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Abstract

Robust cell detection serves as a critical prerequisite for many biomedical image analysis 

applications. In this paper, we present a novel convolutional neural network (CNN) based 

structured regression model, which is shown to be able to handle touching cells, inhomogeneous 

background noises, and large variations in sizes and shapes. The proposed method only requires a 

few training images with weak annotations (just one click near the center of the object). Given an 

input image patch, instead of providing a single class label like many traditional methods, our 

algorithm will generate the structured outputs (referred to as proximity patches). These proximity 

patches, which exhibit higher values for pixels near cell centers, will then be gathered from all 

testing image patches and fused to obtain the final proximity map, where the maximum positions 

indicate the cell centroids. The algorithm is tested using three data sets representing different 

image stains and modalities. The comparative experiments demonstrate the superior performance 

of this novel method over existing state-of-the-art.

1 Introduction

In microscopic image analysis, robust cell detection is a crucial prerequisite for biomedical 

image analysis tasks, such as cell segmentation and morphological measurements. 

Unfortunately, the success of cell detection is hindered by the nature of microscopic images 

such as touching cells, background clutters, large variations in the shape and the size of 

cells, and the use of different image acquisition techniques.

To alleviate these problems, a non-overlapping extremal regions selection method is 

presented in [2] and achieves state-of-the-art performance on their data sets. However, this 

work heavily relies on a robust region detector and thus the application is limited. Recently, 

deep learning based methods, which exploit the deep architecture to learn the hierarchical 

discriminative features, have shown great developments and achieved significant success in 

biomedical image analysis [11,10]. Convolutional neural network (CNN) attracts particular 

attentions among those works because of its outstanding performance. Ciresan et al. adopt 

CNN for mitosis detection [4] in breast cancer histology images and membrane neuronal 

segmentation [5] in microscopy images. Typically, CNN is used as a pixel-wise classifier. In 

the training stage, local image patches are fed into the CNN with their labels determined by 

the membership of the central pixel. However, this type of widely used approach ignores the 
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fact the labeled regions are coherent and often exhibit certain topological structures. Failing 

to take this topological information into consideration will lead to implausible class label 

transition problem [7].

In this paper, we propose a novel CNN based structured regression model for cell detection. 

Our contributions are summarized as two parts: 1) We modify the conventional CNN by 

replacing the last layer (classifier) with a structured regression layer to encode topological 

information. 2) Instead of working on the label space, regression on the proposed structured 

proximity space for patches is performed so that centers of image patches are explicitly 

forced to get higher value than their neighbors. The proximity map produced with our novel 

fusion scheme contains much more robust local maxima for cell centers. To the best of our 

knowledge, this is the first study to report the application of structured regression model 

using CNN for cell detection.

2 Methodology

We formulate the cell detection task as a structured learning problem. We replace the last 

(classifier) layer that is typically used in conventional CNN with a structured regression 

layer. Our proposed model encodes the topological structured information in the training 

data. In the testing stage, instead of assigning hard class labels to pixels, our model 

generates a proximity patch which provides much more precise cues to locate cell centers. 

To obtain the final proximity map for an entire testing image, we propose to fuse all the 

generated proximity patches together.

CNN-based Structured Regression

Let  denote the patch space, which consists of d × d × c local image patches extracted 

from c-channel color images. An image patch  centered at the location (u, v) of image 

I is represented by a quintuple {u, v, d, c, I}. We define  as the proximity mask 

corresponding to image I, and compute the value of the ij-th entry in  as

(1)

where D(i, j) represents the Euclidean distance from pixel (i, j) to the nearest human 

annotated cell center. r is a distance threshold and is set to be 5 pixels. α is the decay ration 

and is set to be 0.8.

