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Abstract

Pantothenamides are N-substituted pantothenate derivatives which are known to exert 

antimicrobial activity through interference with coenzyme A (CoA) biosynthesis or downstream 

CoA-utilizing proteins. A previous report has shown that replacement of the ProR methyl group of 

the benchmark N-pentylpantothenamide with an allyl group (R-anti configuration) yielded one of 

the most potent antibacterial pantothenamides reported so far (MIC of 3.2 μM for both sensitive 

and resistant Staphylococcus aureus). We describe herein a synthetic route for accessing the 

corresponding R-syn diastereomer using a key diastereoselective reduction with Baker’s yeast, and 

report on the scope of this reaction for modified systems. Interestingly, whilst the R-anti 
diastereomer is the only one to show antibacterial activity, the R-syn isomer proved to be 

significantly more potent against the malaria parasite (IC50 of 2.4 ± 0.2 μM). Our research 

underlines the striking influence that stereochemistry has on the biological activity of 

pantothenamides, and may find utility in the study of various CoA-utilizing systems.
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Infectious diseases remain a major contributing factor to worldwide mortality. Moreover, the 

development of antimicrobial resistance is raising significant concerns about the 

increasingly limited efficacy of currently available treatments.1 There have been 

considerable efforts towards discovering and characterising novel therapeutic targets for 

antimicrobial drugs. One such target which has emerged as a promising point-of-attack is 
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coenzyme A (CoA) biosynthesis and its associated cellular processes.2 This ubiquitous 

cofactor is required for a diverse set of biological functions and is essential to all organisms. 

Most rely on the exogenous uptake of its natural precursor pantothenate (vitamin B5), and 

extend it into CoA through a 5-step biotransformation.3–4 The inherent differences in the 

CoA biosynthetic machinery between humans and microbial pathogens suggest that this 

pathway can be exploited for therapeutic applications.1 In fact, a variety of pantothenate 

analogues have been evaluated for antibacterial, antiplasmodial and antifungal properties.2

An important class of such compounds are the N-substituted pantothenamides, including the 

benchmark molecule in the field, N-pentylpantothenamide (Figure 1).5 This compound was 

shown to have potent activity against Escherichia coli (in low pantothenate media)5 and 

Staphylococcus aureus.6 It was later found that pantothenamides were, in fact, being 

extended by the CoA biosynthetic enzymes into CoA analogues which affected downstream 

targets such as the acyl carrier protein necessary for fatty acid synthesis.7–8 It has been 

suggested that pantothenamides may also act by inhibiting the CoA biosynthetic pathway.
9–10 While much of the research has focused on antibacterials, targeting the CoA pathway is 

also a promising strategy for antiplasmodials. For example, the provitamin pantothenol as 

well as a range of other pantothenate analogues have been shown to repress the proliferation 

of the malarial parasite Plasmodium falciparum.11–15

A synthetic route for accessing geminal dialkyl-substituted pantothenamide derivatives was 

recently reported by some of us.16 In this study, several compounds were synthesized and 

evaluated for antibacterial properties which revealed that larger substituents were not well 

tolerated at the gem-dimethyl position. This led to the identification of a methyl-allyl 

derivative (1) with potent antibacterial activity against both sensitive and resistant S. aureus.
16 It was envisaged that these structure-activity relationships (SARs) could be extended 

through modification of the stereochemistry of the alkyl-substituted pantoyl fragment. In 

designing a target, we opted to focus on the 2-methyl-allyl derivative because of its clear 

superiority in antibacterial activity assays,16 and to maintain the R-configuration at C-3 

based on previous studies suggesting that this is the preferred stereochemistry.2 We report 

here on a methodology for accessing the 2S,3R-syn allyl-substituted isomer (2), and on the 

contrasting profiles of diastereomers 1 and 2 with regards to antibacterial and antiplasmodial 

activities.

