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Abstract

γδ T cells play a role in a wide range of diseases such as autoimmunity and cancer. The

majority of circulating human γδ T lymphocytes express a Vγ9Vδ2+ (Vδ2+) T cell receptor

(TCR) and following activation release pro-inflammatory cytokines. In this study, we show

that IFNγ, produced by Vδ2+ cells, activates mesenchymal stem cell (MSC)-mediated

immunosupression, which in turn exerts a negative feedback mechanism on γδ T cell func-

tion ranging from cytokine production to proliferation. Importantly, this modulatory effect is

limited to a short period of time (<24 hours) post-T cell activation, after which MSCs can no

longer exert their immunoregulatory capacity. Using genetically modified MSCs with the

IFNγ receptor 1 constitutively silenced, we demonstrate that IFNγ is essential to this pro-

cess. Activated γδ T cells induce expression of several factors by MSCs that participate in

the depletion of amino acids. In particular, we show that indolamine 2,3-dioxygenase (IDO),

an enzyme involved in L-tryptophan degradation, is responsible for MSC-mediated immuno-

suppression of Vδ2+ T cells. Thus, our data demonstrate that γδ T cell responses can be

immuno-modulated by different signals derived from MSC.

Introduction

Mesenchymal stem cells (MSCs) are multipotent non-hematopoietic precursors that can be

isolated from various tissues and are capable of differentiation into multiple lineages, among

them chondrocytes, adipocytes and osteocytes [1]. This notwithstanding, recent interest has

focused on their potential clinical application based on their profound immunosuppressive

properties. These studies have largely reported the capacity of MSCs to suppress proliferation

and/or cytotoxic effector functions of distinct cells types of the innate and adaptive immune

systems, such as T cells, Natural Killer (NK) cells, B cells and dendritic cells [2–8]. These prop-

erties are already being tested in numerous clinical trials worldwide. So far, none have reported

significant side effects related to the transplantation of MSCs, which has encouraged the initia-

tion of trials to treat practically any disease with links to autoimmunity (e.g. graft versus host
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disease, pulmonary disease, solid organ transplant, rheumatoid arthritis or systemic lupus ery-

thematosus) [5, 8–11].

MSCs home specifically to injured tissues, attracted by pro-inflammatory cytokines [3, 12].

The immunosuppressive capacity of MSCs is not constitutive, but rather induced by crosstalk

with cells of the immune system; thus, the inflammatory environment, and in particular the

immune cells involved in each phase of an immune response, are likely to be critical triggers of

this regulatory process. In recent years, several reports have demonstrated the role of interleu-

kin-1 (IL-1), IFNγ and TNFα as main factors in this process [5, 13–16]. Thus, it is likely that

induction of immunosuppression is not dependent on a single factor, but instead results from

multiple regulatory mechanisms without an obvious hierarchy of importance. These molecules

are clearly able to activate molecular pathways that increase production of soluble immuno-

modulatory factors such as indoleamine 2,3-deoxigenase (IDO) [3, 17], prostaglandin E2 [18],

iNOS (the murine counterpart of IDO) [13], transforming growth factor β (TGFβ), hepatocyte

growth factor [4], human lymphocyte Ag molecule 5, and IL-10 [19]. The influence of these

MSC-secreted factors on the immune system has been recently reviewed [20].

Regarding the targets of MSC-mediated immunoregulation, most work in the field has

focused on conventional T cells (αβ T cells). By contrast, the effects of MSCs on γδ T cells

have not been elucidated. γδ T cells express both the γδ TCR and natural killer receptors (e.g.

