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Abstract

The uncertain option task has been recently adopted to investigate the neural systems

underlying the decision confidence. Latterly single neurons activity has been recorded in lat-

eral intraparietal cortex of monkeys performing an uncertain option task, where the subject

is allowed to opt for a small but sure reward instead of making a risky perceptual decision.

We propose a multiple choice model implemented in a discrete attractors network. This

model is able to reproduce both behavioral and neurophysiological experimental data and

therefore provides support to the numerous perspectives that interpret the uncertain option

task as a sensory-motor association. The model explains the behavioral and neural data

recorded in monkeys as the result of the multistable attractor landscape and produces sev-

eral testable predictions. One of these predictions may help distinguish our model from a

recently proposed continuous attractor model.

Author Summary

Recently many studies began to investigate the brain signature of complex cognitive func-

tions such as decision confidence, the feeling of certainty/uncertainty associated with a

decision. To this aim, the uncertain option task has been widely adopted in order to assess

the confidence in animals. In this study we present a model, detailed at the neuron and

synapse level, able to account for the behavior of animals in this task. In addition our

model is able to reproduce the neural dynamics found in monkeys brain during this task.

However our model is only equipped with a simple multiple choice mechanism and has

no mechanism devoted to calculate the confidence. Therefore our study support the idea

that the uncertain option task can be solved without relying on confidence assessment

(metacognition). The model is based on the idea that the neural dynamics fluctuates

around stable equilibrium points (attractors) and associates the landscape of these attrac-

tors with the behavior of the monkeys. Finally, our model makes several predictions that

could be easily tested in a new experiment. One of these predictions may help distinguish

our model from a different one that has been recently proposed.
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Introduction

Decision confidence, a simple form of metacognition, has been receiving increasing attention

in neuroscience over the last ten years. Many studies began to unravel possible neural corre-

lates of confidence both in rodents [1, 2] and in primates [3–5]. At the same time several mod-

els have been proposed to account for behavioural and neural signatures of decision

confidence [3, 6–9]. In order to study confidence in animals, several experimental tasks have

been used, which can be categorized in: post-decision wagering [1], uncertain option [10],

pre-decision wagering [11] and information seeking [12]. In this article we focus on the uncer-

tain option task. More specifically we will concentrate on the behavioural and neural data by

[3]. In this experiment [3] the subjects have to decide about the prevalent direction of motion

of a random dots display. In each trial the subjects are presented the choice between e.g. “left”

category, “right” category and a third option (called “sure” target). Correct choices lead to

reward, error choices lead to a penalty time out and the sure option yields a smaller but sure

reward. These trials are usually called “free choice”, since the subject is allowed to escape by

choosing the sure target, compared to forced choice binary tasks. The rationale of this task is

that animals should choose the uncertain option when they are less confident in the decision

and therefore prefer to avoid a probable punishment. The neural activity in lateral intraparietal

sulcus (LIP) was recorded while the subjects were performing the task.

While some abstract models have already been proposed for the uncertain option task [3,

13–15], last year a biologically detailed model has been proposed [9] based on a continuous

representation of motion direction. In this article we propose a different modelling approach.

Instead of using a continuous representation we associate one neural pool to each possible

choice: left, right and sure. As a consequence, our model is a biologically plausible implemen-

tation of a discrete multiple-choice decision mechanism [16]. The underlying hypothesis of

our work is that the uncertain option task can be solved as a perceptual decision between three

alternatives with a delayed stimulation protocol. Our model accounts for both behavioral and

neural data [3].

We characterize the dynamics of the model in terms of the underlying multistable attractor

landscape and investigate the influence of sensory evidence on the dynamics. In addition we

study the modification of the attractor landscape induced by changes in input intensity and

link such modification of the attractor landscape with the choice behavior of the network. This

analysis shows that multistability, particularly near a bifuraction is needed to reproduce exper-

imental data. Finally, we show three experimental predictions to falsify or verify our model. 1.

Only the maximum activity of decision neurons selective for right and left choices is determin-

ing the probability of a sure response. 2. The probability of sure target choices separated in cor-

rect and error trials presents an X-pattern. 3. The decision times of the model have a bimodal

distribution. Interestingly prediction 1 may offer a way to distinguish the continuous attractor

network [9] and our discrete attractors network, since the continuous attractor model seems

to make a different prediction.

Materials and Methods

Model details and mean-field reduction

We run simulations of 1000 trials for each stimulus condition (duration and coherence or Δλ).

The input to the network is modeled as Poisson spike trains coming from 800 external neu-

rons. The stimulation protocol of the selective pools R and L is the following. First during 500

ms the pools only receives the background activity (3 Hz from each external neuron) to assure

that the network is in resting state. After the resting phase the target input produces a strong
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response in decision pools L and R. The target input is modeled following two exponential

decays (we implemented the same target input as in [16], where more details can be found).

The target input lasts for 500 ms. After the target phase the stimulus input is turned on: this

input is modeled as λ + Δλ for pool L and λ − Δλ for pool R. Parameter λ represent the average

intensity of input common to both L and R pools. Parameter Δλ represents the evidence for

the decision, i.e. the motion coherence of the RDM stimulus. We simulated for duration of the

stimulus: 100, 200, 300 and 500 ms. After stimulus offset λ and Δλ are set to 0 until the end of

the trial. At the end of the trial a saccade related signal of 80 Hz is delivered to pools L, R and S

for 100 ms. This input has the only effect to increase the firing rate at the end of the trial but

has no functional meaning in the model. We implemented it following previous modelling

studies of LIP decision neurons (see e.g. [16]). The pool S receives only the background activity

until the “sure” target is turned on. In forced choice trials there is no sure target and pool S

only receives the background activity throughout the trial. In free choice trials the sure target

is turned on(500 ms after the end of the RDM stimulus. The input due to the “sure” target is

modeled in the same way as the target input to pools R and L (see [16] for details) and lasted

until the end of the trial; the decay of this input has a higher asymptote at 5 Hz, compared to

the target input that decays until 0. This input does not depend on other model parameters

(e.g. λ or Δλ). The stimulation protocol is shown in Fig 1B.

Detailed description of the neuron and synapse model is given in Tables 1 and 2.

We use a mean-field reduction [24] in order to study the space of the principal parameters

of the network.

The mean-field approximation allows reduction of the number of dynamical variables, by

describing the average firing rate of each neuronal pool in the limit of an infinitely large num-

ber of neurons. In our network several different stationary states are possible depending on

model’s parameters: spontaneous state, where the selective pools have low activity, three selec-

tive states with one selective pool firing at a high level and the others inhibited, a mixed state

with two stimulated pools highly active. With some parameter values the network could sus-

tain just one stable state, or could show bistable, behaviour, or could show multistable behav-

iour in which the spontaneous state or the mixed state and each of the two decision states are

all possible stable states when the inputs to the network are being applied [24].

Note that although the mean-field reduction is useful to explore the attractor’s landscape of

the model, it would probably not be adequate to account for data in [3]: in that experiment

both behaviour and neurons activity are affected by the duration of the stimulus. The mean-

field reduction assumes that the network is in a stationary state and hence is not able to

account for these dynamical effects. Clearly different models (with noisy dynamics) based on

the mean-field approximation could be more adequate.

Mean-field approximation. Here we detail the mean-field approximation of our model

[24]. Under this approximation the stationary dynamics of each population can be described

by the population transfer function, which provides the average population rate as a function of

the average input current. The set of stationary, firing rates for the different neuronal pools

can be found by solving a set of coupled self-consistency equations.