Synthetically, the pantothenamide structure has been obtained through a sequence of amide 

couplings on a modified pantoyl fragment.16 In the synthesis of geminal dialkyl-substituted 

pantothenamide derivatives, the stereochemistry at the quaternary carbon is determined by 

the initial configuration of the alcohol in the starting material, and can be controlled via two 

successive alkylations anti to the alcohol.16 This synthetic methodology, however, only 

provides access to 2R,3R-anti analogues diastereoselectively. Reversing the configuration at 
the quaternary center by reversing the order of the two alkylation reactions, e.g. adding the 
larger alkyl group before methylation, proceeds with poor selectivity and produces 
inseparable mixtures of 2R,3R-anti and 2R,3S-syn analogues.16–17 The difficulty in 

obtaining the syn product by reversing the alkylation sequence warrants an alternate 

synthetic route. In order to access the novel 2S,3R diastereomer, we envisaged inverting the 

stereochemistry of the fragment through oxidation, followed by diastereoselective reduction. 
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We expected this last step to pose the greatest challenge, due to the unfavourable energetic 

barrier associated with forming the syn product. Thus, L-(−)-malic acid (3S-alcohol) is used 

here to access the syn isomer (2) through inversion of stereochemistry, while D-(−)-malic 

acid (3R-alcohol) was previously used directly to synthesize the anti isomer (1).16

In order to generate the alkyl-substituted pantoyl fragment with the desired stereochemistry, 

L-(−)-malic acid was first esterified under mild acidic conditions (Scheme 1). The Frater-

Seebach method of alkylating chiral β-hydroxy esters was used to install the methyl and 

various alkyl groups onto 3 with excellent diastereoselectivity.17 The addition of two 

equivalents of strong base generates a di-anion which forms a six-membered ring chelate.17 

The stereoconfiguration of the secondary alcohol directs the electrophilic addition from the 

less hindered face, thereby yielding the anti product with a consistently high diastereomeric 

ratio (dr; as measured by NMR of the crude sample). Swern oxidation was used to afford the 

prochiral ketone 6a in good yield, which was subsequently reduced to the R-alcohol 7a.

Several commercially available chemical reducing agents were tested to evaluate their ability 

to yield the syn alcohol product from 6a. As shown in Table S1, typical agents such as 

DIBAL-H, NaBH4 and Zn2(BH4)2, as well as chiral reducing agents such as (R)-CBS and 

(S)-CBS showed poor diastereoselectivity and yielded predominantly the anti-product. The 

potential of biocatalysts was thus explored next. To this end, we envisaged utilizing a whole 

cell mixture of common Baker’s yeast (Saccharomyces cerevisiae) to reduce 6a to the syn 
product 7a diastereoselectively. There is precedence for Baker’s yeast to reduce α- and β-

ketoesters to enantiopure alcohols.18 Baker’s yeast expresses several reducing enzymes 

which can be selectively inhibited or favoured by varying the reaction conditions.19 Pre-

treatment of the yeast with cross-linking agents such as methyl-vinyl ketone (MVK), was 

found to favor syn-selectivity and prevent over-reduction to the diol.20 Heat-denaturation 

(50°C, 30 min) also achieved the same goal and even worked synergistically with MVK.
21–22

Indeed, reduction of 6a with Baker’s yeast yielded the desired syn product (dr of >99:1) in 

68% yield after purification. This high selectivity was only possible when the yeast was pre-

incubated with MVK at 50°C for 30 min before addition of the ketone. The dr ratio was 

determined by integrating the characteristic NMR peaks for the methyl group at the 

quaternary carbon, specifically the signal at 1.16 ppm from the anti product,16 and the signal 

at 1.05 ppm from the syn product. The absolute stereochemistry of the product was 

confirmed by derivatization using enantiomeric auxiliary reagents and subsequent 1H NMR 

analysis as described by Seco et al.23 (R)- and (S)-methoxyphenylacetic acid (MPA) were 

thus coupled to 7a to generate the diastereoisomeric MPA derivatives for NMR analysis. To 

evaluate the scope of the Baker’s yeast reaction, a series of α-ketosuccinates (6a–f) was 

synthesized and reduced. The dr was measured by NMR on the crude product, and the yield 

was calculated after purification (Table 1). Interestingly, all compounds showed excellent 

diastereoselectivity (dr ≥ 98:1, with one exception at 80:20), although the yield of the 

reactions generally decreased with increasing bulk of the alkyl substituents, consistent with 

larger groups not being well tolerated in the binding pocket of the reductase of interest. The 

low yields observed in some of the examples are largely attributed to product recovery issues 
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resulting from inefficient extraction from the complex matrix. Overall, Baker’s yeast shows 

excellent stereoselectivity for the reduction of these systems.