NKG2D), and represent a link between innate and adaptive immunity [21, 22]. In humans, γδ
T cells are usually sub-divided based on use of one of two variable regions of the TCRδ-chain;

Vδ1+ γδ T cells are largely found in epithelial layers such as skin and intestine, while Vδ2+ γδ
T cells are mainly present in peripheral blood [23]. Most circulating Vδ2+ cells also use a

Vγ9-containing TCRγ-chain, and are potently activated by low molecular weight non-peptidic

phosphoantigens such a (E)-4-hydroxy-3-methyl-but-2-enyl pyrophosphate (HMBPP), an

intermediate metabolite from microbial isoprenoid biosynthesis. Vδ2+ cells have the ability to

produce a variety of cytokines that regulate inflammation, eliminate pathogens, and maintain

tissue homeostasis [21, 24]. However, despite their beneficial roles, they have been implicated,

like their αβ T cell counterparts, in the pathogenesis of a number of inflammatory diseases

such as lupus erythematosus, rheumatoid arthritis, and psoriasis [25–29].

Several reports have demonstrated the inhibitory function of human bone marrow MSCs on

Vδ2+ cells, mainly through PGE2 [30–34]. All of these studies used chemical inhibitors to iden-

tify and discriminate between different effector molecules secreted by MSCs. Since activated

Vδ2+ cells produce pro-inflammatory cytokines upon activation, we aimed to elucidate to what

degree other pathways were involved in MSC-mediated immunoregulation. Here, we report

that the IFNγ/IDO pathway is a key factor for MSC-induced immunoregulation of Vδ2+ cells.

Materials and Methods

MSC culture

Human bone marrow-derived MSCs were obtained from the Inbiobank Stem Cell Bank

(http://www.inbiomed.org/Index.php/servicios_externos/inbiobank) as described previously

[35]. In short, cadaveric marrow was obtained from brain-dead donors after informed consent

and under the Spanish National Organization of Transplant supervision (ONT). MSCs were pos-

itive for CD29, CD73, CD90, CD105, CD166 and CD146 but negative for markers of the hemato-

poietic lineage; CD34, CD45, CD14, CD19 and CD31. Moreover, they displayed a fibroblast-like

phenotype and showed at least a tri-lineage potential differentiating into osteocytes, chondrocytes

and adipocytes. MSCs were cultured in DMEM low-glucose medium supplemented with 10%

FBS (Lonza, Walkersville, MD, USA), 2 mM glutamine, 100 U/ml penicillin and 0.1 mg/ml strep-

tomycin (Sigma, St. Louis, MO, USA). Upon reaching confluence MSCs were treated with 0.25%
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Trypsin-EDTA solution (Sigma) and seeded at a density of 1000–1500 MSC/cm2. Cells were

obtained from the Inbiobank Stem Cell Bank at passage three and all experiments were carried

out with cells from low passages (passage number 4–8).

PBMC

Peripheral blood from healthy donors was obtained after informed consent from the Basque

Biobank for Research OEHUN (http://www.biobancovasco.org). Mononuclear cells (MNCs)

were prepared using Ficoll Paque (Lymphprep, Axis-Shield, Oslo, Norway) according to the

manufacturer’s instructions. Cells were cultured in RPMI 1640 Dutch modification (Gibco,

Grand Island, NY, USA) supplemented with 10% FBS (Lonza), 2 mM glutamine, 100 U/ml

penicillin, 0.1 mg/ml streptomycin (Sigma), 10 ng/ml recombinant human Interleukin-2 (IL-

2, R&D, Minneapolis, MN, USA), and 1 mM (E)-4-hydroxy-dimethylallyl pyrophosphate

(HDMAPP, Cayman Chemical) for the indicated times. In co-culture MNCs were activated

and cultured in the presence of MSCs for the indicated times and ratios under the conditions

described above. Co-culture was performed either in direct cell-to-cell contact or MNC were

separated from MSCs by a transwell system (Corning, NY, USA). The inhibitor 1-Methyl-DL-

tryptophan (1mM) (Sigma) was added at initiation of the co-culture.

