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Abstract

The concerted responses of eusocial insects to environmental stimuli are often referred to as 

collective cognition on the level of the colony. To achieve collective cognition a group can draw on 

two different sources: individual cognition and the connectivity between individuals. Computation 

in neural-networks, for example, is attributed more to sophisticated communication schemes than 

to the complexity of individual neurons. The case of social insects, however, can be expected to 

differ. This is since individual insects are cognitively capable units that are often able to process 

information that is directly relevant at the level of the colony. Furthermore, involved 

communication patterns seem difficult to implement in a group of insects since these lack clear 

network structure. This review discusses links between the cognition of an individual insect and 

that of the colony. We provide examples for collective cognition whose sources span the full 

spectrum between amplification of individual insect cognition and emergent group-level processes.

Introduction

The individuals that make up a social insect colony are so tightly knit that they are often 

regarded as a single super-organism (Wilson and Hölldobler, 2009). This point of view 

seems to go far beyond a simple metaphor (Gillooly et al., 2010) and encompasses aspects 

of the colony that are analogous to cell differentiation (Emerson, 1939), metabolic rates 

(Hou et al., 2010; Waters et al., 2010), nutrient regulation (Behmer, 2009), 

thermoregulation(Jones, 2004; Starks et al., 2000), gas exchange (King et al., 2015), and 

more.

It is tempting to push this analogy, one step further and attribute the superorganism with 

collective cognition (Couzin, 2009; Franks, 1989; Seeley, 1996). In this respect, it is possible 

to envision two extreme cases in which groups of insects may have evolved to exhibit 

cognition on the scale of the entire colony. The first is reliance on the cognition of the 

individuals that make up the group. Indeed, the cognitive abilities of a single ant or bee 

within the large colony are far from being simple (Dornhaus and Franks, 2008). The group 

can benefit from these capabilities, for example, by sharing and refining the knowledge of 

informed individuals. The second extreme case is collective cognition derived from the 

interaction between members. Manmade systems teach us that complex computation can be 

achieved by the wiring together of very simple components such as logical gates (Lindgren 
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and Nordahl, 1990). Similarly, social insect colonies often display dense interaction 

networks (Wilson and Hölldobler, 1988) and collective behaviors that appear to exceed the 

capacity of the individuals of which they are comprised (Sumpter, 2006).

It is therefore of interest to trace the collective actions of the social insect colony to their 

sources, be they the cognition of individuals or the communication network that connect 

groups of such individuals. Mapping out the relations between these two organizational 

scales is required if one is to understand and quantify collective cognition as well as learn 

about its evolutionary origins. We hypothesize that individual-based collective behaviors will 

be prevalent in cases where abilities, similar to those exhibited by solitary insects, suffice in 

order to sense, grasp, and process knowledge that is relevant on the scale of the colony. 

Deviations from this will tend to lead to group solutions that involve an increased emergent 

component.

Outline

The outline of this review is as follows: First, we discuss the cognitive abilities of the 

individuals that make up the social insect colony and some current knowledge of 

communication networks in social insects. As mentioned above, these two components 

provide the basis on which the colony could build its collective capabilities. Next, we 

present a list of examples of collective cognition. These examples are ordered by the degree 

to which collective behaviors rely on each of the two components, from individual-based to 

connectivity-based. The examples are split into three categories: Individual-based collective 

behaviors, collective behaviors that combine different individual perspectives, and, finally, 

collective behaviors that display higher levels of emergence. Each of these categories is 

divided into subcategories that further refine this division. Taken together, these examples 

span a broad spectrum of relationships between individual and collective cognition. In the 

final section we discuss the possible factors that may determine the degree of emergence in a 

particular collective behavior.

Individual cognition

A good starting point for discussing the origins of cognition in social insect colonies is the 

cognitive abilities of solitary insects. Insect brains have evolved hundreds of millions of 

years (Farris and Schulmeister, 2010; Ma et al., 2012) prior to the appearance of eusociality 

(Moreau, 2006). Despite the fact that their brains are relatively small (Chittka and Niven, 

2009), solitary insects exhibit high cognitive skills that include large behavioral repertoires 

(Evans, 1966), complex forms of learning (Alloway, 1972; Blackiston et al., 2011), and 

include navigational skills that often exceed those of humans (Brower, 1996). These abilities 

aid the solitary insect, among other things, in foraging (O’Neill, 2001), finding or 

constructing shelters (Raw, 1972), confronting predators (Schmidt, 1990), and identifying 

appropriate mating partners (Dickson, 2008).

The next step in this discussion is the transitions to eusociality which happened between 

100-150 million years ago (Brady et al., 2006; Engel et al., 2009). Eusociality is 

characterized by reproductive division of labor that drastically lowers the level of conflict 

Feinerman and Korman Page 2

J Exp Biol. Author manuscript; available in PMC 2017 January 11.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



between group members as they strive towards common goals (Crespi and Yanega, 1995). It 

is first important to state the evident fact that, contrary to cells in a tissue or neurons in the 

brain, insects within the colony superorganism maintain their individuality. They are able of 

autonomous motion and decision making. Further, the brains of individuals within a colony 

bear high resemblance to those of solitary insects (Strausfeld, 1976). One may therefore ask 

how the cognitive capabilities a social insect compare to those of a solitary insect. To date, it 

is not clear if once grouped into large groups evolution may work to increase or decrease the 

cognitive complexity of individuals. On the one hand, it is known, mainly from vertebrate 

groups that the communication requirements of group living may work to increase brain 

complexity (Shultz and Dunbar, 2010). On the other hand, it has been suggested that, relying 

on collective processes may ease the energetically expensive (Aiello and Wheeler, 1995) 

maintenance of brain tissue (Anderson and McShea, 2001; Feinerman and Traniello, 2015).

