction may be considered in 

terms of a subject’s previously reinforced experience (acting as a prior) and their current 

nonreinforced (but not uninformative) responding.

Gallistel’s treatment of extinction is thorough, and need not be replicated here. Its most 

important conclusion is that both reinforcement and nonreinforcement are informative, and 

that measurement of their respective informativeness yields testable hypotheses about 

behavior that compare favorably with empirical observation.

Another scenario in which a “reinforcing event” may be considered uninformative is when 

reinforcement is always delivered. In calculating entropy using Equation 1, events with a 

probability of 0.0 are just as uninformative as events with a probability of 1.0. Intuitively, 

this can be seen in cases where a subject must distinguish between, for example, a 0.95 

probability of reinforcement and a 0.97 probability. Because these values are so high (and, 

correspondingly, because unreinforced trials are so infrequent), each trial conveys very little 

information, and thus even a perfect decision algorithm will require many trials to detect this 

difference.

Given that reinforcement provides so little information when almost every trial is reinforced, 

rapid adjustments in behavior under such conditions cannot be explained in terms of 

reinforcement alone. One such example is provided by Kheifets and Gallistel (2012), who 

demonstrated that mice making temporal discriminations between a 3-second interval and a 

9-second interval adjusted their behavior based on the relative probability of each interval, 

responding in an almost optimal fashion. This change seemed unrelated to differential rates 
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of reinforcement, because subjects made very few incorrect responses. In fact, over 30% of 

the identified adjustments in behavior took place without missing a single reinforcer.

In cases such as these, traditional reinforcement-based accounts of responding predict 

insensitive behavior and this is correct insofar that the observed shifts in behavior cannot be 

explained by the relatively uninformative differences in reinforcement (which are so small 

that they would take hundreds of trials to detect). Because individual subjects changed their 

behavior faster than is possible based on the information from the reinforcers alone, and the 

new behavior was approximately optimal, subjects in this experiment must have been using 

some source of information other than the individual reinforcer deliveries. Kheifets and 

Gallistel (2012) persuasively argue that the alternate sources of information were the 

probability of short and long durations (which explains rapidity of the adjustment) and each 

subject’s sensitivity to their own degree of temporal uncertainty (which is necessary to 

explain how subjects were able to optimize). This suggests that it is not only information 

provided by the environment that influences behavior, but also the information that an 

organism has about its own operational characteristics. Put another way, subjects who timed 

intervals in a less precise fashion behaved as though they had a reasonably accurate estimate 

of their own uncertainty. Although there may be a temptation to describe this capacity as 

“metacognitive,” no cognitive construct is necessary in this case; all that is required is that 

subjects learn a set of conditional probabilities, including some probabilities that are 

conditioned on their own performance.

Response information: operant variability

For historical reasons (chief among them Skinner’s three-term contingency), most behavior 

analysts have not made “responding that is directly contingent on other responses” a 

theoretical priority. In principle, information theory permits any contingent relationships to 

be compared, and mounting experimental evidence suggests that organisms are sensitive to 

the information provided by their own response history. A good example of this is the 

phenomenon of operant variability, in which subjects are reinforced for producing responses 

with as little structure (that is, with as much entropy) as possible. The various measures of 

absolute entropy (Eqs. 1–Eqs. 4) and the relative entropy of the U-value (Eqs. 5 & 6) provide 

straightforward measures of response structure. More sophisticated measures of temporal 

dependence can be obtained by estimating stored information (Eq. 9) and transfer entropy 

(Eq. 10).

According to a broad experimental literature, not only is behavior highly variable, but so too 

are levels of variability that subjects display to meet task demands. This has prompted 

Neuringer and colleagues to argue that variability is itself an operant dimension of behavior 

(see Neuringer, 2002, for review). Implicit in this fine-tuning of variability is the principle 

that subjects are not only sensitive to distributions of reinforcement, but are also sensitive to 

their own distributions of responding. Put another way, past responses are also informative 

cues. When viewed in these terms, all operant conditioning takes on a probabilistic 

character, whereby classes of behaviors are drawn from in adaptive ways based on available 

(and interpretable) sources of information (Neuringer & Jensen, 2012).
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This view is not without its critics. De Souza Barba (2012) argues that although different 

schedules induce different degrees of response unpredictability, this does not adequately 

demonstrate a direct relationship between distributions of reinforcement and subsequent 

distributions of response. De Souza Barba’s interpretation of the operant demands a strict 

correspondence between reinforcing contingencies and corresponding behaviors, and this is 

reflective of the limits of orthodox accounts of reinforcement learning (see Neuringer, 2012, 

for a reply). As we have described throughout this article, many sources of information 

influence behavior, and not always in the manner consistent with traditional reinforcement 

learning. Moving beyond the “reinforcer-as-response-strengthener” approach in favor of a 

paradigm based on informative signals reveals a wide range of nuanced phenomena.