Lentiviral transduction of MSCs

Oligonucleotide sequences were validated at the RNAi Consortium and were purchased from

Sigma. Primer sequences were as follows: IFNγRi: Fwd 5’- CATGAACCCTATCGTATATTG
and Rev 5’- CATGAACCCTATCGTATATTG; IDOi: Fwd 5’- ACTGGAACTGCCTCCTATT
and Rev 5’- AATGGAACTGCCTCCTATT.After annealing, the respective primer pairs were

first cloned into the pSUPER plasmid and subsequently sub-cloned into the pLVTHM vector

(Addgene, Cambridge, MA, USA). Viral particles were produced using the Viral Vector Plat-

form at Inbiomed Foundation (http://www.inbiomed.org) and MSCs were transfected at a

multiplicity of infection (MOI) of 10 in order to obtain a transduction efficiency of 100%.

Flow cytometry

Antibody targets and fluorochromes were as follows: CD4-PerCP-eFluor1 710 (clone SK3),

CD8-PerCP-eFluor1 710 (clone SK1), CD3-PE-Cy7 (clone UCHT1), CD45RA-APC-

eFluor1 780 (clone HI100) and CD27-APC (clone LG.7F9), all from eBioscience (San Diego,

CA, USA). Vδ2 TCR-PE (clone B6) and IFNγ-FITC for intracellular staining (clone 4S.B3)

were from BD Pharmingen™ (San Diego, CA, USA). Intracellular staining was done with BD

Cytofix/Cytoperm™ Fixation/Permeabilization Solution Kit with BD GolgiStop™Cells (BD

Cytofix/Cytoperm™ Plus). For CFSE labeling of Vδ2+ cells the Cell Trace CFSE Cell Prolifera-

tion Kit (Invitrogen, San Diego, CA, USA) was used. AnnexinV-DY634 for detection of apo-

ptotic cell death in MSCs was from Immunostep. Surface marker expression, intracellular

cytokine production, cell proliferation and AnnexinV staining were analysed on a FACSCanto

(BD Biosciences, Chicago, IL, USA) using BD FACSDiva™ software for acquisition. Analysis of

flow cytometry data, including CFSE tracking assays and Proliferation Index [36] were done

with FlowJo software v9.5.3 (TreeStar, Ashland, OR, USA). All staining, CFSE labeling, and

AnnexinV staining, were performed according to the manufacturer’s protocol.

Real-Time quantitative PCR

Total RNA extraction from MSCs and DNAse treatment was done using the RNAqueous1-

Micro Total RNA Isolation Kit (Ambion, Carlsbad, CA, USA). Reverse transcription of RNA
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to cDNA was performed using the High Capacity cDNA Reverse Transcription Kit (Applied

Biosystems, Carlsbad, CA, USA) following the manufacturer’s instructions. Quantitative Real-

Time PCR was carried out on a Thermocycler Step One Plus (Applied Biosystems) using 5x

PyroTaq PROBE qPCR Mix Plus (ROX) from CMB. Data were normalized to MSC-PLVTHM

using the ΔΔCt method and GAPDH as housekeeping gene. Primer sequences were as follows:

IFNR Fwd 5’- TCCAGGCATGCATACCGAAGACAA and Rev 5’- ATGCTGCCAGGTTCAGAC
TGGTTA; IDO Fwd 5’-CTACCATCTGCAAATCGTGACTAAGT and Rev 5’- GAAGGGTCTTC
AGAGGTCTTATTCTC; GAPDH Fwd 5’–TGCACCACCAACTGCTTAGC and Rev 5’- GGCAT
GGACTGTGGTCATGAG.

Statistical analysis

Data were summarized by mean and standard deviation. Statistical analyses were conducted

using the paired t-test. p-values less than 0.05 were considered statistically significant.