Whatever the exact comparison between the brains of a social and a solitary insect, it is clear 

that the social insect is a cognitively capable individual. Individuals within the colony 

possess the capacity for large behavioral repertoires (Chittka and Niven, 2009), for weighing 

a large number of factors to reach individual decisions (Franks et al., 2003), and for 

navigating over large distances (Gathmann and Tscharntke, 2002; Wehner, 2003). 

Importantly, these individual capabilities are relevant on the scale of the entire colony.

One aspect that clearly differentiates the social insect from its solitary counterpart is the 

capacity for communication. For example, eusocial insects display a huge diversification of 

cuticular pheromones (van Wilgenburg et al., 2011) used to convey multiple signals that are 

unique to colony life (Howard and Blomquist, 2005). Another famous example is the 

honeybee waggle dance (Von Frisc, 1950). While solitary insects may have the motivation to 

conceal a newly found item for personal consumption (Byrne et al., 2003), the bees have 

evolved an elaborate communication scheme which allows them to share this location. These 

and other interaction skills form the foundation of the insect society. In the next section we 

discuss some of the properties of the communication networks via which social insects 

coordinate their activities.

Interaction Networks

Group living animals combine personal and social information when deciding upon their 

next action (Rieucau and Giraldeau, 2011). In eusocial insects – the social component of 

information collection is especially important (Wilson and Hölldobler, 1988). 

Correspondingly, the modalities of communication and richness of cues and signals is 

greatly enhanced. Social insects use a variety of olfactory (Martin and Drijfhout, 2009; 

Morgan, 2009), tactile (Razin et al., 2013), visual , and vibrational (Delattre et al., 2015; 

Roces et al., 1993) messages as well as multi-model combinations of these (Ramsden et al., 

2009) in their communication. Broadly speaking, these can be divided into several groups: 

Some messages require direct contact between individuals and can thus be considered as 

local in both space and time. Other signals are local in time but not space and are typically 

employed as alarm signals (e.g. highly volatile pheromones (Blum, 1969)). Yet another 

group are signals that are local in space but not in time. This group includes stigmergic, 

indirect communication between insects in which one individual modifies the environment 
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and a second individual arriving at the same location at some later time reacts to its modified 

surroundings (Theraulaz and Bonabeau, 1999). Mass recruitment pheromone trails (Jaffe 

and Howse, 1979) and nest construction without a blueprint (Franks and Deneubourg, 1997) 

are two impressive examples of stigmergy. Note that, for the case of pheromonal 

communication, the time scales that characterize pheromonal communication are evolvable 

as they depend on chemical evaporation times that, indeed, vary between species and tasks 

(Morgan, 2009; Witte et al., 2007)(Holldobler and Wilson, 1990).

Quantifying the communication patterns requires descriptive frameworks for the different 

interaction types as described above. Contact dependent interactions can be described as 

time-ordered (Blonder and Dornhaus, 2011) communication networks (Fewell, 2003; 

Moreau et al., 2011). It has been shown that, in a laboratory setting, the high mobility of 

social insects dictates that, after a sufficient time window, interactions occur between 

practically all possible pairs and the network become highly connected (Mersch et al., 

2013). Stigmergic communication has been described by using the language of statistical 

mechanics (Richardson et al., 2011), or by employing cellular-automata tools typically used 

to describe self-organization processes (Khuong et al., 2016). These interactions are, 

inherently, one-to-many signaling and have been shown to extend the connectivity induced 

by contact dependent communication (Richardson and Gorochowski, 2015). . Adding long 

range communication such as that involving alarm pheromones, we obtain a picture of a 

system in which, at least to first order and over long enough time-scales, interactions can be 

described as well mixed. In other words, over time an insect receives signals from any other 

insect in the colony. Not only are interactions mixed they are also, to a large extent 

anonymous. With a few exceptions (Mallon and Franks, 2000; Tibbetts, 2002), it is 

reasonable to assume that individuals do not recognize which of the hundreds to hundreds of 

thousands of other individuals they are currently interacting with.

While the previous discussion seems to suggest that interactions are completely ergodic, it is 

important to stress that the social insect colony is, by no means, devoid of structure. For 

example, ant nests and bee hives are often concentrically arranged such that young insects 

reside in the deep center while older individuals occupy progressively occupy areas that are 

closer to the boundaries or entrance (Beshers and Fewell, 2001). Even when structure is 

initially lacking, self-organization and amplification of noise can work to create 

spatiotemporal patterns over time (Richardson et al., 2011; Theraulaz et al., 2003). 