The mean-field approximation assumes that the network of integrate-and-fire neurons is in

a stationary state. In this formulation the potential of a neuron is calculated as:

tx
dVðtÞ
dt
¼ � VðtÞ þ mx þ sx

ffiffiffiffi
tx
p

ZðtÞ

where V(t) is the membrane potential, x labels the populations, τx is the effective membrane

time constant, μx is the mean value the membrane potential would have in the absence of spik-

ing and fluctuations, σx measures the magnitude of the fluctuations and η is a Gaussian process
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with absolute exponentially decaying correlation function with time constant τAMPA. The

quantities μx and s2
x are given by:

mx ¼
ðTextnext þ TAMPAnAMPA

x þ r1nNMDA
x ÞVE þ r2nNMDA

x hVi þ TInGABA
x VI þ VL

Sx
ð1Þ

s2

x ¼
g2
AMPA;extðhVi � VEÞ

2Nextnextt
2
AMPAtx

g2
mt2

m

: ð2Þ

where νext is the external incoming spiking rate, νI is the spiking rate of the inhibitory popula-

tion, τm = Cm/gm with the values for the excitatory or inhibitory neurons depending on the

population considered and the other quantities are given by:

Sx ¼ 1þ Textnext þ TAMPAn
AMPA
x þ ðr1 þ r2Þn

NMDA
x þ TIn

GABA
x ð3Þ

tx ¼
Cm

gmSx
ð4Þ

Fig 1. Task description, psychophysics and model structure. (A) Experimental task procedure [3]. (B) Time course of input. Input to pool R, L and

S is represented respectively by orange, dashed blue and green line (colors are consistent with B). A first spontaneous phase is followed by the onset

of the target that elicit a strong input with temporal adaptation. At t = 1 s the motion input is turned on: pool L receives λL = λ − Δλ and pools R receives

λR = λ + Δλ. After motion input, during the delay phase, the network only receives background noise. In free choice trials, pool S receives input due to

the onset of the sure target 500 ms after the offset of the motion input. (C) Schematic representation of the attractor network model. Arrowhead

connections represent excitatory projections, dot-head connections represent inhibitory projections. Arrows coming from outside represent external

inputs. (D) Psychophysics data measured experimentally (top row) and produced by the model (bottom row). The model reproduces qualitatively the

effect of both stimulus duration and coherence on the probability of correct responses in forced choice trials (open circles, right panel), as well as on

the probability of choosing the “sure” option (left panel). Moreover the model correctly predicts the increased P(correct) in free choise trials (filled

circles, right panel).

doi:10.1371/journal.pcbi.1005250.g001
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nAMPA
x ¼

Xp

j¼1

rjw
AMPA
jx nj ð5Þ

nNMDA
x ¼

Xp

j¼1

rjw
NMDA
jx cðnjÞ ð6Þ

Table 1. Model summary. Parameters values are given in Table 2.

A Model Summary

Populations five

Connectivity full, no synaptic delay

Neuron model Leaky Integrate-and-Fire, fixed threshold, fixed refractory time

Synapse model Instantaneous jump and exponential decay for AMPA and GABA and exponential jump and

decay for NMDA receptors

Plasticity -

Input Independent fixed-rate Poisson spike trains to all neurons

Measurements Spike activity

B Populations

Total number of neurons N = 1000

Excitatory neurons in each module NE = 0.8 � N

Inhibitory neurons in each module NI = 0.2 � N

Name Size Name Size

L (decision “left”) NL = f � NE Nonspecific NE − 3NA

R (decision “right”) NR = f � NE Inhibitory 0.2 � N

S (decision “sure target”) NS = f � NE

C Neuron and Synapse Model

Type Leaky integrate-and-fire, conductance-based synapses

Subthreshold dynamics Cm _V ðtÞ ¼ � gLðVðtÞ � VLÞ � IAMPA;ext ðtÞ � IAMPA;recðtÞ � INMDAðtÞ � IGABAðtÞ

Synaptic currents IAMPA;ext ðtÞ ¼ gAMPA;ext ðVðtÞ � VEÞ
PNext

j¼1
sAMPA;extj ðtÞ

IAMPA;recðtÞ ¼ gAMPA;recðVðtÞ � VEÞ
PNE

j¼1
wjs

AMPA;rec
j ðtÞ

INMDAðtÞ ¼
gNMDAðVðtÞ� VE Þ

1þ½Mg2þ�expð� 0:062VðtÞÞ=3:57
�
PNE

j¼1
wjs

NMDA
j ðtÞ

IGABAðtÞ ¼ gGABAðVðtÞ � VIÞ
PNI

j¼1
wjs

GABA
j ðtÞ

Fraction of open channels dsAMPA;ext
j

ðtÞ

dt ¼ �
sAMPA;ext
j

ðtÞ

tAMPA
þ
P

kdðt � t
k
j Þ

dsAMPA;rec
j

ðtÞ

dt ¼ �
sAMPA;rec
j

ðtÞ

tAMPA
þ
P

kdðt � t
k
j Þ

dsNMDAj ðtÞ

dt ¼ �
sNMDAj ðtÞ

tNMDA;decay
þ axjðtÞð1 � s

NMDA
j ðtÞÞ

dxNMDAj ðtÞ

dt ¼ �
xNMDAj ðtÞ

tNMDA;rise
þ
P

kdðt � t
k
j Þ

dsGABA
j

ðtÞ

dt ¼ �
sGABA
j

ðtÞ

tGABA
þ
P

kdðt � t
k
j Þ

Spiking if V(t)� Vθ ^ t > t? + τrp

1. t? = t

2. emit spike at time t?

3. V(t) = Vreset

D Input

Type Description

Poisson generator Fixed rate, Next poisson generators per neuron, each one projects to one neuron

doi:10.1371/journal.pcbi.1005250.t001
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nGABA
x ¼

Xp

j¼1

rjw
GABA
jx nj ð7Þ

cðnÞ ¼
ntNMDA

1þ ntNMDA
1þ

1

1þ ntNMDA

X1

n¼1

ð� atNMDA;riseÞ
nTnðnÞ

ðnþ 1Þ!

 !

ð8Þ

TnðnÞ ¼

Xn

k¼0

ð� 1Þ
k n

k

 !
tNMDA;riseð1þ ntNMDAÞ

tNMDA;riseð1þ ntNMDAÞ þ ktNMDA;decay
ð9Þ

tNMDA ¼ atNMDA;risetNMDA;decay ð10Þ

Text ¼
gAMPA;exttAMPA

gm
ð11Þ

TAMPA ¼
gAMPA;recNEtAMPA

gm
ð12Þ

r1 ¼
gNMDANE

gmJ
ð13Þ

r2 ¼ b
gNMDANEðhVxi � VEÞðJ � 1Þ

gmJ2
ð14Þ

J ¼ 1þ g exp ð� bhVxiÞ ð15Þ

TI ¼
gGABANItGABA

gm
ð16Þ

Table 2. Parameters used in the simulations.

Parameter Value Parameter Value

Cm (excitatory) 0.5 nF VE 0 mV

Cm (inhibitory) 0.2 nF VI −70 mV

f 0.2 VL −70 mV

gAMPA,ext (excitatory) 2.08 nS Vreset −55 mV

gAMPA,ext (inhibitory) 1.62 nS Vθ −50 mV

gAMPA,rec (excitatory) 0.104 nS w+ 1.500

gAMPA,rec (inhibitory) 0.081 nS w− 0.878

gGABA (excitatory) 1.287 nS α 0.5 ms−1

gGABA (inhibitory) 1.002 nS λext 2.4 kHz

gNMDA (excitatory) 0.327 nS τAMPA 2 ms

gNMDA (inhibitory) 0.258 nS τGABA 10 ms

NE 800 τNMDA,decay 100 ms

NI 200 τNMDA,rise 2 ms

Next 800 Δλ [0 30] Hz

λ [15–140] Hz

doi:10.1371/journal.pcbi.1005250.t002

Multiple Choice Neurodynamical Model of the Uncertain Option Task

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1005250 January 11, 2017 6 / 29



hVxi ¼ mx � ðVthr � VresetÞnxtx; ð17Þ

where p is the number of excitatory populations, rx is the fraction of neurons in the excitatory

x population, ωj,x the weight of the connections from population x to population j, νx is the

spiking rate of the x excitatory population.

The spiking rate of a population as a function of the defined quantities is then given by:

nx ¼ �ðmx; sxÞ; ð18Þ

where ϕ is the transduction function of population x, which gives the output rate of a popula-

tion x in terms of the inputs, which in turn depend on the rates of all of the populations.

�ðmx; sxÞ ¼ trp þ tx

Z aðmx ;sxÞ

bðmx ;sxÞ

du
ffiffiffi
p
p

exp ðu2Þ½1þ erfðuÞ�
� �� 1

ð19Þ

aðmx; sxÞ ¼
ðVthr � mxÞ

sx
1þ 0:5

tAMPA

tx

� �

þ 1:03

ffiffiffiffiffiffiffiffiffiffiffi
tAMPA

tx

r

� 0:5
tAMPA

tx
ð20Þ

bðmx; sxÞ ¼
ðVreset � mxÞ

sx
ð21Þ

with erf(u) the error function and τrp the refractory period which is considered to be 2 ms for

excitatory neurons and 1 ms for inhibitory neurons. To solve the equations defined by Eq (18)

for all xs we integrate numerically Eq (17) and the differential equation below, which has fixed

point solutions corresponding to Eq 18:

tx
dnx

dt
¼ � nx þ �ðmx; sxÞ: ð22Þ

For the numerical integration we used an Euler routine with a step size of 0.1 ms.