Results

MSCs inhibit expansion of Vδ2+ cells mainly by soluble mediators

Vγ9Vδ2+ (Vδ2+) cells were activated from total PBMCs using HDMAPP and rh-IL2, and co-

cultured with increasing numbers of MSCs. After 7-days the mononuclear fraction enriched

in Vδ2+ cells was collected and analysed by flow cytometry; gating out CD4+ and CD8+ T

cells, and focusing on CD3+Vδ2+ cells. As shown in Fig 1A and 1B, MSCs inhibited the expan-

sion of Vδ2+ cells in a dose-dependent manner. As an MSC:MNC ratio of 1:25 completely

Fig 1. MSCs inhibit the expansion of Vδ2+ cells by soluble mediators. (A) The presence of MSCs reduces the

expansion of Vδ2+ cells. Representative flow cytometric analysis of Vδ2+ cells activated from whole PBMC by

HDMAPP and rh-IL2 for seven days in the absence (left panel) or presence (right panel) of MSCs. (B) Increasing

ratios of MSC:MNC diminish the inhibitory effects of MSCs on Vδ2+ cell proliferation. Results show the means ± S.

D. of triplicate samples. (C) Total PBMCs were labeled with CFSE and activated by HDMAPP and rh-IL2. Analysis

of Vδ2+ cell proliferation in the presence (white) or absence (grey) of MSCs was performed after five days by Flow

Cytometry. The presence of MSCs lowers the proliferation index of Vδ2+ cells (right panel). Results show the

means ± S.D. of triplicate samples. ***P� 0.001. (D) Analysis of the percentage of Vδ2+ cells cultured in cell-to-

cell contact or in a transwell system in the presence/absence of MSCs. Vδ2+ cell expansion is inhibited in the same

way in both systems indicating that soluble factors are responsible for immunoregulation. Results show the

means ± S.D. of triplicate samples.

doi:10.1371/journal.pone.0169362.g001
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abolished Vδ2+ cell proliferation, we decided to use this condition thereafter. As expected,

CFSE-labeled activated Vδ2+ cells were unable to expand in the presence of MSCs, in contrast

to activated Vδ2+ cells cultured without MSCs (Fig 1C), suggesting that this was not related to

cell death. Proliferation of Vδ2+ cells without MSCs gave a proliferation index of 3.35 ± 0.39 as

shown by decline of CFSE fluorescence. By contrast, activation of Vδ2+ cells in the presence of

MSCs led to a proliferation index three times lower than control (1.59 ± 0.34) (Fig 1C, right

panel). Next, we determined whether soluble factors secreted by activated Vδ2+ cells or cell-

to-cell contact were responsible for the observed effect. Activated Vδ2+ cells were co-cultured

with MSCs either in direct contact or in transwell dishes. As shown in Fig 1E, MSCs inhibited

the expansion of Vδ2+ cells in both types of culture demonstrating that soluble molecules were

responsible for the induction of immunoregulation.

IFNγ signalling is necessary for induction of immunosuppression by

MSC

The induction of immunosuppression by MSCs on Vδ2+ cells can be attributed to various fac-

tors. As activation in vitro of Vδ2+ cells rapidly induces a production of pro-inflammatory

cytokines such as IFNγ [37–40], we decided to investigate the role of this cytokine in the

induction of MSC-mediated immunomodulation. As shown in Fig 2A and 2B, MSCs caused a

significant reduction in IFNγ production by activated Vδ2+ cells even after short periods of

time (4, 6 and 12 hours). Interestingly, when Vδ2+ cells were pre-activated for shorter than 12

hours (data not shown) or longer than 24 hours, MSCs failed to show any inhibitory effect (Fig

2C). Indeed, pre-activation with HDMAPP and IL-2 for longer than 48 hours gave rise to an

opposite effect when in the presence of MSCs, as higher percentages of Vδ2+ cells were

observed, probably due to production of pro-survival factors by the MSCs (e.g. IL-6) [41].

These data indicate that MSCs exert their inhibitory effect during a critical time window after

which they cannot develop their regulatory capacity.