Moreover, ant (Tschinkel, 2004) and termite (Noirot and Darlington, 2000) nests exhibit 

complex structures of rooms and corridors and these further reflect on the spatial distribution 

of individuals within the nest. It has been shown that different individuals tend to occupy 

specific locations or chambers within the nest (Jandt and Dornhaus, 2009; Sendova-Franks 

and Franks, 1995) and that this reflects on the probability that they interact with other 

individuals in other parts of the nest (Mersch et al., 2013; Pinter-Wollman et al., 2011). 

Spatial locations therefore induce a network structure that is composed of relatively stable 

clusters. Hence, in a very broad sense, the communication patterns in a social insect colony 

can be viewed as residing between a well-mixed (on the more local scale) and a fixed (on the 

global, cluster, scale) network.
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Collective cognition

Having described some of the basic “cognitive toolbox” available to the colony, we go on to 

discuss its collective scale behavioral products. In what follows, we present a non-

comprehensive list of examples for collective behaviors in social insect colonies. The 

examples where chosen while focusing on the different possible gaps between the 

knowledge, actions, and capabilities of individuals and those of the entire group. They are 

ordered by the extent of this gap and divided between individual based collective cognition 

(small gaps) and emergent collective cognition that builds on the interaction between insects 

(large gaps). This division is, by no means, strict.

Individual based collective cognition

In a eusocial colony the genetic conflict between individuals in the group is minimal 

(Queller and Strassmann, 1998). This leads to an alignment of interests which implies that it 

is generally advantageous for informed individuals to share their knowledge with other 

group members. Utilizing this information is useful for the group as well. Since the number 

of informed individuals may be small one could expect that their actions be too weak to 

elicit any significant effect or, alternatively, they be averaged out against opposing actions 

performed by other, less-informed, colony members. Instead of losing this useful 

information, it may be profitable for the group to amplify the actions of these focal 

individuals. Any such amplification should be regulated to prevent runaway behavior in case 

of mistakes. Such mistakes could arise from the informed individuals themselves: they may 

hold only partial information or be plain wrong, or from communication: noisy interactions 

may distort the original message.

Next, we discuss several examples of amplification circuits that make the products of 

individual cognition available, effective, and useful at the level of the group.

Unconditional amplification—The simplest example is the alarm response. When an 

individual ant senses danger she not only directly reacts to it but further emits a volatile 

alarm pheromone (Blum, 1969). This pheromone spreads around the ant eliciting similar 

responses from her neighboring nest-mates. This positive feedback circuit quickly spreads 

the danger signal to affect a large number of individuals (Jeanson and Deneubourg, 2009). 

This not only increases the group's surveillance of its environment (the “many eyes 

principle”) but also allows it to take collective actions towards, for example, protection of 

the nest. Similar behaviors are displayed by termites where chemical communication is 

accompanied by vibrational signaling (Delattre et al., 2015).

These collective positive feedback circuits provide an informed individual that senses danger 

immediate and direct control over the actions of the group. In other words, the gap between 

individual and collective cognition is, practically, nonexistent. The group forsakes regulation 

and out-weights this crucial survival response over the possible price paid by false alarms.

Conditioned amplification—The mass recruitment foraging trail occurs as a single first 

ant locates a food source. This ant then uses her navigational skills to return to the nest while 

laying a pheromone trail that recruits others to the food such that foraging commences. 
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While an emergent process may work to straighten the trail and make it shorter (see below) 

the trail still follows the qualitative solution as first discovered and then communicated by 

the initial recruiter (Holldobler, 1971).

Importantly, in a large number of species, ants strengthen the initial trail only on the way 

back from the target food source and only if they independently found it to be profitable 

(Beckers et al., 1992a; Mailleux et al., 2003; Wilson, 1962). This regulation can be 

considered as “delayed” since it occurs only after an initial positive response to the initial 

ant. This provides a mechanism by which the group “double-checks” the target 

communicated by the initial ant before continuing to amplify her effect even further. It 

allows the colony to reduce its response to ants that may have outdated information or are, 

for some reason, confused. Since pheromones are volatile and have a finite lifetime, their 

concentration along the trail depends on the rate at which they are enhanced. A trail which is 

not enhanced will eventually disappear. Thus, delayed regulation further supplies a 

mechanism for calibrating the level of activity on the recruitment trail (Simon and Hefetz, 

1992), discontinuing it once the food source is exhausted (Wilson, 1962). It further allows 

the system to escape local minima by switching to foraging on more profitable food sources 

when such are identified (Beekman and Dussutour, 2007).

Amplification with early regulation—Desert ants typically forage alone and display 

only a rudimentary form of recruitment (Amor et al., 2010; Razin et al., 2013). The 

recruitment process occurs as ants that are informed about a food source outside the nest 

attempt to alert their nest-mates using imperfect communication. The interactions used are 

noisy in the sense that a recruitment interaction may be ignored or, conversely, a non-

recruitment interaction may induce an ant to leave the nest. Therefore, amplification of the 

initial signal must be regulated so that recruitment occurs only when a food source is present 

and runaway behavior that results from mere interaction noise is avoided. It was shown that 

desert ants regulate recruitment early on in the process, at the entrance chamber of their nest 

(Razin et al., 2013).

This regulation is the result of two behavioral components. The first is the fact that 

individuals “know that they know” (Greenwald et al., 2015). There is a clear difference in 

the way directly and non-directly informed insects react to interactions with others (Razin et 

al., 2013; Schultz et al., 2008; Stroeymeyt et al., 2011). For example, ants that have been to 

the food area simply disregard interactions and maintain high walking speed to increase the 

number and effectiveness of their recruitment interactions (Razin et al., 2013). On the other 

hand, ants with second hand knowledge react to interactions in a more cautious manner. 