The  can have values belongs to the interval . An image patch x has a 

corresponding proximity patch on the proximity mask (shown in Fig.1). We define 

 as the corresponding proximity patch for patch x, where d′ × d′ denotes the 

proximity patch size. Note that d′ is not necessarily equal to d. We further denote the 

proximity patch s of patch x as . It can be viewed as the structured label of 

patch x = {u, v, d, c, I}.
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We define the training data as , whose elements are pairs of inputs 

and outputs: , ,  is the number of training samples, and 

is a mapping function to represent the vectorization operation in column-wise order for an 

proximity patch.  represents the output space of the structured regression model, 

where p = d′ × d′ denotes the number of units in the last layer. Define functions  and 

 as the operations and parameters corresponding to each of the L layers, the training 

process of the structured regression model can be formulated as learning a mapping function 

ψ composed with {f1, . . ., fL}, which will map the image space  to the output space .

Given a set of training data ,  will be learned by solving the 

following optimization problem

(2)

where  is the loss function that is defined in the following.

Equation (2) can be solved using the classical back propagation algorithm. In order to back 

propagate the gradients from the last layer (structured regression layer) to the lower layers, 

we need to differentiate the loss function defined on one training sample with respect to the 

inputs to the last layer. Let ai and oi represent the inputs and the outputs of the last layer. For 

one training example (xi, yi), we can have oi = ψ(xi; θ1, . . ., θL). Denote ,  and  as the 

j-th element of yi, ai and oi, respectively. The loss function  for (xi, yi) is given by

(3)

where I is an identity matrix of size p × p, and Diag(yi) is a diagonal matrix with the j-th 

diagonal element equal to . Since the non-zero region in the proximity patch is relatively 

small, our model might return a trivial solution. To alleviate this problem, we adopt a 

weighting strategy [13] to give the loss coming from the network's outputs corresponding to 

the non-zero area in the proximity patch more weights. A small λ indicates strong 

penalization that is applied to errors coming from the outputs with low proximity values in 

the training data. Our model is different from [13] which applies a bounding box mask 

regression approach on the entire image.

We choose the sigmoid activation function in the last layer, i.e., . The partial 

derivative of (3) with respect to the input of the j-th unit in the last layer is given by
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(4)

Based on (4), we can evaluate the gradients of (2) with respect to the model's parameters in 

the same way as [9]. The optimization procedure is based on mini-batch stochastic gradient 

descent.

CNN Architecture

The proposed structured regression model contains several convolutional layers (C), max-

pooling layers (M), and fully-connected layers (F). Figure 1 illustrates one of the 

architectures and mapped proximity patches in the proposed model. The detailed model 

configuration is: Input (49 × 49 × 3) – C(44 × 44 × 32) – M(22 × 22 × 32) – C(20 × 20 × 32) 

– M(10 × 10 × 32) – C(8 × 8 × 32) – F(1024) – F(1024) – F(289). The activation function of 

last F (regression) layer is chosen as the sigmoid function, and ReLu function is used for all 

the other F and C layers. The sizes of C and M layers are defined as width × height × depth, 

where width × height determines the dimensionality of each feature map and depth 
represents the number of feature maps. The filter size is chosen as 6 × 6 for the first 

convolutional layer and 3 × 3 for the remaining two. The max pooling layer uses a window 

of size 2 × 2 with a stride of 2.

Structured Prediction Fusion and Cell localization

Given a testing image patch x = (u, v, d, c, I), it is easy to get the corresponding proximity 

mask as s = Γ−1(y), where  represent the model's output corresponding to x. In the 

fusion process, s will cast a proximity value for every pixel that lies in the d′ × d′ 
neighborhood area of (u, v), for example, pixel (u + i, v + j) in image I will get a prediction 

sij from pixel (u, v). In other words, as we show in Fig.2(B), each pixel actually receives p′ 
× p′ predictions from its neighboring pixels. To get the fused proximity map, we average all 

the predictions for each pixel from its neighbors to calculate it's final proximity prediction. 

After this step, the cell localization can be easily obtained by finding the local maximum 

positions in the average proximity map.