We next analysed whether inhibition of IFNγ receptor expression correlated with decreased

capacity of MSCs to regulate Vδ2+ cell proliferation. We used a GFP-expressing lentiviral vector

(pLVTHM) to transduce MSCs with a shRNA that targeted the IFNγ receptor. Fig 3A shows a

representative FACS plot of GFP expression in MSCs 4 days after shRNA transduction. A multi-

plicity of infection (MOI) of 10 resulted in ~90% of cells being transduced with either empty vec-

tor (MSC-pLV) or pLVTHM-IFNγR (MSC-IFNγRi). Stable transduction resulted in a significant

reduction (to less than 5% of control) of IFNγ receptor expression in MSCs (Fig 3B). Transduc-

tion did not lead to increased cell death as shown by AnnexinV staining (Fig 3C). More impor-

tantly, Vδ2+ cells expanded by ~2-fold more in co-cultures with MSCs transduced with shRNA

against the IFNγ receptor, compared to co-cultures with MSCs transduced by empty vector

MSC-pLV (Fig 4A and 4B). This result also correlated with data obtained by CFSE staining (Fig

4C); the proliferation index of Vδ2+ cells being increased 2-fold when the IFNγ receptor was

silenced in MSCs (2.23 ±0.43 in MSC-IFNγRi vs 1.59 ±0.34 in MSC-pLV). Interestingly, cytokine

production by Vδ2+ cells was partially restored by inhibition of IFNγ receptor expression in

MSC, demonstrating statistical significance when we compared MSC-pVL vs. MSC-IFNγRi at

12 hours post-activation (Fig 4D). Taken together, our data demonstrate a feedback loop in

which IFNγ produced by activated Vδ2+ cells can induce immunosuppressive capacity in MSCs,

which in turn, can inhibit both proliferation and cytokine production of activated Vδ2+ cells.

IDO expression by MSC induces immunosuppression of Vδ2+ cells

To further investigate the importance of IFNγ for induction of MSC-mediated immunosup-

pression we modulated signalling downstream of its receptor. The expression of indoleamine

IFNγ in Vγ9Vδ2 T Cells Immunosuppression
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2,3-deoxigenase (IDO), an enzyme involved in tryptophan catabolism, is able to modulate αβ
T cell activity in response to IFNγ [3, 5, 17]. Thus, we asked whether IDO is also a key player

in the immunoregulation of Vδ2+ cells by MSCs by applying the same experimental approach

as described above; IDO expression was silenced using shRNA delivered by a lentiviral vector.

As IDO is not constitutively expressed in MSC [5, 42], transcription was assessed in the pres-

ence of activated Vδ2+ cells. After 24-hour co-culture, quantitative Real-Time PCR for IDO

clearly showed that the expression was significantly reduced in MSC transduced with specific

shRNA (MSC-IDOi) compared to cells transduced with empty vector (Fig 5A). To demon-

strate that IDO expression was induced in the presence of IFNγ produced by activated Vδ2+

cells, we included “knock-down” MSCs for IFNγ receptor (MSC-IFNγRi) in the same analysis.

Data shown in Fig 5A confirmed that IDO expression was also reduced in MSC-IFNγRi cells.

We next evaluated the effects that MSC-IDOi cells have on Vδ2+ cells with respect to pro-

liferation and intracellular IFNγ production. First, we checked the expansion of Vδ2+ cells

cultured in the presence MSC-IDOi. As shown in Fig 5B and 5C, interfering with the IFNγ
pathway at the intracellular level augmented the percentage of Vδ2+ cells in culture. Whereas

Vδ2+ cells were 5.67% ±2.44 of total cells in the presence of MSCs transduced with empty

Fig 2. Immunoregulation is subject to a critical time window and IFNγ signalling in MSC is required for the

inhibition of Vδ2+ proliferation. (A) Analysis of intracellular IFNγ production in activated Vδ2+ cells at early time

points. Results show the means ± S.D. of triplicate samples. *P� 0.05. (B) Representative analysis of intracellular