These ants can either upregulate or downregulate their propensity to be recruited depending 

on the state of the individual they interact with (Razin et al., 2013). These rules allow the 

ants to regulate collective behavior with minimal dependence on their unreliable 

communication skills. Specifically, this works to decrease the chances that the actions of 

non-informed ants have global consequences on the state of the nest and leaves the stage, so 

to say, to the directly informed ants (Razin et al., 2013).

The second regulatory component is an early negative feedback. All else being equal, non-

informed ants tend to lower their propensity to exit with passing time. This leads to a 

Feinerman and Korman Page 6

J Exp Biol. Author manuscript; available in PMC 2017 January 11.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



collective threshold that dissipates the effects of random or isolated interactions such that 

their effect quickly dies away and this protects the system from noise. A persistent informed 

ant with first-hand information can generate enough activity such that interaction rates 

increase (Gordon and Mehdiabadi, 1999) and the system moves over this recruitment 

threshold. This early feedback mechanism in which positive feedback occurs only if the 

system passes a set threshold is similar to the generation of spikes in neurons (Razin et al., 

2013). Note that while delayed regulation (as described in the previous subsection) works to 

regulate the amplitude of the collective response and terminate it when the stimulus ends, 

early regulation works to prevent amplification in the first place.

Combining individual perspectives

Amplifying the optimal option—The social insect colony may do more than amplifying 

individual decisions – it can, in fact, poll individuals to reach consensus choice regarding the 

best solution among several alternative options. Examples for this come from house-hunting 

(Visscher, 2007) behaviors in ants (Franks et al., 2002) and bees (Seeley et al., 2006). When 

assessing the quality of a potential new nest site scout ants have been shown to incorporate 

an intricate, individually based, evaluation scheme which combines the different attributes of 

this location (e.g. its volume, the size of the door, and the level of light) in a non-trivial way 

(Franks et al., 2003). There is evidence that this assessment results in a single grade given by 

the ant to the new location (Robinson et al., 2011; Robinson et al., 2014). The group does 

not make its own assessments of nest quality (a hypothetical example for this could be 

moving the whole colony to occupy the alternative nests one at a time and using the resulting 

ant density (Gordon et al., 1993) to accurately measure the area of each) but, rather, uses a 

quorum sensing as a polling mechanism to compare the assessments of its individual scouts 

(Franks et al., 2002; Seeley et al., 2006). With high probability, this leads to the colony 

choosing the best among the alternatives with the accuracy of the decision growing with the 

size of the group (Sasaki et al., 2013).

House-hunting provides another fascinating example of how the action of the group may 

work to refine individual decisions: When comparing different nests with specific attributes 

individual ants are prone to violate the regularity principle of rational decision making 

(Sasaki and Pratt, 2011). This principle states that if option A is preferred over option B then 

this should not change upon introducing a third option, C, that is inferior to both. This 

fallacy is not specific to insects but, rather, affects many different animals including humans. 

However, when a whole colony is presented with the choice between these nests it will tend 

to make the rational choice (Edwards and Pratt, 2009; Sasaki and Pratt, 2011). This is 

because the polling often terminates before individual ants have had the chance to fail the 

regularity principle since this requires visiting multiple nests (Robinson et al., 2014).

We provided several examples (many more exist) of how the actions and decisions of 

capable individuals reflect at the level of the group. The group does not create new solutions 

but rather works to amplify, average, poll, and refine the actions of individual members. This 

is done using collective communication circuits that involve positive and negative feedbacks 

and certain non-linearities.
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Amplification in dynamic settings—In dynamic, fast-evolving scenarios, Information 

can quickly become obsolete and the individuals that carry useful information (Robson and 

Traniello, 2002) change over time (Gelblum et al., 2015). This entails two inherent 

problems: First, the relevant individual at a specific point in time has to be identified by the 

group. Second, when an individual that is better updated appears the group must revert to 

following it instead.

This scenario is realized during cooperative transport by longhorn crazy ants (Czaczkes and 

Ratnieks, 2013). When ants cooperatively transport a large food item they can often lose 

orientation and become unknowledgeable regarding the correct way to the nest. To correct 

their path, these ants rely on well-informed individuals that are in the vicinity of the load but 

unattached to it (Gelblum et al., 2015).

Instead of identifying the ant that currently holds valuable navigational information, here 

again, the group relies on the “know that you know” principle. In other words, an informed 

ant acts in a manner that is different from the other carriers: She attaches to the object and, 

without heeding to others, pulls it in the direction she knows to be correct. At the same time 

the carrying ants “acknowledge that they don't know” and apply a different behavioral rule – 

which is, in a sense, pull in the direction in which the load is currently moving. Together, 

these different rules as applied by informed and non-informed ants allow the group to 

optimally amplify the force of the informed leader (Gelblum et al., 2015).