We also calculate the boundary of the attraction basins of fixed points (shown in Fig 3). In

order to find the boundaries of one attractor we set the initial values of each pool to the firing

rate of that pool in the attractor, then we varied the firing rate of pools L and R over different

points in the plane νL, νR and record which attractor the network falls in; we change the ini-

tial values of L and R with a bisection algorithm until finding the boundary with a precision

of 0.1 Hz.

Parameters tuning. We adjusted the parameter Δλ in order to obtain a qualitative fit of

the probability of a correct response in trials without “sure target”. We then adjusted the target

input to pool S in order to obtain proportions of “sure” choices comparable to those of the

monkeys. The set of parameters used in the simulation is summarized in Table 2.

Stimulation protocol. The stimulation protocol was designed to match the input to LIP

and is shown in Fig 2A. On each trial, after a first brief spontaneous period (500 ms), pools

L and R receives an input due to the targets. After 500 ms the motion input is delivered to R

and L. LIP neurons receive motion information from middle temporal area neurons encod-

ing motion. The response of middle temporal neurons is almost linearly related to the

motion coherence [19]. Consequently we increased the difference between inputs to popu-

lation R and population L, according to the prevalent direction of dots motion. After

motion stimulus (between 100–500 ms) the input to the pools is reset to the spontaneous

values (3 Hz), to model the blank screen of the delay period (until the end of the trial). In

forced choice trials, i.e. when the sure target is not presented, pool S receives no input but

the spontaneous activity (3 Hz). In free choice trials, 500 ms after the extinction of the

Multiple Choice Neurodynamical Model of the Uncertain Option Task
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motion input, pool S receives an input that model the presentation of the sure target.

Recently it has been found that the firing rate of LIP neurons during target presentation is

proportional to the reward associated with the target [42], therefore we set the target related

input to a higher value for high stakes pools (R,L) respect to the “sure” pool (S). Pool S does

not receive inputs from the motion stimulus since the at the time of stimulus presentation

no “sure” option target is present on the screen and the subject doesn’t know whether it will

be shown later or not. An alternative approach could be to set the input to S to be depen-

dent on the coherence of the RDM stimulus. This would increase the freedom of the system

and the model would probably reach even better fit of experimental results. However we

used the simpler approach (constant input) since we wanted to prove that the decision net-

work per se, even with very simple inputs, is capable to reproduce the results of the uncer-

tain option task.

Fig 2. Neurophysiological activity of the model. Orange/blue/green lines represent R/L/S pool firing rates. Continuous lines show average firing

rates of trials when either L or R was chosen. Dashed lines are average rates of trials when the sure option was chosen (i.e. pool S won). The network

shows different dynamics depending on the winning pool. When the sure target was chosen, the firing rates of the L and R pools remain similar during

input presentation. This behavior closely resembles the one observed in LIP by [3]. A: Average firing rates for Δλ = 0. B,E: magnification during

stimulus period. C,F: experimental data (showing normalized firing rate), time is relative to motion input onset. D: Average firing-rates for Δλ = 14 Hz

(correct trials).

doi:10.1371/journal.pcbi.1005250.g002

Multiple Choice Neurodynamical Model of the Uncertain Option Task

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1005250 January 11, 2017 8 / 29



Probability of “sure” target selection: P(S|νL, νR)

We calculate the probability of choosing the “sure” option conditioned on the value of firing

rate of decision populations R and L. In order to calculate this probability we divided the plane

νL,νR in square bins of side 1 Hz. We calculated for each trial the time averaged firing rate of

decision pools in the 50 ms time window preceding the “sure” target onset. Then each bin in

the plane is associated with those trials presenting the average firing rate before “sure” target

onset determined by the position of the bin. Finally we counted for each bin how many trials

ended up in a “sure” decision and divided by the total number of trials associated with that

bin. We did this analysis separately for each stimulus duration collapsing together all coher-

ences (Δλ) and also for each coherence collapsing together all durations. The results were very

similar across different conditions therefore we decided to pool together all trials from all stim-

ulus conditions in order to show cleaner results.

Decision time

We calculate the decision time of the network as the time when the firing rate of a decision

pool crosses a threshold, ϑ set at 28 Hz. In addition the firing rate needs to be above the thresh-

old in the subsequent 50 ms. Of course this values are not meaningful and other similar values

give the same qualitative results. The reaction time is the sum of the DT and a non-decision

time that is usually used to account for sensory processing and motor planning. Since we are

not comparing the decision times of the model with experimental data we are not considering

any non-decision time.

Fig 3. Attractors and their basins represented in the νL, νR plane with mean dynamics. A, Top: attractors landscape for Δλ = 0. Attractors

(dots) and their basins (dashed lines) during stimulus condition and sure target condition. Bottom: Traces show average dynamics of correct, error

and sure choices (depending on the final point reached by the trace). The color of the trace represents time. Relevant events during the trial are

marked by symbols as explained in the figure. Attractors and basins as in top panels are shown for reference (dots of sure target condition replaced

by crosses for clarity). B: Attractors landscape and dynamics as in A, for Δλ = 7. C: Attractors landscape and dynamics as in A, for Δλ = 28. Note

that the traces corresponding to left and sure choices are overlapped but left trials remain near the gray decision memory attractor.

doi:10.1371/journal.pcbi.1005250.g003

Multiple Choice Neurodynamical Model of the Uncertain Option Task
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Reward amount

We calculate the reward amount received by the subjects as a function of the probability of cor-

rect response and the probability of “sure” target selection. We arbitrarily consider the value of

a correct response to be 1 and that of an error to be 0. The value of the “sure” target has been

set to 0.8, since in the experimental setup the subjects received for a “sure” response approxi-

mately 80% of the reward associated to the high stakes targets. However we note that this value

neither is crucial for our results nor need to be fixed based solely on the experimental setup.

Indeed, while the value attributed by the subject to the “sure” option will reflect the objective

amount of reward associated, it won’t probably be the same since it will include subjective

preferences like risk aversion or risk attraction. We calculated the total reward in a block of tri-

als as the sum of the reward received in each trial according the choice made (error: 0; correct:

1; sure: 0.8). Reward functions can be complicated and include many variables like reaction

times, penalty time associated to errors, etc. [43]. We decided to use a very simple function

since each of these variables need to be weighted based on the subjective value assigned to it, as

for the value of the “sure” option, and we don’t have information about these subjective values.

Distribution of number of error trials

For each combination of values of Δλ and stimulus duration, we separated the trials in fast and

slow using the minimum of DT histogram in the range [1001500] ms as the separation point.

The restriction on the range of values of DT is necessary to find the dip in the distribution and

not an eventual very small tail. We constructed the distribution of the number of error trials in

fast and slow trials using bootstrap technique with 10000 samples. We then performed a t-test

on these distributions in order to compare their means. The p-value of all tests was smaller

than numeric resolution.

Results

A simple decision mechanism accounts for the uncertain option task

Experimental task and main results. The typical sequence of events in the uncertain

option task employed in [3] is represented in Fig 1A. The subject is required to maintain fixa-

tion in the center of the screen in order to start a trial, then the targets appear on two opposite

positions corresponding to the two possible decisions about the direction of motion. The

motion stimulus is then showed for a variable duration followed by a variable delay period dur-

ing which the monkey has to hold the decision in memory. The end of the delay period is

marked by a go signal that triggers the saccade of the subject towards the decided motion direc-

tion. In a random half of the trials, during the delay period, the monkey was presented a third

“sure” target. The election of this target corresponds to waiving the decision but was always

rewarded with a smaller amount of liquid than the direction targets. The proportion of trials on

which the decision was waived is considered by the authors as a measure of average decision

confidence in a block of trials. They found that the probability of choosing the “sure” target

(P(S)) decreases both for longer stimulus durations and for higher motion coherences (which

should correspond to more certain conditions, Fig 1D upper row) and may therefore be consid-

ered as a proxy for confidence. They also found that the probability of a correct choice, when

the “sure” target was shown but waived was higher than in trials without “sure” target presenta-

tion. This finding is thought to be crucial to prove the metacognitive nature of the task. Indeed,

given the correlation of confidence and probability of correct responses, one way to improve

performance would be to decline trials with low confidence (the same argument was already

used in [17]). However this is not the only way to improve performance in this task: If subjects
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are associating the third option with an intermediate category [18], e.g. “flickering stimulus” in

the case of the random dot motion (RDM) stimulus, they could also increase the probability of

correct responses. Indeed when there is less apparent motion and the stimulus appears more

flickering, the decision will be very difficult and will be associated with a low probability of

being correct. Declining on these trials would then improve the performance of the subject.