IFNγ production by Vδ2+ cells in the absence (upper panel) or presence (lower panel) of MSCs after 12h of co-

culture. (C) Inhibition of proliferation of Vδ2+ cells by MSCs in a critical time window. Whole PBMCs were pre-

activated for the indicated times and subsequently co-cultured with MSCs. Percentage of Vδ2+ cells were

determined by Flow Cytometry five days after plating. Results show the means ± S.D. of triplicate samples.

doi:10.1371/journal.pone.0169362.g002
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vector, they constituted 11.08% ±1.24 in the presence of MSC-IDOi (11.08%), a level compara-

ble tot that seen in the presence of MSC-IFNγRi. Consistent with this, activated CFSE-labeled

Vδ2+ cells cultured with MSC-IDOi proliferated more than those cultured with MSC-pLV

(Fig 5D). Importantly, the absence of IDO enzyme in MSC-IDOi allowed Vδ2+ cells to main-

tain IFNγ expression levels 12-hours post-activation when compared to MSCs transduced

with the empty vector (MSC-pLV) alone. Notably, silencing of IDO resulted in a slightly lower

percentage of Vδ2+ cells and a lower proliferation index compared with silencing of the

IFNγR, which may indicate that IFNγ production is delayed in MSC-IDOi compared to

MSC-IFNγRi (Fig 5E). To summarize, our data clearly show that IFNγ via the IFNγR-IDO

pathway plays an important role in the immunoregulation of Vδ2+ cells by MSCs.

Discussion

In the past decade MSC-mediated immunoregulation of T cells has attracted increasing inter-

est due to its potential clinical application in autoimmune pathologies. Many studies have

identified molecular mechanisms that underpin the immunoregulatory properties of MSCs

[43]. In this study, we focused on MSC-mediated immunoregulation on Vδ2+ γδ T cells, a

diverse subset that bridges innate and adaptive immunity in terms of their activation and effec-

tor functions. We demonstrate that MSCs inhibit the proliferation of Vδ2+ cells in a dose-

dependent manner. Notably, this inhibitory effect is independent of cell-to-cell contact. We

Fig 3. Interfering with the IFNγ pathway in MSCs by specific silencing of the IFNγR and analysis of

apoptosis in MSCs. (A) Lentiviral-mediated shRNA transduction of MSCs was used to knock down the IFNγR.

MSCs were transduced either with the empty vector (MSC-pLV) (upper panel) as control or with an IFNγR specific

shRNA (MSC-IFNγRi) (lower panel). GFP expression in transduced cells was analysed four days after transduction

by Flow Cytometry. (B) The efficiency of gene silencing was quantified by Real-Time qPCR in MSCs transduced

either with the empty vector or with the one specific for IFNγRi. mRNA expression for IFNγR was significantly

reduced in MSC-IFNγRi compared to MSC-pLV. Relative expression was normalized to the empty vector (MSC-

pLV). (C) Transduction of MSCs does not lead to apoptotic cell death. Flow cytometric analysis of apoptotic cells

(APC positive cells) in MSC-pLV (left) and MSC-IFNγRi (right) by AnnexinV staining 6 days after transduction.

doi:10.1371/journal.pone.0169362.g003
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did not observe an increase in Vδ2+ cells after physical separation from MSCs, indicating that

soluble mediators likely drive the immunoregulatory effects. Likewise, the immunomodulatory

properties of MSCs are induced by cytokines secreted in their environment and/or molecules

expressed by target cells such as Vδ2+ cells. Vδ2+ cells produce significant amounts of pro-

inflammatory cytokines like TNFα and IFNγ in order to counteract bacterial infections or

tumour development [44]. Although other studies have demonstrated MSC-mediated inhibi-

tion of both cytokines [32], we here demonstrate that IFNγ produced by Vδ2+ cells induces