Importantly, after a period of about 10 seconds, the newly attached leader loses her 

orientation. This former leader then adapts the behavioral rules of an ordinary carrier and 

may continue in this state for many minutes. The directionality of the carrying group is next 

corrected by the attachment of a new leader ant that happened to be informed at that 

particular time. The fast switching between leaders can be viewed as a mechanism that 

enables the group to escape being trapped at local minima in which the group displays 

coordinated motion but the direction is wrong.

Collective bootstrapping of individual solutions—Another form of colony level 

solutions that is based on the actions of a large number of individuals is trail shortening. 

Ants are famous for the ability to gradually decrease the length of their pheromone trail so 

that it finally draws a geodesic between the food source and the nest (Feynmann, 1985). This 

process can occur by the accumulated effect of ants that leave the trail (Deneubourg et al., 

1983) and return to it a short distance away. Useful detours, i.e. those that “cut a corner” and 

slightly decrease the trail’s length, are then amplified by the group while non-useful detours 

are abandoned (Deneubourg et al., 1983; Goss et al., 1989; Reid et al., 2011).

Even though trail shortening utilizes segments that were offered by individual ants, it is 

inherently different from the amplification schemes described in the previous section. This 

difference is manifested in the fact that in the previous examples require that the informed 

ant “know that she knows” and assess the quality of the information that she holds. 

Conversely, during trail shortening ants that mark short-cuts are not required to hold any 

knowledge about the quality of their solutions. Rather, it is the group that either amplifies or 
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eventually ignores this alternative trail segments through a pheromone based positive 

feedback mechanism.

Emergent collective cognition

So far, we focused on group level behaviors that gain their computational power by 

amplifying the actions and decisions of individuals. This differs from the notion of emergent 

cognition wherein collective scale processes allow the group to qualitatively transcend 

individual capabilities.

An intuitive example for emergence is the different physical phases of matter. Here, minimal 

changes in temperature or the coupling between microscopic particles leads to qualitatively 

different macroscopic phases (e.g. the solid to liquid transition). It is therefore interesting to 

ask whether grouping together, not simple inanimate particles, but rather cognitive 

individuals with a memory and complex behavioral rules can be expected to display different 

and perhaps higher forms of emergence. Specifically, what forms of cognitive emergence 

occur in the case of social insects? In this section, we list several examples for emergent 

collective actions. As before, the examples are loosely ordered according to the increasing 

gaps between the individual and the group.

Weighted response to multiple stimuli—Since they are grouped into large ensembles 

individual insects are, inevitably, much smaller than the size of the colony and its territory. 

As a consequence, individuals cannot have direct access to large-scale environmental and 

internal colony conditions. Despite this, the colony as a whole must react to the full set of 

stimuli and appropriately divide the work force (Robinson, 1992). Models (Beshers and 

Fewell, 2001) suggest that colony level division of labor can result from single insects with 

different task thresholds (Bonabeau, 1996) that resolve work demands which they locally 

experience (Franks and Tofts, 1994). Similar to the house-hunting example described above 

this colony level phenomenon relies on the cognitive assessments of individuals. The 

difference being that, in this case, the colony does not form a consensus around the solution 

of a single individual but rather divides the work force in a weighted manner according to 

information that is too spread out to be available to any one individual. Division of labor can 

include more complex mechanisms, such as recruitment, that allow ants to employ not only 

personal but also social information in their decisions (Robinson et al., 2009a).

Partial decoupling between individual and collective scales—Cooperative 

transport is the process in which a group of ants retrieves a food item much too large for any 

of them to move on their own. During this process, the information available to individuals 

may be plainly misleading and counterproductive for the group's collective goals. This 

happens when trajectories to the nest as experienced by the small ants may be inaccessible to 

the large loads and even take it towards dead-ends that are difficult to escape. It was shown 

that to avoid such deadlocks, the macroscopic scale occasionally decouples from the 

possibly misleading information available at the microscopic scale (Fonio et al., 2016). This 

mechanism allows the group to utilize beneficial information while using noise present at 

the group level to escape deadlocks (local minima) and avoid the potentially devastating 

consequences of fully relying on misleading information. Importantly, such decoupling does 
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not require that any single individual detect at any point in time, whether information is 

valuable or misleading.

Emergence in this system is evident as a separation between collective and individual 

behavior. This is evident, as the carrying group (and the food item they transport) does not 

follow a trajectory that was suggested by any single ant.

Collective response independent of individual actions—In some cases, the group 

can display effective reactions to stimuli that are not conceived by any individual. Such can 

be the case in which a cooperatively carrying group hits an obstacle. In such instances, 

instead of attempting to advance directly towards the nest, the group decouples from the 

actions of its individual members and goes into a perpendicular motion that takes the carried 

piece of food towards the edges of the obstacle (Gelblum et al., 2015). It was shown that this 

change in collective motion does not require that any individual ant be aware of the obstacle 

and individually change her behavior (Gelblum et al., 2016). Rather, the physical constraint 

induced by the obstacle directly affects the group as a whole. As a response, the group’s 

mode of motion changes in a way that facilitates obstacle circumvention.

Self-organization without a blueprint—A final example for emergent behavior 

involves nest construction. Social insects construct some of the most magnificent structures 

in the biological world (Theraulaz et al., 2003). This is done through a stigmergic process 

(Theraulaz and Bonabeau, 1999) in which individuals locally interact with features of the 

structure by adding (or removing, in the case of dug nests) building material to them (Franks 

and Deneubourg, 1997). This induces indirect communication as insects interact with the 

product of the action of their nest-mates. It was further shown that, in some cases, building 

materials are combined with a volatile construction pheromone (Khuong et al., 2016). This 

adds a temporal dimension to the physical structure and expands the possibilities for local 

rules and the complexity of the resulting structure (Khuong et al., 2016).