A multiple choice decision model. Here we describe a multiple choice decision model

implemented in a biologically detailed network. We will show that such a network is able to

reproduce the experimental results [3] in accordance with the “intermediate category” hypoth-

esis introduced above. Fig 1C graphically summarizes network details. The network has one

population of neurons for each possible choice: Population R and L, for right and left targets,

and population S for the “sure” target. Connections strength was designed in order to imple-

ment a competition mechanism between pools [19]. This type of model has been used to repre-

sents a decision making network of neurons in the area LIP both in binary [19] and multiple

choice scenarios [16]. Pools L and R receive a stimulus dependent input (λL and λR respec-

tively) that triggers the competition. During the trial one of the two pools will prevail on the

other and enter into a decision state (high firing rate). Unbalanced inputs (Δλ = λL − λR> 0)

can bias the decision, but given the intrinsic stochasticity of the dynamics, an incorrect deci-

sion may be taken even when input currents are very different. Our model implements a sim-

ple multiple choices decision-making mechanism [16]: if three synchronous inputs are given

to the network it would just take a decision about which of the three inputs is the largest. In

order to mimic the experimental protocol [3], we used an asynchronous stimulation protocol,

where the pools R and L are stimulated first and pool S is stimulated later. The first stimulation

produces a competition between L and R and only after receiving the external input pool S

enters the competition (see Fig 1B).

As shown in Fig 1D (bottom row) our model is able to reproduce qualitatively the behav-

iour of subjects in the experiment [3]. Note that the proportions of correct responses when the

“sure target” was shown but waived, are very similar to those recorded experimentally [3], in

particular they are higher compared to forced choice trials, i.e. when the sure target is not pre-

sented. We remark that the parameters were not adjusted to reproduce this feature.

In addition to psychophysics our model also reproduces the main neurophysiological

results. We note that also for the neural activity no further tuning of the parameters was neces-

sary to reproduce experimental data. Forced choice trials show the typical separation of firing

rates when the chosen target was inside or outside the response field of the neuron [20–23].

Neurons in pool S on these trials have just baseline spontaneous firing activity (*2 Hz). Firing

rates of L and R pools on these trials are very similar to those in trials where the sure target was

shown but waived. In this condition, as shown in Fig 2B and 2C (solid lines), after the targets

presentation the model receives input from the RDM stimulus. This input triggers a competi-

tion between the two pools, L and R, soon one of them prevails, increasing the firing rate. Dur-

ing the delay period the firing rate of the winning pool remains high, keeping trace of the

decision [24]. When the input to pool S is turned on, the high activity of the winning pool is

inhibiting, through inhibitory neurons (see Fig 1), the other pools preventing population S

neurons from increasing their firing rates independently. When the sure target is chosen (Fig

2B and 2C dashed lines), due to the intrinsic stochasticity of the system, the firing rates of L

and R do not diverge as much as in trials where the sure target is waived. On these trials typi-

cally pool S receives less inhibition and therefore can increase the firing rate when stimulated

by the presentation of the sure target and eventually win the competition against R and L.

The reduced separation of firing rates is a key characteristic of LIP neurophysiology in the

uncertain option task [3]. The insets in Fig 2B and 2C show that our model can qualitatively

reproduce the neurophysiological findings of [3].
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Analysis of network dynamics

In order to get more insight into the dynamics of the system we can observe the evolution of

the decision process in the phase plane of firing rates νR and νL, as depicted in Fig 3. We can

observe the attractor landscape and the dynamics of the model in this landscape: top panels

show attractors and their basins, while bottom panels show the mean dynamics, as detailed

below. In attractor neural network (ANN) models usually each choice is represented by one

attractor. Whenever the system enters into the basin of attraction of a decision attractor it will

remain there (unless stimulation changes; e.g. in the case of time varying stimulation the sys-

tem can escape from decision boundary) and the corresponding decision will be taken [25,

26]. Bistable systems (where only two decision attractors are stable) are usually enough to solve

binary decision tasks. Our hypothesis is that an additional non-decision attractor may be help-

ful in a delayed stimulation protocol. In essence, we exploited the multistable regime (where

two decision attractors and a non-decision attractor are stable) to represent the uncertain

option task.

Since pool S has constant activity around 2-3 Hz until the onset of the sure target, we disre-

gard this pool for this analysis and only consider the projection of the system dynamics onto

the νR, νL plane that provides useful and clearer information about the decision process.

In Fig 3 we plot the attractors and their basins in the phase plane of the system (the

mean-field reduction of the spiking network) for three different values of Δλ (λ = 50 Hz, see

sec. Multistability enhances flexibility in delayed decisions for an exploration of this parame-

ter). We represent attractors and their basins under two different stimulation conditions

that are given during a trial (Fig 3 top panels): stimulus and sure target. The delay condition,

where λ = 0 Hz, is very similar to the sure target condition (the only difference is that λS = 0

Hz is the former and λS> 0 Hz in the latter), hence we omit it here to keep the figure unclut-

tered; the attractor landscape for the delay condition is shown in S1 Fig. Black circles mark

the attractors position when the RDM stimulus is on and their basins boundaries are repre-

sented by dashed black curves. In Fig 3A and 3B, the region of the plane laying between the

two boundaries is the basin of the “mixed” non-decision attractor (black dot on the diago-

nal). During the delay period the stimulus is off and the attractor landscape changes as

depicted in S1 Fig, showing a resting state attractor and two decision memory attractors.

When the sure target is shown a decision attractor appears corresponding to the sure target

choice (top right panel for each value of Δλ in Fig 3). In this attractor νL = νR� 2 Hz, while

νS>>0. Also decision attractors for left and right choices exist with similar symmetric

conditions.

The traces in the bottom panels show the trial average dynamics of the spiking network

for decisions left (correct), right (error) and sure target. The color of traces represents the

evolution of time from black (corresponding to stimulus onset, marked by a black square), to

yellow (the end of the trial), passing through red. Traces terminating in the L (R) basin corre-

spond to left (right) choices. Traces terminating in the sure choice attractor basin (gray

dashed lines) correspond to sure choices. Events of the trial are represented on the traces by

different symbols (as indicated in panel C bottom). Attractors and their basins are depicted

also in bottom panels for reference (attractors during sure target period are represented in

bottom panels by gray crosses for clarity). When the motion stimulus is turned on, both pop-

ulations present relatively high and comparable firing rate due to the previous response to

the direction targets.

At Δλ = 0 (Fig 3A) the attractors basins are symmetric and so are the mean dynamics: the

system moves towards the corresponding decision attractor when the stimulus is on (between

black square and brown diamond) but, due to the presence of the “mixed” attractor it doesn’t
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reach the decision attractor basin. When the stimulus is turned off (brown diamond) all three

traces move diagonally towards the spontaneous state. Then the traces of left and right choices

are attracted towards the respective decision attractors and when the sure target is turned on

(orange triangle) they are already into the basin of attraction of the decision state. On the con-

trary the trace representing sure target choices keeps moving on the diagonal and when sure

target appears the system is near to the sure attractor.

When Δλ> 0 the attractor landscape becomes asymmetric. For intermediate values of Δλ
the behavior of the system is similar to that at Δλ = 0 although slightly biased towards the left

(correct) attractor (see Fig 3B). For higher values of Δλ eventually the right and mixed attrac-

tors disappear and only one decision attractor exists during stimulus presentation. In this con-

dition the system moves faster towards the decision state. Anyway, when stimulus is turned

off, the firing rate of the winning pool decreases and eventually on some trials the sure target is

chosen. Note that in panel C bottom the traces corresponding to left and sure choices are over-

lapped but left trials remain near the gray decision memory attractor while sure trials reach the

attractor near the origin of the axes.