MSC-mediated immunosuppression of Vδ2+ cells, as judged by cytokine production and pro-

liferation, in a negative feedback loop. Our experimental approach interfered directly with the

IFNγ pathway in MSCs by silencing IFNγR1, one of the subunit of the IFNγR involved in

IFNγ signalling. We showed that in the presence of MSC that lacked IFNγR1, we partially

restored Vδ2+ cell expansion and intracellular IFNγ production, in contrast to the when MSC

were transduced with empty vector (MSC-pLV) alone. These results indicate that the inhibi-

tory effect exerted by MSCs on Vδ2+ cells can affect different aspects of activation and effector

function, ranging from cytokine production to proliferation. Interestingly, this mechanism

does not appear to be specific for Vδ2+ cells; other studies have reported that MSCs inhibit

other cells (such as NK and dendritic cells) by limiting early production of IFNγ and TNFα
[18, 45]. Whether this is a general anti-inflammatory mechanism employed by MSCs requires

further investigation. However, we speculate that low concentrations of IFNγ are probably suf-

ficient to promote MSC-mediated immunoregulation, which in turn, rapidly inhibits the pro-

duction of this pro-inflammatory cytokine, leading to its elimination from the inflammatory

environment and its capacity to active other immune cells. In this regard, it was shown that an

Fig 4. Interfering with the IFNγ pathway in MSCs can partially restore Vδ2+ cell proliferation (A) Comparison of Vδ2

+ cell expansion in co-culture with either MSC-pLV (left panel) or MSC-IFNγRi (right panel). Representative Flow

cytometric analysis of Vδ2+ cells at day five. (B) Specific silencing of the IFNγR augments the number of Vδ2+ cells

after five days of co-culture. Results show the means ± S.D. of triplicate samples. ***P� 0.001. (C) Total PBMCs

were labeled with CFSE and flow cytometric analysis of Vδ2+ cell proliferation was performed five days after co-

culture with either MSC-IFNγRi (white) or MSC-pLV (grey). Proliferation index of Vδ2+ cells in co-culture with MSC

silenced with shRNA for IFNγR is higher compared to MSC transduced with the empty vector (right panel). Results

show the means ± S.D. of triplicate samples. *P� 0.05. (D) Co-culture of Vδ2+ cells and MSC-IFNγRi gives rise to

more intracellular IFNγ production by Vδ2+ cells compared to a co-culture with MSC-pLV, especially after 12h.

Results show the means ± S.D. of triplicate samples. *P� 0.05. Representative flow cytometric analysis of IFNγ
production in Vδ2+ cells after 12h of activation (right panel).

doi:10.1371/journal.pone.0169362.g004
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anti-IFNγ neutralizing antibody significantly reduced the ability of HMBPP-activated Vδ2+

cells to antagonize regulatory T cell expansion [46].

Importantly, the MSC-mediated modulatory effects were limited to a short time window

(<24 hours), after which MSCs appear to have no effect on the expansion of Vδ2+ cells. It is

noteworthy that we have observed the same effect on activated αβ T cells (data not shown).

This correlates with the antigen-presenting properties of MSCs that also occurs during a nar-

row window at low levels of IFN-γ [47]. Further investigations are required to determine if

these observations in vitro are related, and how they translate to disease settings in vivo.

IFNγ can, through IFNγR, activate several genes that contain interferon-response-elements

(IRE) in their promoter regions [48, 49]. Among these is IDO, which catalyzes the degrada-

tion of L-tryptophan to N-formylkynurenine, and has been reported to suppress αβ T cell

responses [50–52]. In our hands, IFNγR and IDO gene knock-down in MSCs gave similar

results. These data contrast those obtained by Martinet et al., that showed that a specific chem-

ical inhibitor of IDO (1-methyl-DL-tryptophan (1-MT)) had no effect on MSC-mediated

inhibition of Vδ2+ cells [31]. This may be due to differences in experimental design; one

explanation could be that different phosphoantigens have been used for Vδ2+ cell activation

(BrHPP vs. HDMPP in our study). Second and maybe more importantly, we have observed

that 1-MT by itself has a profound effect on proliferation of Vδ2+ cells (S1 Fig). However, it is

clear from both studies that several mechanisms are operating in Vδ2+ cells immunosuppres-

sion: activated Vδ2+ cells produce IFNγ and TNFα, which are able to induce IDO (mainly by

IFNγ) and COX2 (IFNγ and TNFα [31]) in MSCs.