In contrast to trail formation, for example, where the result of the collective effort is a 

refinement of almost complete structures suggested by individual ants, nest construction 

creates structures which appear to be far from the capabilities of any individual. Indeed, in 

this high form of emergence, it is unlikely that individuals have a blueprint of the desired 

final product. Nevertheless, they follow local rules and such that their collective effort results 

in the construction of intricate nests.

Discussion

The first three sections of this discussion follow the structure of the previous example 

section. We raise and then discuss some hypotheses regarding the prevalence of collective-

scale behaviors which strongly rely on the cognitive capabilities of individuals.

Individual-based collective cognition

An important factor to note is that many of the immediate requirements of the social group 

coincide with those of the individuals that comprise this group. Like the solitary insect, the 

colony must also scan the environment for food (Gordon, 1995), locate shelters (Franks et 
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al., 2002), transport food (Gelblum et al., 2015), confront predators (Lamon and Topoff, 

1981; Monographs, 2016), and care for brood (Siveter et al., 2014; Wang et al., 2015). As 

noted above, the cognitive abilities of individuals in a colony do not seem to greatly differ 

from those of their solitary counterparts. As such the cognition of individuals within a 

colony hold direct advantages to the group as a whole. The Individual based collective 

cognition section, above, provides examples wherein the actions of a single individual 

suffice for directing the entire colony.

Generally speaking, amplifying of the behavior of an individual requires two colony level 

processes: First, the identification of the specific individual of interest and then the 

amplification of its behavior. For example, as mentioned above, the first ant to find a food 

source has the capacity to trace the complete path between the nest and the food (Cammaerts 

and Cammaerts, 1980; Hölldobler, 1976; Wilson, 1962). This ant makes itself identifiable by 

laying pheromone markings on the surface as it heads back to the nest (Beckers et al., 

1992a). Amplification occurs as ants that follow this trail enforce it with further pheromonal 

markings. Finally, mass foraging develops along the trail drawn out by the initial recruiting 

ant (Beckers et al., 1989). In many cases, solutions provided by different individuals are in 

conflict such that one solution is amplified this must come at the expense of others. In this 

case a third decision making process occurs alongside identification and amplification. Some 

mechanisms by which such collective decisions occur include the preferential reinforcement 

of preferred solutions, such as preferred food sources being marked by higher pheromone 

concentrations (Beckers et al., 1992b; Jaffe and Howse, 1979; Sumpter and Beekman, 2003) 

and cross inhibition between alternative emerging solutions, as occurs during honeybee 

recruitment (Nieh, 2010).

Combining individual perspectives

It is not always the case that an individual insect holds the complete solution to the colony's 

current needs. In fact, inherent constraints work to limit the value of individually held 

information. A first constraint involves the size of the individual when compared to that of 

its colony. Colonies reside over territories that are tens of meters (in the case of ants) or even 

kilometers (for wasps and bees) across and include large elaborate nest structures on a scale 

of several meters (Tschinkel, 2004). It is impossible for a single individual whose size is on 

the order of one centimeter to individually monitor these large areas. Other constraints are a 

single individual propensity to be badly informed, mistakenly wrong, or be limited by its 

cognitive capacity (Sasaki and Pratt, 2012).

The second set of examples as above highlights behaviors in which the group holds useful 

information about the environment but this information is distributed among a large number 

of individuals. Using communication, these information fragments can be integrated to yield 

collective decisions that take the “big picture” into account. Such integration can often be 

classified using two general schemes defined for animal groups in general: The “many eyes 

principle” (Ward et al., 2011) in which the group's capacity for surveillance increases with 

the number of alert animals and the “many wrongs principle” (Biro et al., 2006; Simons, 

2004) in which averaging effects work to reduce “noise” at the scale of an individual animal 

to yield accurate collective action. Integration of information happens over a large number of 
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contexts and species. Some recurring principles in this process include: distributed 

integration, nonlinearities (Sumpter and Beekman, 2003), positive and negative feedback 

loops (Franks et al., 2002; Nieh, 2010), use of interaction rates and cuing delays (Camazine, 

1993; Greene et al., 2013), higher influence and lower propensity to be influenced by better 

informed individuals (Korman et al., 2014; Razin et al., 2013; Schultz et al., 2008), and 

correctly weighing individual vs. social information (Robinson et al., 2009b; Robinson et al., 

2012).

This section also presents examples in which colonies have evolved to achieve a collective 

task by amplifying the behaviors of individuals that work towards the small scale version of 

this same task. For example, in the context of cooperative transport the actions of a leader 

ant are exactly those she would take when individually transporting a small food item to the 

nest. The group allows these actions to be the driving force behind the transport of a large 

heavy item.