Predictions of rate distribution and its relation to sure choices. We want to show what

happens in single trials and what are the conditions, which determine a sure choice. A natural

hypothesis is that the proximity of the system to the basin of attraction of the sure target (green

dashed line) drives the system to choose the sure target.

First, we represent the state of the system showing the probability distribution of firing

rates of the full spiking network at the time of sure target onset (Fig 4A). Then we show the

probability of an S choice given the state of the system (i.e. νL and νR). These probability distri-

butions are interesting predictions of our model that could be easily tested in an experimental

set up, where the activity of decision neurons selective for the two choices is recoded simulta-

neously. Such an experiment would be highly valuable in order to falsify this model and to dis-

tinguish it from the model in [9], as explained at the end of this section.

The panels of Fig 4A represent different conditions: rows from top to bottom are distribu-

tions for increasing values of stimulus coherence, mapped by the variable Δλ, while columns

from left to right represent increasing durations of the stimulus. When there is very low evi-

dence (or no evidence at all, like in the first row) the distribution of νL, νR is quite symmetric

about the diagonal and the duration of the stimulus has very low or no effect. In the second

row we can observe that a moderate level of coherence already skews the distribution towards

the correct decision area (points under the diagonal correspond to trials evolving towards the

wrong attractor). When duration of the stimulus increases, the skewness gets larger. On the

bottom row (very high stimulus coherence), for a short duration, the distribution appears

markedly skewed towards the decision area and we can observe that for longer stimulus dura-

tions the distribution moves even further into the decision region concentrating towards the

correct decision attractor.

We calculate now the probability of a sure response given the state of the system, i.e. the

conditional probability P(S|νL, νR) as shown in Fig 4B. In accordance to our hypothesis we

found that the probability of choosing the sure option decreases when moving away from the

basin of S choice (see Fig 4B). In general the distribution of P(S|νL, νR) reproduces the shape of

the attraction basin of the sure target as calculated with the mean-field approximation (green

dashed lines in Fig 3).

Considering only the state of the system at the moment the sure target is shown is an

approximation that neglects the previous history of the trial. However we note that P(S|νL, νR)

does not change when the stimulus parameters (average intensity λ, duration and Δλ) are

changed (see S3 Fig). Different values of these parameters induce different dynamics of the sys-

tem, for example for λ = 55 Hz the “mixed” attractor produces a slower decision dynamics that
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Fig 4. Probability distributions of firing rates and conditional probability of sure choices. We represent the

state of the spiking network using the mean firing rate of pools L and R in the 50 ms before the “sure” target onset, νL

and νR respectively. A: Each panel shows the probability distribution of νL and νR for a given combination of stimulus

evidence (Δλ) and stimulus duration (calculated using 1000 trials). B: Conditional probability of choosing the sure target

given the state of the system in the νL,νR plane. Light blue indicates points with less than 30 trials. C: Cartoon showing
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spends more time around the diagonal, while for λ = 15 Hz there is no “mixed” attractor and

the dynamics is faster and more direct. Therefore, the fact that P(S|νL, νR) does not change

with λmay indicate that the state of the system before sure target onset is enough to character-

ize the sure target choice behaviour and that the complete trajectory of the system is not neces-

sary. The parameters of the stimulus (coherence, duration and λ) affect instead the

distribution of firing rates in the νL, νR plane (as summarized in Figs 4A and S2) and this in

turn produces different probabilities of P(S).

Finally, we note that in the model the activity of the pool that is dominating the competition

is important to determine the probability of a sure choice. Indeed we can observe that the con-

tour lines in Fig 4B form approximately square surfaces similar to the basin of attraction of the

sure target. This means that in general the network only takes into account the max{νL, νR}.

This prediction is particularly relevant since different prediction is proposed in another model

[9] of the same data (see in particular their Fig 6A and related text). The authors in that study

[9] propose that 1 − P(S), a quantity that they call “confidence”, is a sigmoidal function of the

absolute value of the difference between the activity of pool L and R. Similarly in our model 1

− P(S) as a function of the absolute value of the difference between the activity of L and R also

resembles a sigmoid function (see S4A Fig). However in our model, also as a function of the

summed activity of L and R, 1 − P(S) resembles a sigmoid function (see S4B Fig). This means

that, although our model behaves similar to the continuous attractor model, in our model the

activity of both decision pools are informative about the probability of a sure response. Since

no other variable is mentioned as informative about the probability of a sure response [9] we

can extrapolate their prediction in the νL, νR plane. Fig 4C and 4D present a simplified illustra-

tion of the two predictions: respectively that of the model proposed here and that of the contin-

uous attractor model [9].

Panel C shows (with synthetic data) max{νL, νR}. Panel D shows (with synthetic data) an

extrapolation of the prediction in [9] on the νL, νR plane: σ(|νL − νR|), where σ(a) is the logistic

sigmoid function. The different predictions highlight the diverse mechanisms underlying the

continuous and the discrete model, proposed here. A new experiment with the same behav-

ioral setting could test these predictions and falsify one of the two (or both) models, if the

activity of neurons selective for right and left choices would be recorded simultaneously.

Dynamics of correct and error trials. The definition of correct and error choices in

forced choice trials is straightforward. In free choice trials the asynchronous stimulation proto-

col we used induces first a competition between L and R, while S enters into the competition

only after the onset of the sure target. Hence we can also separate trials in correct and error

“early” choices, until we constrain the analysis to the period before the stimulation of S.

Here we characterize the dynamics of the network, before sure target onset, separately for

correct and error choices (Fig 5).

While early correct trials are distributed mainly in the decision region, early error trials are

located near the diagonal. For example, in trials where the network dynamics is evolving

towards the right choice but the evidence for the left choice is actually stronger, the system will

remain longer near the basin of attraction of the sure choice. If the sure target is not presented

(forced choice) these early error trials will likely end up in a wrong choice. However, if the

sure target is presented (free choice), those early error trials which are near to the basin of

attraction of the S choice will end up in sure choices. This configuration of the system explains

the better performance of the model in free choice compared to forced choice trials.

the idealized P(S|νL, νR)�max{νL, νR} predicted by the model. D: Cartoon showing the corresponding prediction of the

model proposed in [9]: P(S|νL, νR)� σ(|νL − νR|).

doi:10.1371/journal.pcbi.1005250.g004
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Multistability enhances flexibility in delayed decisions

In this section we study the modification of network attractor landscape induced by the input

to decision pools L and R (λ). We will show that a key ingredient of the model for reproducing

the data in [3] is the presence of three stable attractors (also known as multistable regime) dur-

ing the stimulus phase. Usually decision-making tasks only require one attractor for each alter-

native [16, 19, 27]. An additional non-decision attractor, where decision pools have

comparable firing rate, makes the decision process slower (eventually the system may remain

in the undecided state). Therefore, we hypothesized that a non-decision attractor in the stimu-

lus phase could bring more flexibility to the system in a delayed stimulation protocol, where

the influence of options presented later has to be taken into account. We recall that during

stimulus phase pool S only receives background input and is practically silent. Hence we con-

sider only the activity of pools R and L.

Here we set the differential input Δλ = 0 so that the system is symmetric regarding the two

choices R and L. We show in Fig 6E the bifurcation diagram of the system (a mean-field equiv-

alent of the spiking network) for parameter λ. This diagram shows, for each attractor, the firing

rate of pools R and L as a function of λ, when the system converged to the attractor (for details

see Methods).

As can be observed the variation of λ induces different dynamical regimes of the model. At

λ = 0 Hz there is a “spontaneous attractor”, where both pools are in a spontaneous quiescent

state around 3 Hz, and two decision attractors, where one pool is silent and the other fires at a

high frequency. These decision attractors in absence of input are key for keeping in memory

the decision during the delay period. For values of λ larger than 1 Hz the spontaneous attractor

destabilizes and only the decision attractors remain stable. At λ = 21 Hz another bifurcation

occurs and a stable non-decision or “mixed” state appears. This multistable region extends

Fig 5. Probability distributions of νL and νR as in Fig 4 separated in early correct and error trials. Each panel shows the probability distribution of

the state of the system at “sure” target onset for early correct (left) and early error trials (right) calculated using all stimulus durations and all values of Δλ
(29858 trials for early correct and 10142 trials for early error conditions).

doi:10.1371/journal.pcbi.1005250.g005
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until λ = 59 Hz, where the decision attractors disappear and only the “mixed” state remains

stable.