Fig 5. IFNγ-induced expression of IDO by MSCs is necessary to inhibit Vδ2+ cell proliferation. (A) Lentiviral-

mediated shRNA transduction of MSCs was used to knock down IDO (MSC-IDOi). Quantification of IDO mRNA by

Real-Time qPCR was done in MSC-pLV, MSC-IFNγRi and MSC-IDOi. Relative expression was normalized to

MSC-transduced with the empty vector (B) Representative flow cytometric analysis of activated Vδ2+ cells after five

days of co-culture with transduced MSCs. Vδ2+ cells expand more in the presence of MSC-IDOi compared to MSC-

pLV. (C) Specific silencing of IDO augments the number of Vδ2+ cells after five days of co-culture. Results show the

means ± S.D. of triplicate samples. **P� 0.01. (D) Representative proliferation analysis of CFSE-labeled Vδ2

+ cells performed at day five of co-culture with either MSC-IDOi (white) or empty vector (grey). Proliferation index of

Vδ2+ cells in co-culture with MSCs silenced with shRNA for IDO is higher compared to MSC transduced with the

empty vector (right panel), similar to the results obtained with MSC-IFNγRi. Results show the means ± S.D. of

triplicate samples. *P� 0.05. (E) Co-culture of Vδ2+ cells and MSC-IDOi gives rise to more intracellular IFNγ
production of Vδ2+ cells compared to a co-culture with MSC-pLV after 12h. Results show the means ± S.D. of

triplicate samples. **P� 0.01. Representative flow cytometric analysis of IFNγ production in Vδ2+ cells co-cultured

with MSC-IDOi after 12h of activation (right panel).

doi:10.1371/journal.pone.0169362.g005
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Most studies that aim to elucidate the molecules responsible for MSC-mediated immuno-

regulation have been performed on αβ T cells. Similar to αβ T cells, human Vδ2+ cells display

remarkable functional plasticity, with reports describing production of a range of effector mol-

ecules that depends on the conditions of activation [23]. How MSCs effect this functional dif-

ferentiation in vivo, and the implications for health and disease, are still unknown. γδ T cells

were previously implicated in pathogenesis in animal models of autoimmune diseases such as

rheumatoid arthritis and multiple sclerosis in which Th1 cytokines are thought to play a cen-

tral role [53, 54]. Moreover, they contribute to other autoimmune diseases such as psoriasis in

which epidermal CCR6+ Vδ2+ cells express high levels of IL-17 and IL-22 [55]. IL-17+ Vδ2

+ cells are known to express low levels of IFNγ [56]. Hence, it remains to be determined how

these different subtypes of Vδ2+ cells would interact with MSCs, which molecules would be

involved, and to what extent the role of MSCs might be beneficial in the immunotherapy of

Vδ2+ cell-mediated diseases.

Finally, our findings also contrast previous reports suggesting that MSC-associated immu-

nosuppression of Vδ2+ cells is exclusively mediated by PGE2. As shown in this study, IDO is

also involved, suggesting that several pathways underpin the immunomodulatory capacities of

MSCs.

Supporting Information

S1 Fig. Total PBMCs were activated and cultured in the presence or absence of MSCs.

Addition of 1-MT alone reduces significantly the expansion of Vδ2+ cells even in the absence

of MSCs while addition of vehicle has no influence on the percentage of Vδ2+ cells. Results

show the means ± S.D. of triplicate samples.

(TIF)
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