Emergent group level cognition

Last, some colony functions may fall outside of the solitary insect's behavioral or cognitive 

repertoire. These include large scale behaviors such as assessing the relation between the 

size of two objects when both of these are much larger than the insect itself (Fonio et al., 

2016; Gelblum et al., 2016), and active food dissemination (Camazine, 1993; Greenwald et 

al., 2015; Howard and Tschinek, 1981). In such cases, to achieve the group-level task, the 

relevant capabilities must arise either by newly evolved individual traits or through a 

collective process that relies on the connectivity between individuals (a combination of these 

two options is also possible). Cases in which group level processes bestow the group with 

abilities that are qualitatively beyond those of its individual members can, by definition (De 

Wolf and Holvoet, 2005), be considered as a form of emergence.

In the two examples of cooperative transport presented above, group problem solving 

capabilities increase beyond those of individuals. In these cases, the small size of individual 

insect may prevent it from grasping the relevant large-scale relationships between the carried 

load and the obstacle. Therefore, in these cases the problem solving on the level of the group 

must decouple to some extent from the array of, possibly misleading, solutions as offered by 

individuals, even if these are highly adept navigators. The mechanisms that enable such 

decoupling between the scales do not have to be complex. In these examples, group-level 

noise in scent mark following (Fonio et al., 2016) and the persistence that results from 

alignment of forces (Gelblum et al., 2016) suffice for efficient transport that interacts with 

the environment on the relevant scale of the ant team and the large carried load.

Stigmergic nest construction holds the potential for higher levels of emergence. Here, nest 

construction is carried out by individuals who follow simple local rules while constantly 

reacting to the environmental product of their previous actions (Grassé, 1959). Following 

these stigmergic principles (Theraulaz et al., 2003) may allow insects to construct elaborate 

nest architectures (Tschinkel, 2004) without any blueprint. The degree of emergence in such 

processes is difficult to define. On the one hand, by using a stigmergic process, a single 

insect, a solitary queen for example, may construct a structure for which it holds no internal 

representation (Camazine et al., 2001; Theraulaz and Bonabeau, 1999). A larger group in 
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which each individual follows the same rules may achieve faster construction but the quality 

of emergence remains constant (Theraulaz and Bonabeau, 1999). On the other hand, it has 

been shown that pheromone deposition onto the constructed nest is an essential part of 

collective stigmergic nest construction. The addition of this time dependent component 

(pheromones evaporate) has the potential of allowing the group to achieve more complex 

forms of emergence not achievable by a single individual working alone (Khuong et al., 

2016). Indeed, such processes can be modeled using the mathematics of cellular automata a 

theory which holds the potential of describing extreme forms of emergence (Wolfram, 

2002).

Prevalence of individual-based mechanisms

Next, we raise some hypotheses in an attempt to provide rationale for the observed 

imminence of individuals to colony scale processes.

As shown above, it is often the case that colony level behaviors are a consequence of the 

direct of amplification of individual actions that rely on individual cognition. This didn't 

have to be the case. One could imagine an evolutionary pathway where collective cognition 

is constructed from a network of different individuals each manifesting different, possibly 

more basic, capabilities. In this case, the actions of individuals don't directly coincide with 

the actions of the group or even with each other. Rather, group performance emerges from 

the coordination between individuals. An example for this are neurons in the brain. Neurons 

have evolved to be cells whose actions are purely computational such that their spiking 

activity bears no direct relations to the collective process at which they participate. 

Hypothetically, there is no a-priori prevention that such structures arise in a social insect 

colony to serve as the basis for highly efficient collective scale behaviors. Why, therefore, is 

this not the general case?

We suggest that the first part of the answer to this question has to do with the availability and 

high quality performances that individual-based group level cognition can achieve. As stated 

above, by the time group cognition has evolved, individual insects were already developed 

independent organisms (Farris and Schulmeister, 2010; Ma et al., 2012). As such, they 

already possessed many of the cognitive resources that are required by the group. 

Furthermore, these individual capabilities are, in no sense, simple. For example, individual 

insects are highly adept navigators. To get from one place to another individual insects 

employ a toolbox consisting of multiple tactics, often applied in parallel. Across different 

insects, these include landmark navigation (Collett et al., 1993), dead reckoning (Collett and 

Collett, 2000), backtracking (Wystrach et al., 2013), and cognitive map (Gould, 1986) 

navigation by means of scents (Morgan, 2009), visual cues (Collett et al., 1993; Esch et al., 

2001; Wehner, 2003), temperature, and even magnetic fields. Collective cognition that relies 

on such individual capabilities holds the advantage of utilizing these highly non-trivial traits.

The fact that individual insects possess high cognitive capabilities does not, however, suffice 

in explaining why these capabilities take a central role in many collective level processes. In 

the context of the navigation example as in the previous paragraph, it may very well be the 

case that a navigational toolbox that relies on the distributed actions of a large number of 

cooperating insects not only exists but, also, outperforms other, individual-based, schemes. 
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Again, one may ask why this is not the general case and why the role of individuals has 

remained so pronounced throughout evolution. We hypothesize that the answer to this 

question has to do with the complexity of efficient distributed solutions given the inherent 

constraints that apply for a colony of autonomous individuals. We hypothesize that in many 

cases, simple distributed algorithms would not outperform what is readily achievable by 

amplifying individual cognition. We further hypothesize that distributed algorithms that do 

surpass simpler amplification processes may be expected to be highly complex and therefore 

difficult to evolve. Hence, the system may be trapped within local minima within the fitness 

landscape which utilize the individual cognitive components that have evolved at earlier 

stages. The next section discusses some of the non-trivial limitations on emergent behavioral 

solutions.