Our approach is to ask what information is necessary to explain patterns of performance. 

Whether one takes the view that response variability can be reinforced, or instead that it 

arises incidentally from task demands, it remains unambiguous that observed levels of 

selective sensitivity can only be explained by a model in which behavior is not only 

influenced by differential reinforcement, but also by past behavior. Demonstrations of 

operant variability can only be explained in terms of both of these sources of information, 

because the “response” is a class of actions that can vary along many dimensions, and 

organisms discriminate which response characteristics to vary and which to perform 

consistently. In other words, without both sources, subjects would be unable to sustain high 

levels of behavioral variability while also tailoring the nonrandom structure of their 

responding to suit current task demands.

A good example of simultaneously variable and structured behavior is described by Ross & 

Neuringer (2002). They asked human participants to “Draw rectangles on a computer” (no 

further instructions were provided), with reinforcement contingent on maximizing the 

entropy of two dimensions (e.g. the area of the rectangle and the ratio of its height and 

width) while minimizing the entropy of a third (e.g. the rectangle’s center point). 

Participants were able to adjust their behavior accordingly, based on feedback provided by 

reinforcement. Additionally, in keeping with the theme that these adjustments to behavior do 

not require a mentalistic model, subjects were also unable to articulate explicit strategies (or, 

indeed, to describe what the underlying schedule was) during debriefing. In practice, 

however, all operant variability tasks entail selecting which response dimensions to vary: 

Making unpredictable choices among several levers does not, for example, undermine a rat’s 

ability to make each lever press in an efficient and consistent fashion (Neuringer, Deiss, & 

Olson, 2000).

The sensitivity that subjects display to their past behavior is also an established finding in 

the animal literature. In a variety of species performing a multitude of tasks, responding 

consistently shows conditional dependency despite also showing molar variability (e.g. Lau 

& Glimcher, 2005; Jensen & Neuringer, 2008). Furthermore, the structural dependency of 

response sequences is relied upon both by those who support operant variability as a 

construct (e.g. Mook, Jeffrey, & Neuringer, 1993) and those who oppose it (e.g. Machado, 

1994) as a key metric in understanding the details of behavior. Regardless of which side of 

this debate analysts have fallen on, information theory remains the analytic coin of the 

realm.
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Future directions in operant theory

The direct application of information theory to modeling operant behavior, particularly with 

respect to measuring entropy, remains uncommon in behavior analysis, despite being well 

represented in the field of machine learning (e.g. Principe, 2010). Integrating entropy 

measures into models of behavior will require a reexamination of the field’s assumptions, 

both at the level of analysis and at the level of theory.

Unlike Pavlovian scenarios, in which information flows from the environment to the 

organism but not the reverse, operant scenarios involve a feedback loop between the two. 

Insofar as one series of events is influenced by the other, the flow of information can be 

estimated using transfer entropy (Eq. 10) and more advanced techniques relying on Granger 

causality (Hlaváčková-Schindler et al., 2007). In addition to these more molecular 

approaches, the degree to which variables are interdependent can also be measured at a 

molar level by using specification tests. One example with a long history is the Hausman test 

from econometrics (Hausman, 1978), which identifies omitted variable problems in 

regression models by testing whether the residuals show signs of violating core statistical 

assumptions, without which one cannot obtain unbiased parameter estimates.

It has long been understood that the information flow between responses and reinforcers 

complicates the analysis of operant schedules because of the feedback function between the 

two, which differs from one schedule to another (Rachlin, 1978). Despite this, almost all 

analysis has proceeded from a theoretical assumption that reinforcement is an independent 

variable influencing response strength, without performing statistical tests to determine the 

validity of this assumption. If, instead, it is revealed that changes in patterns of responding 

substantively change the patterns of obtained reinforcement (and it is reasonable to assume 

that they do so according to some feedback function), the two are considered endogenous.

To the extent that endogeneity exists between variables, commonly used estimators (such as 

ordinary least squares, or OLS) will necessarily yield incorrect parameter estimates. To 

understand why, consider the information diagrams in Figure 1. When performing a 

statistical procedure in which one variable F is considered an independent variable 

explaining some outcome R (such as an OLS linear regression), the mutual information (in 

black) is assumed to flow in one direction, from the independent to the dependent variable. 

This is a reasonable assumption in Pavlovian scenarios, because responses do not influence 

the schedules in those protocols. When, however, variables are coupled by feedback 

functions, some of the mutual information flows from F to R, while another share flows 

from R to F. In order for the estimator to be unbiased, it must only estimate the flow from F 
to R. When endogeneity is present, an unbiased estimate may be obtained using two-stage 

least squares (or 2SLS) regression, a technique that introduces independent covariates to 

infer the correct share of the variance explained (James & Singh, 1978).