Panels A-D show the accuracy, P(correct), for 4 sample points in different regions of the

bifurcation diagram (marked by stars). For each point we adjusted the parameter Δλ in order

to get a qualitative match with experimentally measured P(correct). Panels F-I show the P(S)

for the same points. As can be seen the model is able to reproduce qualitatively the perfor-

mance of monkeys both in the bistable and in the multistable region. Right after the pitchfork

bifurcation, in the region where only the “mixed” state attractor is stable, the model still repro-

duce quite well the P(correct), while, if we further increase λ, moving away from the

Fig 6. Bifurcation diagram and psychophysics measures in different regions. A-D: P(C) for trials when the sure target was (not) shown are represented

with filled (open) circles. The color of the box and the arrows indicate the value of λ used. E: Bifurcation diagram over parameter λ. The curves represent the

firing rates of pools L and R in the attractor (according to the mean-field reduction of the spiking network). Four regions appear (in order of increasing λ): A first

tiny multistable region when both decision and spontaneous attractors appear; a bistable region where only the two decision attractor are present; a

multistable region, where decision attractors coexist with a “mixed” attractor (both pool have intermediate firing rate); a monostable region, where only the

“mixed” attractor exists. F-I: P(S) for different values of λ (color convention as in A-D). Error bars indicating the standard deviation have been omitted since

they are always smaller than symbols.

doi:10.1371/journal.pcbi.1005250.g006
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bifurcation, it is not possible to approximate the experimentally observed P(correct) since the

model becomes insensitive to stimulus duration. Interestingly the P(S) changes qualitatively

when moving through the different regimes of the network. In the bistable region (dark blue,

panel F) the P(S) is less sensitive to changes in stimulus coherence (i.e. Δλ), e.g. the frequency

of S choices rapidly decreases as a function of stimulus duration for low evidence trials (red

curve), while experimental data show a very flat curve. In addition, when the network is stimu-

lated for 500 ms, the P(S) for different values of Δλ show quite small variation, which is also

inconsistent with experimental data. When moving towards the pitchfork bifurcation these

effects are gradually reduced and a good qualitative fit of experimental data can be observed in

the multistable region or right after the bifurcation.

This change of behavior can be understood considering the dynamics of the system in the

phase plane and the conditional probability of a sure choice. We observe that in the bistable

regime (λ = 15), for Δλ = 0, the duration of the stimulus induces a strong change in the distri-

bution of firing rates in the phase plane (S2 Fig): system state is spread over the diagonal and

decision regions for short durations and centred on the two decision regions for long dura-

tions. Since the P(S|νL, νR) is very different in these two regions (see Fig 4B), the sure choices

are strongly influenced by the duration of the stimulus. At the same time the distribution of fir-

ing rates for different values of Δλ, when the network is stimulated for 500 ms, is very similar.

On the contrary, in the multistable regime the distribution of νL, νR (Fig 4A), for Δλ = 0 or very

small, show only little variation as a function of stimulus duration (compare with S2 Fig). As a

consequence the sure choices for small values of Δλ are not affected by stimulus duration. In

S4 Fig we show an alternative representation of data fitting: The data of the model are repre-

sented as a scatter plot against the experimental data for different values of λ. In order to help

the reader we also show the Pearson correlation coefficient between model and data. The val-

ues of λ near the bifurcation produce the best fit.

Interestingly, in all regimes the P(C) increases in trials when the “sure” target was shown

but not chosen compared to trials without “sure” target (filled circles compared to empty cir-

cles in Figs 1D and 6A–6D). This effect does not depend on the dynamical regime of the net-

work and is produced by the fact that the probability of an S choice is higher in trials that are

more difficult due to random fluctuations of the input, as explained in sec. Dynamics of correct
and error trials.

Sure choices in correct and error trials

In this section and in the following we provide two further predictions that may be tested in

future experiments. The proportion of early error trials is expected to depend on the discrimi-

nability of the stimulus. This fact together with the distribution of firing rates in correct and

error trials (see sec. Dynamics of correct and error trials) bring us to hypothesize that the P(S)

should show an inverted pattern in early correct and early error trials, when plotted as a func-

tion of the discriminability (Δλ). In Fig 7 we can see that the model predicts a decreasing pro-

portion of “sure” choices in correct trials when the task gets easier but an increasing

proportion of “sure” choices in error trials.

This pattern, is analogous to the X-shaped pattern usually associated with confidence [1, 28,

29] (indeed the model would give the same results for negative values of Δλ and the pattern

would be X-shaped).

This prediction arises by applying a decision criterion (a simple activity threshold crossing,

see Methods) to the dynamics of the spiking model. However we can get a very similar predic-

tion using a simple probabilistic model. Here the predicted quantity is the conditional probabil-

ity of a sure choice given the outcome of the decision in the early stage of the trial, P(S|outcome).
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This quantity is unavailable if we look at the psychophysical measurements. The available mea-

sures are the probability of correct choices when the sure target was shown but waived, PðCj�SÞ
(this is indeed shown in filled circles in Fig 6A–6D)i, and the probability of choosing the sure

target, P(S). Using Bayes theorem and the fact that PðSjCÞ þ Pð�SjCÞ ¼ 1, we can write the prob-

ability of a correct response when the sure target was not chosen as a function of the probability

of correct responses, the probability of choosing the sure target and the conditional probability

of choosing the sure target given an early correct response:

PðCj�SÞ ¼
PðCÞ � PðSjCÞPðCÞ

1 � PðSÞ
:

Fig 7. Probability of choosing the “sure target” as a function ofΔλ for early correct and error trials. Continuous

line is the prediction from the spiking network. Dashed lines are predictions of the reduced probabilistic model (points are

slightly shifted on the horizontal axis for better visibility).

doi:10.1371/journal.pcbi.1005250.g007
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Since all other quantities are known we can calculate

PðSjCÞ ¼
PðCÞ � PðCj�SÞ þ PðSÞPðCj�SÞ

PðCÞ
:

Using the same approach we can calculate the conditional probability of a sure choice given an

early error as

PðSjEÞ ¼ 1 �
PðEj�SÞPð�SÞ

PðEÞ
:

This model can be considered as a simple probabilistic interpretation of our biophysically realis-

tic model. The only assumption of this model is that the presentation of the sure target in the

trial doesn’t change the overall probability of correct. The prediction given by this simple model

is very close to that calculated with the spiking network and is plotted with dashed lines in Fig 7.

Since this model is based solely on behavioral measurable quantities this prediction could be

easily tested experimentally in order to verify or falsify the model.

The predicted X pattern is very relevant beyond the opportunity of falsifying our model.

Indeed this pattern has been often associated with decision confidence [1, 28–30]. Nonetheless

we note that cases of human confidence rating resulting in different patterns have already been

reported [31–33]. Here we show that a multiple choice decision-making model also predicts

the X-pattern, thereby providing further evidence of the disentangling of confidence and X-

pattern.

Multistable dynamics induces bimodal decision times

We describe next the decision times distributions and their relationship to the network

attractor landscape. What we refer to as decision time (DT) is the time (from stimulus onset)

that the model takes to integrate the stimulus signal and reach a decision. This time offers an

insight into the decision process and could be compared to empirical reaction times of a modi-

fied version of this task. We consider here that a decision has been reached when the firing

rate of one decision selective pool crosses a threshold, ϑ = 28 Hz for λ = 50 Hz. We chose this

value for the threshold in order to have less than 5% of undecided trials when the go cue is

shown (end of the trial). For other values of λ the value of the threshold is different but was

always chosen according to the same criterion. Independently on the decision rule another

problem remains still open when facing with delayed response tasks. Indeed if after accom-

plishing the decision rule but before the “go” signal the accumulation process keeps on, a

change of mind [34] could occur. It is not clear whether the choice is based on the winning

accumulator when the decision criterion is met (involving a separate working memory pro-

cess) or based on the winning accumulator when the “go” signal is presented. We have consid-

ered that what matters is the winner when the threshold is crossed. In this scenario we report

that in a 10 ± 2% of trials a change of mind, as described in [35], could occur. This amount of

changes does not affect our results (results are qualitatively similar in the two situations).