Computational constraints on emergent collective cognition

Emergence is often associated with the notion of a group that “exceeds the sum of its parts”. 

Theoretically speaking, achieving such highly effective cooperation typically requires a 

substantial degree of coordination. An intuitive example for this is the parallel search 

problem in which a group of non-communicating random walkers that start at a given 

location aim to collectively cover an area and then share the profits of their findings. In this 

context, to “exceed the sum of its parts” implies that the group of N searchers cover the area 

more than N times faster than each individual, were it acting on its own. In fact, in many 

natural topologies (Alon et al., 2011; Efremenko and Reingold, 2009), the situation is very 

far from this. For example, in grid topologies when searchers do not communicate and as 

long as N is not too small, multiple random walks that start from a single point, typically 

achieve negligible speed-up in cover time when compared to a single searcher (Alon et al., 

2011) (i.e., the group takes almost as much time to cover an area as a single one of its 
members). In this case, being part of a group becomes highly unbeneficial from an 

individual’s point of view: food must be shared but without the advantage of obtaining it at a 

faster rate.

Biological systems often achieve emergence using involved communication. The most 

celebrated example for this is that of the brain, viewed as a large ensemble of neurons. In the 

case of brains, such coordination heavily relies on the fact that the neurons are organized 

into stable networks such that the set of neighboring neurons of a given neuron remains, 

relatively, fixed. Synaptic plasticity allows a pair of neighboring neurons to undergo a 

mutual feedback process and fine-tune their connectivity (Hebb, 1949). This, as 

conceptually demonstrated by the Hopfield model (Hopfield, 1982), may provide the system 

with its immense computational power. Indeed, Hopfield networks have been shown to be 

capable of universal computation in the Turing sense (Síma and Orponen, 2003).

What can one expect for social insect colonies? On the one hand, these are very far from 

being non-communicating. On the other hand, interaction networks appear to be more 

loosely defined than those that characterize a brain. Indeed, in the insect colony fixed 

organization structures may be difficult to achieve for long periods of time, due to the 

inherent mobility and anonymity constraints. This lack of structure leads to a lack of 

knowledge that further constrains the system (Burgos and Polani, 2016). Namely, while 
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learning in the brain happens by strengthening the synaptic connections between pairs of 

specific hard-wired (and therefore mutually identifiable) neurons, it is difficult imagine such 

mechanisms for freely moving, anonymous insects. Further, many brain functions are known 

to depend on precise interaction patterns that enable, for example, high levels of synchrony 

(Abeles, 2010). Such preciseness is difficult to imagine in the case of autonomous 

independent agents.

It appears that things become even worse if communication and information flows across the 

systems are, themselves, limited or distorted (Feinerman and Korman, 2012; Feinerman et 

al., 2014; Korman et al., 2014; Razin et al., 2013). The highly dynamic environment and 

interchanging network structures that characterize the social insect colony make it difficult 

to implement error correcting mechanisms such as repeatedly sending the same message in 

orderto reduce distortion. As demonstrated in (Feinerman and Korman, 2012; Feinerman et 

al., 2014; Korman et al., 2014; Razin et al., 2013) such circumstances make even basic 

distributed tasks, such as rumor spreading, challenging. It is therefore reasonable to assume 

that emergent phenomena would be even more difficult to implement in such conditions.

Summary

Useful information exists at the level of the individual insect. This often suffices for the 

group's needs and indeed we have presented many examples in which the group follows 

individuals by amplifying their effect. In other cases, the inherent scale gap between 

individual and group may render information held by individuals partial, irrelevant, or even 

misleading to the collective goals of the group. In such cases, emergent collective 

phenomenon may kick in. Cognition that emerges at the level of the colony is subject to 

multiple constraints that mainly result from the fact that individuals maintain their autonomy 

as insects within the colony. Indeed, the most complex collective circuits described to date 

(Nieh, 2010; Pratt et al., 2005; Seeley et al., 2011) may be defined as simple when compared 

to the neural circuits that allow, for example, an ant to find her nest by using vector 

integration (Ofstad et al., 2011; Wehner, 2003).

Interestingly, the ways in which collective cognition appears, even during a single behavior, 

are not mutually exclusive. An example for this comes from cooperative transport in 

Paratrechina longicornis ants. Indeed, during this behavior the ants simultaneously benefit 

from both individual based (Gelblum et al., 2015) and collective based cognition (Fonio et 

al., 2016; Gelblum et al., 2016). This balance between the organizational scales allows the 

system to enjoy the best of both the macroscopic and the microscopic worlds.

Forming better connections between different collective behaviors and the levels of 

emergence that characterize them requires further research. We suggest that such research be 

focused on two avenues. The first is a computational study of the powers and limitations of 

natural distributed algorithms (Feinerman et al., 2014; Greenwald et al., 2015). Specifically, 

there is a need to better understand the complexity and evolvabilty of distributed solutions of 

different qualities. The second avenue involves empirical studies that attempt to trace the 

evolution of emergent, communication-based solutions. An example for this direction can be 
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a comparative study of nest structures across a large number of phylogenetically related ant 

or termite species.
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