With the stereochemistry established, we were able to extend the intermediates into full 

pantothenamides as shown in Scheme 2. As mentioned above, the methyl-allyl derivative 7a 
was selected for extension based on the reported antibacterial activity of 1.16 Thus, 7a was 

reduced to the corresponding triol using LiAlH4 and selectively protected as the six-

membered ring anisaldehyde acetal 8. A Dess-Martin oxidation afforded the aldehyde 9, 

which was further oxidized to the acid 10 via Pinnick oxidation. Due to its instability, the 

crude acid (10) was used directly in the amide coupling to deprotected amine 13. Finally, the 

acetal protecting group of 11 was cleaved using 90% aqueous acetic acid to produce the 

desired pantothenamide 2.

The 2S,3R-syn pantothenamide 2 was tested for antibacterial activity against S. aureus 
(sensitive and MRSA) but no appreciable effect could be detected at the highest 

concentration tested (500 μM; data not shown). This is in sharp contrast to the 2R,3R-anti 
pantothenamide 1, which previously showed potent antibacterial activity (MIC of 3.2 μM for 

both strains).9 Interestingly, this trend was reversed when 1 and 2 were evaluated for their 

antiplasmodial activity. As shown in Figure 2, although both diastereomers inhibited in vitro 
parasite growth, the syn derivative 2 (IC50 of 2.4 ± 0.2 μM, n = 6) appeared to be 

considerably more potent (p ≪ 0.001) when compared to its anti-isomer 1 (31 ± 4 μM, n = 

3). Moreover, increasing the extracellular pantothenate concentration (from 1 to 50 μM) 

resulted in a higher IC50 for 2 (13 ± 1 μM, n = 3, p ≪ 0.001), consistent with 2 inhibiting 

parasite growth by targeting CoA biosynthesis or utilization (Figure 2). Compounds 1 and 2 
were also tested in human cells and did not show significant toxicity (see Figure S1).

A successful method was established for the synthesis of 2S,3R-syn 2-methyl-alkyl 

pantothenamide derivatives. A key step of this process involved the use of Baker’s yeast for 

the stereoselective reduction of α-ketosuccinates. Stereochemical modification of the 

pantoyl fragment significantly influenced the biological activity and antimicrobial selectivity 

of these compounds. This suggests that such alterations may be applied to study other CoA-

utilizing systems. For example, N-substituted pantothenamides have found use as chemical 

biology tools and as mechanistic probes of CoA-dependent enzymes. Specific applications 

include both in vitro and in-cell labelling of carrier proteins,24–26 as well as prodrug 

activation by the CoA biosynthetic pathway.27 Thus, we expect the methodology developed 

herein to find utility in various areas.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Structure of pantothenate and N-pentylpantothenamide analogues.
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Fig. 2. 
Antiplasmodial activity of the syn-isomer 2 in medium containing 1 μM pantothenate (black 

circles) or 50 μM pantothenate (white circles), in comparison with the anti-isomer 1 in 

medium containing 1 μM pantothenate (black triangles). Error bars represent SEM from 3–6 

independent experiments.
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Scheme 1. 
Synthesis of compounds 7a–f.
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Scheme 2. 
Synthesis of compound 2.16
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Table 1

Baker’s yeast reduction of di-alkyl substituted α-ketomalonates.

Compound R dra Yieldb (%)

7a allyl >99:1 68

7b propargyl 80:20 65

7c ethyl 98:1 37

7d propyl >99:1 31

7e hexyl >99:1 21

7f isobutyl 98:1 26

a
Diastereomeric ratio determined by NMR;

b
isolated yield.
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