Speed Up

Traditional sliding window method is time consuming. However, we have implemented two 

strategies to speed up. The first one comes from the property that our model generates a d′ × 

d′ proximity patch for each testing patch. This makes it feasible to skip a lot of pixels and 

only test the image patches at a certain stride ss (1 ≤ ss ≤ d′) without significantly sacrificing 

the accuracy. The second strategy, called fast scanning [6], is based on the fact that there 

exists a lot of redundant convolution operations among adjacent patches when computing the 

sliding-windows.
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3 Experimental Results

Data Set and Implementation Details

Our model is implemented in C++ and CUDA based on the fast CNN kernels [8], and fast 
scanning [6] is implemented in MATLAB. The proposed algorithm is trained and tested on a 

PC with an Intel Xeon E5 CPU and a NVIDIA Tesla k40C GPU. The learning rate is set as 

0.0005 and a dropout rate of 0.2 is used for the fully connected layers. The λ is set as 0.3 in 

(3).

Three data sets are used to evaluate the proposed method. First, The Cancer Genome Atlas 

(TCGA) dataset, from which we cropped and annotated 32 400×400 H&E-stained 

microscopy images of breast cancer cells, the magnification is 40×. The detection task in this 

data set is challenging due to highly inhomogeneous background noises, a large variability 

of the size of cells, and background similarities. The second dataset is obtained from [2] that 

contains 22 phase contrast images of HeLa cervical cancer cell. These images exhibit large 

variations in sizes and shapes. The third dataset contains 60 400×400 Ki67-stained 

neuroendocrine tumor (NET) images of size 400×400, the magnification is 40×. Many 

touching cells, weak staining, and fuzzy cell boundaries are presented in this dataset. All of 

the data are randomly split into halves for training and testing.

Model Evaluation

Figure 3 shows the qualitative detection results on three datasets. For quantitative analysis, 

we define the ground-truth areas as circular regions within 5 pixels of every annotated cell 

center. A detected cell centroid is considered to be a true positive (TP) only if it lies within 

the ground-truth areas; otherwise, it is considered as a false positive (FP). Each TP is 

matched with the nearest ground-truth annotated cell center. The ground-truth cell centers 

that are not matched by any detected results are considered to be false negatives (FN). Based 

on the above definitions, we can compute the precision (P), recall(R), and F1 score as 

,  and , respectively.

We evaluated four variations of the proposed methods. (1, 2) Structured Regression + testing 
with a stride ss (SR-ss), ss is chosen to be 1 for (1) and 5 for (2). (3) CNN based Pixel-Wise 
Classification (PWC), which shares the similar architecture with the proposed method 

except that it utilizes the softmax classifier in the last layer. (4) CNN based Pixel-Wise 
Regression (PWR), which is similar to SR-1 but only predicts the proximity value for the 

central pixel of each patch.

Figure 4 shows the precision-recall curves of the four variations of the proposed method on 

each data set. These curves are generated by changing the threshold ζ on the final proximity 

maps before finding the local maximum. We can see that SR-5 achieves almost the same 

performance as SR-1, and both PWC and PWR don't work as well as the proposed 

structured regression model, especially for the H&E breast cancer data set that exhibits high 

background similarity and large variations in cell size. This demonstrates that the 

introduction of the structured regression increases the overall performance. The 

computational cost for SR-1, SR-5 and fast scanning are 14.5, 5 and 19 seconds for testing a 
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400 × 400 RGB image. In the training stage, our model takes about 5 hours to converge in 

our machine.

Comparison with Other Works

We also compare our structured regression model (SR) with four state-of-the-art, including 

Non-overlapping Extremal Regions Selection (NERS) [2], Iterative Radial Voting (IRV) 

[12], Laplacian-of-Gaussian filtering (LoG) [1], and Image-based Tool for Counting Nuclei 

(ITCN) [3]. In addition to Precision, Recall, and F1 score, we also compute the mean and 

standard deviation of two terms: 1) The absolute difference En between the number of true 

positive and the ground-truth annotations, and 2) the Euclidean distance Ed between the true 

positive and the corresponding annotations. The quantitative experiment results are reported 

in Table 1. It is obvious that our method provides better performance than others in all three 

data sets, especially in terms of F1 score. Our method also exhibits strong reliability with the 

lowest mean and standard deviations in En and Ed on NET and phase contrast data sets.