We observe that in forced choice trials, the DTs have a bimodal distribution. Fig 8A and 8B

shows the DT probability distribution in trials when the “sure” target was not presented

respectively for a short (300 ms) and a long (500 ms) duration of the stimulus. The distribu-

tions can be easily separated in a fast and a slow part. This bimodal distribution is verified for

almost every value of the coherence. Indeed, when the coherence increases a larger proportion

of trials fall in the fast part of the distribution. At some point, when evidence for the decision is

very high, the fast and slow parts collapse into a unimodal left skewed distribution.
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We note that the two parts of the distributions correspond to two different types of trials.

On some trials the network reaches the decision criterion during the stimulus period and these

trials result in fast responses. On the contrary when no decision is met during the stimulus

period, once the stimulus is extinguished, the decision process relies only on the memory trace

of the stimulus (i.e. the self-sustained activity of the network). These type of decisions are of

course slower. We can observe that the fast part of the distribution comprises DT values that

depend on the duration of the stimulus: in Fig 8A the fast part includes DTs of up to about 0.3

s, while in Fig 8B the fast group includes DTs of up to about 0.5 s.

The bimodality of these distributions is induced by the presence of the third “mixed”

attractor. This stable point attracts the dynamics of the network during the stimulus driven

regime. This happens on trials when the stimulus input is not strong enough to push the sys-

tem into a decision basin. When the system is in the basin of attraction of the “mixed” state it

will remain there until the stimulus extinguishes destabilizing the attractive point; in this case

only after stimulus offset the network is eventually going to enter into the basin of attraction of

one decision. As a confirmation we observe that when the mixed attractor is not stable, for

Fig 8. Decision times distributions for two different durations and in forced choice trials (upper row) and free choice trials (bottom row);

Δλ = 7 Hz for all panels. The color of the histogram represents the relative contribution of correct (green) and error (red) trials to the global

distribution.

doi:10.1371/journal.pcbi.1005250.g008
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example in the bistable regime, the DTs distributions are not bimodal (e.g. λ = 15Hz, S5 Fig).

We note that the mechanism that induces bimodal DTs distributions is independent of sure

target input, indeed also forced choice trials, i.e. without sure target, present such a bimodal

distribution.

We separate the trials in correct and error; in Fig 8 the color of the histogram indicates the

contribution of correct and error trials to the global distribution (green: correct; red: error).

Errors occur predominantly in slower trials (p-value for t-test of bootstrap samples smaller

than numeric resolution; see S8 Fig and Methods for details).

Coherently with the analysis presented so far, we found that the sure target is chosen more

likely in slower trials. Indeed when the sure target is presented (Fig 8C and 8D), the slow part

of the distribution has a smaller mass compared to the distribution of forced choice trials.

Note that the apparent increased mass of early decisions is only a side effect of less slower deci-

sions: since many slower trials end up in the sure target attractor they are not computed to

build the distribution; consequently the total number of trials decreases compared to forced

choice trials and the early decisions appear more frequently. The slower trials remain longer

near the basin of attraction of the sure target and so the sure option will be chosen more fre-

quently. This finding may indicate that a very large sure target input may drastically reduce

the slower part of the distribution, thereby producing a unimodal skewed distribution. How-

ever such strong sure target input would also produce a very large amount of sure target

choices overall, which would be a very different condition than the considered experiment [3].

The “mixed” attractor is not the only necessary ingredient to produce bimodal DTs distri-

butions. Indeed it is also needed that the network reaches the decision threshold during stimu-

lus period only in a subset of trials. Different parameters regulate the speed of the network and

the study of these parameters is beyond the scope of this work. However substantial effects on

DTs distributions can also be obtained by changing the decision threshold, ϑ. When ϑ is low

enough that the decision is always taken during stimulus period, DTs have a left skewed distri-

bution (see S6 and S7 Figs). At the other extreme, when ϑ is high enough that the decision is

always taken after stimulus offset, DT distribution is right skewed. For intermediate values of

decision threshold the DTs have a bimodal distribution (S6 and S7 Figs).

Attractors landscape manipulates the flexibility of decision-making

We have shown that the current model is able to reproduce the experimental findings in [3] in

the multistable regime, near the pitchfork bifurcation that separates the multistable from the

monostable regime (see Fig 6). This is an unconventional result since ANNs designed for deci-

sion-making usually exploit the bistable regime [16, 19, 27]. Nonetheless in the present experi-

mental paradigm a more complex dynamics could be beneficial. Indeed, in this scenario the

subject needs to find a trade-off between accumulating evidence for each of the first two alter-

natives and remaining in a flexible state where the third alternative, when offered, can be

chosen.

Here we analyze the behavior of the model for different values of parameter λ, the common

input to the decision pools. This parameter can embrace many complex phenomena (e.g. stim-

ulus contrast, attention, urgency, etc.), that we didn’t modeled explicitly since they seem to

take place outside of the decision-making network. This analysis is interesting per se to under-

stand the model. Moreover this analysis can supply predictions about novel experiments. In

fact, it is believed that the subjects have the ability to change, to some extent, their λ in order,

for example, to satisfy different sets of experimental instructions (e.g. “fast” versus “accurate”

trials [36, 37]).
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In contrast to previous analysis summarized in Fig 6, here we keep the values of Δλ fixed

when varying the value of λ. This will simulate the scenario of a subject changing its λ due to

experimental manipulation, like time pressure, stress on accuracy, stimulus visibility, etc. In

this scenario Δλ shouldn’t be adjusted for each value of λ since, once the subject has learned

the task, so that the performance is stable, Δλ should only depend on stimulus coherence if all

other experimental conditions are constant.

Fig 9A shows the overall accuracy and P(S) for different values of λ. As expected the P(C)

decreases when λ increases since the signal-to-noise ratio decreases. At the same time the P(S)

increases as a function of λ.

This means that the subjects have to trade accuracy for flexibility. If the subjects want to

make more correct choices they will consider less the third option presented later in the task.

Conversely, if the subjects want to remain more flexible to future possible options they have to

accept a higher error rate. Therefore we can infer how much subjects valued flexibility in this

task. We can hypothesize that subjects were maximizing the mean reward amount. We

Fig 9. Trade-off between accuracy and flexibility. A: P(C) and P(S) as a function of λ (color as in Fig 6). B: Mean reward amount (P(correct) +

P(suretarget) � wS) as a function of λ, for different values of wS.

doi:10.1371/journal.pcbi.1005250.g009
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calculated the mean reward amount over all trials using the equation: P(correct) + P(S) � wS,

where wS is the value of the third option. This is a simplified equation for the reward: we are

not interested in the actual value of the third option but in its value relative to that of correct

choices, so we fix the value of the correct option to one (the units of reward are then arbitrary).

Fig 9B shows the reward amount as a function of λ and for different values of wS. The bottom

curve shows the reward for wS = 0.8, which is close to the relative amount of liquid reward

used in [3] for the sure target choice. This curve is almost flat in the range 15–50 Hz of λ. The

middle curve correspond to wS = 1.1 and we can observe that in this case the reward amount

increases until 50 Hz and then decreases again. For higher values of wS (upper curve) the

reward amount keeps increasing (or remains high) over the entire range of λ. Consequently, a

prediction of the model is that the relative value of the sure target is not simply proportional to

the amount of liquid associated to the sure option, rather subjects would assign a higher value

to the sure target. This prediction is based on three hypothesis: 1) The value of λ used by the

subjects in the experiment is the one that best fit the experimental data, i.e. multistable region

λ� 55 Hz. 2) The subjects have the ability to internally control λ in response to some experi-

mental change. 3) The subjects are trying to maximize the proposed mean reward amount. If

we consider these hypothesis plausible, than we may say that subjects were assigning a large

value to the sure target in order to be more flexible and to remain open to new options offered

at a later stage in the trial. However we note that subjects, although flexible, were far from opti-

mality (in terms of liquid reward). For example, they were choosing the sure option only 60%

of the trial when their performance was at chance.

Discussion

We presented a biologically detailed network model that can account for behavioral and

neurophysiological measurements related to decision confidence. We characterized the

dynamics of the model in terms of the underlying attractor landscape and showed how the

landscape is related to sure choices, error choices and decision times. We produced two novel

predictions that can be tested in future experiments in order to falsify the model. We also

explored the input parameter of the model and its relation to the attractor landscape. This

exploration showed that, in the uncertain option task, accuracy must be traded for flexibility,

in order to benefit from the “sure” option.

Multiple choice decision or metacognition?