Unbiased measurement of information flow will likely do considerable damage to the 

theoretical assumptions underlying traditional reinforcement learning, because although 

appetitive outcomes will play a primary role in motivating a behavior, it is likely that other 

cues will be responsible for shaping behavior. Rather than giving the “reinforcer” a special 

theoretical status (as in the Law of Effect), future frameworks should instead decouple the 
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motivating characteristics of positive and negative outcomes from the degree to which their 

manifestation is informative, and focus on developing models that take into account how an 

organism detects and exploits informative signals.

Conclusion

The domains in which behavior analysis stands to gain from the principled adoption of 

information-theoretic methods are too numerous for us to fully enumerate. From workaday 

statistical tools to abstract theoretical principles, there is much to be gained from utilizing 

this framework.

As noted in our introduction, although the basic metrics of information theory are broadly 

useful, we do not present them as necessary axioms of behavior. The availability of 

information does not guarantee that it is functionally related to behavior. The relationship 

between various sources of information and subsequent behavior must be determined 

empirically, and many of the necessary experiments have not been performed. Fortunately, 

the limited work exploring this topic shows that informational measures of contingency 

appear to be a reasonable basis for predicting behavior.

From a broader perspective, information theory provides a common currency by which to 

relate environmental events to neurobiology and to behavior under a wide range of 

experimental protocols. Furthermore, it can serve as a common language between 

disciplines that have otherwise remained divided by independent linguistic trajectories and 

theoretical animus. Because the natural world is not segmented into discrete trials, and does 

not arrange for reinforcing events to occur according to a handful of precisely regulated 

schedules, it is reasonable that the mechanisms that permit behavior to adapt must be equally 

broad. We feel strongly that the integrative potential of information theory will permit 

hitherto isolated islands of behavior analysis to discover common ground within that 

tradition, as well as to build bridges to other domains of psychology and neurobiology.
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Fig. 1. 
A visual depiction of how entropy (Eq. 1), joint entropy (Eq. 2), conditional entropy (Eq. 3), 

and mutual information (Eq. 4) all interrelate in the two Pavlovian examples described. In 

each schedule a cue (either a red light R or a green light G) is related to the delivery of an 

outcome (either a food pellet F or a milk dipper M). The size of each square depicts the 

uncertainty associated with a particular event, and the areas of overlap corresponds to the 

mutual information between events (in black). The conditional entropies of each cue given 

each outcome (in white) and of each outcome given each cue (in gray) correspond to the 

information in each signal that is independent of the other. Each whole polygon (including 

all three colors) represents the joint entropy.
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Fig. 2. 
Acquisition of Pavlovian responding, originally published by Ward and colleagues (2012). 

These include the originally-reported cumulative acquisition proportions (top) and boxplots 

with 1.5 IQR whiskers (bounded by the duration of the experiment). Dashed gray lines 

indicate the end of each experiment. In Experiment 1 (left plots), the ratio of 

interreinforcement cycles C and the conditioned stimulus duration T were manipulated 

across three C/T ratios and two T durations. In Experiment 2 (center plots), C/T was always 

72/8, but these durations were either fixed or variable. In Experiment 3, information from 

fixed/variable manipulations was pitted against information from the C/T ratio. In all cases, 

the primary determinant of acquisitions was the informativeness of the C/T ratio.
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Fig. 3. 
Conditional U-value (Eq. 6) of response pairs in data originally published by Jensen and 

Neuringer (2008). U-values were calculated for individual phases, and are pooled across 

subjects and experiments. Although the distributions are not necessarily representative of 

individual subjects, they show that even low outliers are confined to a narrow range close to 

the maximum value of 1.0.
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Table 1

Hypothetical Pavlovian Schedule

Stimulus Probability Outcome Conditional Probability

Red Light (R) p(¬R) = 0.9 Food Pellet (F) p(¬F|¬R) = 0.99
p(F|¬R) = 0.01

p(R) = 0.1 Food Pellet (F) p(¬F|R) = 0.3
p(F|R) = 0.7

Green Light (G) p(¬G) = 0.75 Milk Dipper (M) p(¬M|¬G) = 0.98
p(M|¬G) = 0.02

p(G) = 0.25 Milk Dipper (M) p(¬M|G) = 0.75
p(M|G) = 0.25

Note. Stimulus and outcome probabilities, per second. The “¬” operator denotes “not,” so p(F|¬R) may be read as “the probability of a food pellet, 
conditional on the absence of the red light.”
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