3.1 Conclusion

In this paper, we propose a structured regression model for robust cell detection. The 

proposed method differs from the conventional CNN classifiers by introducing a new 

structured regressor to capture the topological information exhibiting in the training data. 

Spatial coherence is maintained across the image at the same time. In addition, our proposed 

algorithm can be implemented with several fast implementation options. We have 

experimentally demonstrate the superior performance of the proposed method compared 

with several state-of-the-art. We also show that the proposed method can handle different 

types of microscopy images with outstanding performance. In future work, we will validate 

the generality of the proposed model on other image modalities.
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Fig. 1. 
The CNN architecture used in the proposed structured regression model. C, M and F 

represents the convolutional layer, max pooling layer, and fully connected layer, 

respectively. The purple arrows from the last layer illustrate the mapping between the final 

layer's outputs to the final proximity patch.
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Fig. 2. 
(A): The training data generation process. Each original image has a proximity mask of the 

same size and each local image patch has an proximity patch used as the structured label. 
(B) The fusion process. Each pixel receives predictions from it's neighborhoods. For 

example, the red dot collects all the predictions from its 25 neighboring pixels and an 

average value will be assigned as final result. In this figure, we only display 4 out of 25 

proximity patches.
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Fig. 3. 
Cell detection results on three sample images from the three data sets. Yellow dots represent 

the detected cell centers. The ground truth annotations are represented by green circles for 

better illustrations.
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Fig. 4. 
Precision-recall curves of the four variations of the proposed algorithm on three data sets. 

SR-5 achieves almost the same results as SR-1. The proposed SR-1 significantly 

outperforms the other two pixel-wise methods using CNN.
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Table 1

The comparative cell detection results on three data sets. μd, σd represent the mean and standard deviation of 

Ed, and μn, σn represent the mean and standard deviation of En.

Data Set Methods P R F 1 μd ± σd μn ± σn

H&E breast cancer SR-1 0.919 0.909 0.913 3.151 ± 2.049 4.8750 ± 2.553

NERS [2] – – – – –

IRV [12] 0.488 0.827 0.591 5.817 ± 3.509 9.625 ± 4.47

LoG [1] 0.264 0.95 0.398 7.288 ± 3.428 2.75 ± 2.236

ITCN [3] 0.519 0.528 0.505 7.569 ± 4.277 26.188 ± 8.256

NET SR-1 0.864 0.958 0.906 1.885 ± 1.275 8.033 ± 10.956

NERS [2] 0.927 0.648 0.748 2.689 ± 2.329 32.367 ± 49.697

IRV [12] 0.872 0.704 0.759 2.108 ± 3.071 15.4 ± 14.483

LoG [1] 0.83 0.866 0.842 3.165 ± 2.029 11.533 ± 21.782

ITCN [3] 0.797 0.649 0.701 3.643 ± 2.084 24.433 ± 40.82

Phase Contrast SR-1 0.942 0.972 0.957 2.069 ± 1.222 3.455 ± 4.547

NERS [2] 0.934 0.901 0.916 2.174 ± 1.299 11.273 ± 11.706

IRV [12] 0.753 0.438 0.541 2.705 ± 1.416 58.818 ± 40.865

LoG [1] 0.615 0.689 0.649 3.257 ± 1.436 29.818 ± 16.497

ITCN [3] 0.625 0.277 0.371 2.565 ± 1.428 73.727 ± 41.867

Med Image Comput Comput Assist Interv. Author manuscript; available in PMC 2017 January 11.


	Abstract
	1 Introduction
	2 Methodology
	CNN-based Structured Regression
	CNN Architecture
	Structured Prediction Fusion and Cell localization
	Speed Up

	3 Experimental Results
	Data Set and Implementation Details
	Model Evaluation
	Comparison with Other Works
	3.1 Conclusion

	References
	Fig. 1
	Fig. 2
	Fig. 3
	Fig. 4
	Table 1