A fundamental consequence of our model is the interpretation of the uncertain option task

and related neural activity as stimulus response association instead of metacognitive process-

ing. The ability of the uncertain option task to selectively reflect metacognition has been

already questioned in the past [14, 15, 38, 39]. These criticisms are based on simple models

that interpret the uncertain option task as a multiple choice decision-making. These models

are able to reproduce the behavioral results but they use an abstract description level and for

this reason they are unable to account for neurophysiological results. We presented a biologi-

cally detailed model that is able to reproduce both the behavioral and the neurophysiological

data. Our model, as previously proposed ones, also embeds the hypothesis of a multiple choice

decision process. Therefore we can confirm that a multiple choice decision is sufficient to

solve an uncertain option task showing behavior comparable to that of monkeys performing

the task and neural activity comparable to that experimentally observed [3]. Metacognition is

not a precisely defined term, even though multiple definitions have been proposed (see e.g.

[14, 39, 40]). Without entering into the debate about metacognition in non-human animals,
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we note that the current model only implements a three choice decision process that can in

principle be implemented by animals with very simple nervous systems.

The X-pattern is a characteristic modulation that is usually associated with decision confi-

dence. This association was first noted by Vickers [28] who reports it as a prediction of his

accumulators model, in agreement with the experimental observations of lower confidence

reports in error compared to correct responses [30]. More recently, behavioral and neurophys-

iological results in the rat have been presented related to this X-pattern [1]. They found that

the probability of restarting a trial (that is believed to be a proxy of low confidence) increased

as a function of difficulty in correct responses and decreased in error responses. They also

found the same modulation in the firing rate of orbitofrontal cortex neurons. In another recent

study [2] it was found that the time the subject is willing to wait for reward (another supposed

proxy of confidence) presents an X-pattern. In the model presented here the X pattern arises

as a consequence of the probabilistic choice dynamics. We note that, while confidence is usu-

ally considered as an instance of metacognition, the model presented here implements a sim-

ple multiple choice decision mechanism. Finally, we want to remark that the X pattern is not a

necessary condition for confidence since it has been shown that confidence reports in humans

can follow different patterns [31–33].

Other models

Since many models have been proposed for confidence processing and even specifically for the

uncertain option task, we want to briefly discuss and compare them here.

The first and most deserved comparison is with the continuous attractor model [9]. The

behavioral and neural data recorded experimentally [3] have been already explained by this

model. The model is a biologically detailed neural network implementing a ring attractor

mechanism. The connections of excitatory neurons are tuned so that each cell fires preferen-

tially to a given direction of motion. Excitatory neurons are placed on a ring according to their

direction selectivity. This model was first proposed [41] to account for data of a multiple

choice decision-making experiment [21]. However Wei and Wang [9] don’t conclude that

experimental data are explained by a decision-making process but that the decision-making

process was able to assess the confidence in the decision. The ring model is similar to the one

proposed here in the underlying ideas (multiple choice decision model) and modelling frame-

work (attractor network) but they differ in the specific mechanism (continuous versus discrete)

and predictions. The discrete mechanism that we propose induces an attractor landscape,

hence a dynamical system, different from that proposed in [9]. In addition we studied the

modification of the attractor landscape produced by the input parameter λ and were able to

link the uncertain option task with the multistable regime. Importantly, Wei and Wang [9]

propose that confidence (defined as 1 − P(S)) can be encoded by a sigmoid function of the

absolute value of difference between the activity of neural pools corresponding to the two

choices (i.e. σ(|RL − RR|), where σ(a) is the sigmoid function). Conversely, in our model the

probability of choosing the sure target does not only depend on the distance between L and R

pools but on the maximum of the two (see Fig 4B, 4C and 4D for a cartoon illustration of the

difference between the two models). This difference may indicate a difference in the way the

two models process the stimulus information to produce choice behavior. Interestingly both

models proved to be able to account also for multiple choice decisions in primates see [16, 41],

showing many points in common and some differences. How these two models are related to

each other is yet unclear and may be investigated in a dedicated study. In particular, it would

be very valuable to test the predictions of the two models in order to falsify one of the two or

both.

Multiple Choice Neurodynamical Model of the Uncertain Option Task

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1005250 January 11, 2017 25 / 29



Another model that have been used to account for this task is the one proposed in [13].

This model is based on Signal Detection Theory. The evidence for the decision is represented

by a stochastic variable and on each trial the decision is taken comparing the sample of evi-

dence with two thresholds: if the sample is smaller than both thresholds, choice “left” is taken;

if the sample falls between the two thresholds, the sure target is chosen; if the sample is larger

than both thresholds choice “right” is taken. This model similarly to those proposed by [14,

15] is also embedding the hypothesis of a multiple choice decision. Indeed the stimulus is cate-

gorized in three classes depending on the strength of evidence. This model is able to reproduce

the behavior of subjects in the uncertain option task, in particular it reproduces the increased

performance in free choice compared to forced choice trials. However the model is not

dynamic and has no neural interpretation, as a consequence it’s unable to reproduce the neural

recordings.

Supporting Information

S1 Fig. Attractors and their basins represented in the νL, νR in the delay condition, i.e. λ =

0. Attractors are represented by dots and their basins by dashed lines.

(EPS)

S2 Fig. Distributions of firing rates in the phase plane for λ = 15 Hz. Each panels shows the

distribution of firing rates at Tsure onset for a given combinations of stimulus evidence (Δλ)

and stimulus duration as indicated in the figure. It can be observed that, at Δλ = 0, while the

system state is quite spread at short durations, it rapidly concentrates around the attractors for

longer durations. This in turn produces a large variation in the probability of choosing the

sure target. In addition the distributions for different values of Δλ are quite similar and indeed

the corresponding probabilities of choosing the sure target are similar. Both this features are

not consistent with experimental results of [3].

(EPS)

S3 Fig. Conditional probability of choosing the “sure” option given the state of decision

neurons, P(S|νL, νR), for different values of λ. The general form of P(S|νL, νR) is not affected

by this parameter. Color convention is the same of Fig 4.

(EPS)

S4 Fig. A: 1 − P(S), that [9] defines as “confidence”, as a function of |νL − νR| shows a sigmoid

pattern. B: 1 − P(S) as a function of νL + νR also shows a sigmoid pattern meaning that in our

model the activity of both νL and νR is important to determine P(S).

(EPS)

S5 Fig. Scatter plot of model against experimental data. A: Scatter plot showing the proba-

bility of correct responses in free choice trials, i.e. with sure target. Each color and symbol rep-

resent one value of λ as indicated in legend. The dashed lines are regression lines for each

subset of points according to color. Shaded areas around regression lines show the interval of

confidence of regression lines. Pearson correlation coefficients between model and data are

indicated using the same color code. B: Scatter plot as in A representing the probability of a

correct response in forced choice trials, i.e. without sure target. C: Scatter plot as in A repre-

senting the probability of a sure target response.

(EPS)

S6 Fig. Decision times distributions for a parameter set that produces a bistable regime (λ
= 15Hz). Two different stimulus durations are shown in forced choice trials (upper row) and

free choice trials (bottom row), as in Fig 8; Δλ = 7 Hz for all panels. The thresold for the
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decision is 24 Hz. The color of the histogram represents the relative contribution of correct

(green) and error (red) trials to the global distribution. The bimodality induced by the multi-

stable regime (Fig 8) disappears here (bistable regime).

(EPS)

S7 Fig. Decision times distributions as in Fig 8 varying decision threshold ϑ for free choice

trials, sure target presented at 1000 ms. The value of ϑ is indicated above each panel, λ =

55Hz, Δλ = 7 and stimulus duration is 500 ms for all panels.

(EPS)

S8 Fig. Decision times distributions as in Fig 8 varying decision threshold ϑ for forced

choice trials, without sure target. The value of ϑ is indicated above each panel, λ = 55Hz, Δλ
= 7 and stimulus duration is 500 ms for all panels.

(EPS)

S9 Fig. Distribution of bootstrap samples (10000 samples) of the number of error trials in

fast and slow trials. For each value of Δλ and stimulus duration the histogram of the number

of error trials is shown in blue for fast trials and in magent for slow trials. The vertical line rep-

resent the number of error trials in network simulations using the same color scheme. The

mean of the distribution for slow and fast trials are different for all value of Δλ and stimulus

duration (t-test, all p-values smaller than numeric resolution).

(EPS)
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