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Abstract

PC12 cells are a well-established model to study how differences in signal transduction

duration can elicit distinct cell behaviors. Epidermal growth factor (EGF) activates transient

ERK signaling in PC12 cells that lasts 30–60 min, which in turn promotes proliferation; nerve

growth factor (NGF) activates more sustained ERK signaling that lasts 4–6 h, which in turns

induces neuronal differentiation. Data presented here extend a previous study by Mullen-

brock et al. (2011) that demonstrated that sustained ERK signaling in response to NGF

induces preferential expression of a 69-member gene set compared to transient ERK signal-

ing in response to EGF and that the transcription factors AP-1 and CREB play a major role

in the preferential expression of several genes within the set. Here, we examined whether

the Egr family of transcription factors also contributes to the preferential expression of the

gene set in response to NGF. Our data demonstrate that NGF causes transient induction of

all Egr family member transcripts, but a corresponding induction of protein was detected for

only Egr1 and 2. Chromatin immunoprecipitation experiments provided clearest evidence

that, after induction, Egr1 binds 12 of the 69 genes that are preferentially expressed during

sustained ERK signaling. In addition, Egr1 expression and binding upstream of its target

genes were both sustained in response to NGF versus EGF within the same timeframe that

its targets are preferentially expressed. These data thus provide evidence that Egr1 contrib-

utes to the transcriptional program activated by sustained ERK signaling in response to

NGF, specifically by contributing to the preferential expression of its target genes identified

here.
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Introduction

PC12 rat pheochromocytoma cells are an established model to study molecular events associ-

ated with neuronal differentiation. Following treatment with nerve growth factor (NGF),

PC12 cells differentiate into neuron-like cells [1], characterized by cessation of cell prolifera-

tion, up-regulation of neuronal genes, neurite outgrowth, and development of electrical excit-

ability. NGF initiates these effects through activation of its receptor TrkA, which in turn

stimulates multiple signaling cascades including the Ras/Raf/MEK/ERK, PI 3-kinase/Akt, and

phospholipase C pathways [2]. ERK signaling plays a central role in PC12 differentiation, indi-

cated by experiments demonstrating that inhibition of ERK signaling pharmacologically or via

expression of dominant-negative Ras, Raf, MEK, or ERK blocks differentiation in response to

NGF [3–5], whereas expression of constitutively active forms of Ras, Raf, MEK, or ERK is suf-

ficient to induce differentiation [6]. The mechanism through which ERK signaling induces

PC12 differentiation, however, is not fully understood.

One key mechanistic link between ERK signaling and PC12 differentiation is the duration

for which ERK remains active following stimulation. Stimulation with NGF induces rapid

ERK activation that peaks within minutes and then gradually declines to basal levels through

3–4 h. Sustained ERK signaling through this timeframe is essential for differentiation, demon-

strated in part by observation that some growth factors induce more transient ERK signaling

and do not cause differentiation. The most well studied example is epidermal growth factor

(EGF), which similarly stimulates ERK activation within minutes, but activity declines to basal

levels more rapidly within 30–60 min. Rather than inducing differentiation, this more tran-

sient ERK signal promotes proliferation [7].

One potential basis for the distinct biological response of PC12 cells to NGF is that NGF

elicits a transcriptional program that is dependent on sustained ERK signaling through 2–4 h

after stimulation. To investigate this, DNA microarray analysis was used to compare global

gene expression profiles of PC12 cells treated with either NGF or EGF for 2 or 4 hours, which

identified a set of 69 genes preferentially up-regulated in response to NGF at those time points

(of which many have known roles in neuronal differentiation and/or function) [8]. Subsequent

experiments indicated that transcription factors AP-1 and CREB contribute to the preferential

expression of several genes within the set. Here, we tested the hypothesis that Egr transcription

factors likewise contribute to the preferential expression of the gene set, which was based on

the presence of putative Egr binding sites upstream of 21 genes within the set.

The Egr family comprises five members—Egr1-4 and Wilms Tumor 1 (WT1)—which

share highly homologous DNA-binding domains at their C-termini composed of three zinc

finger motifs that bind similar GC-rich, 9-nucleotide response elements [9–15]. Their N-ter-

mini exhibit greater variability, but similarly contain activation domains through which they

transactivate target genes [10, 12, 16–19]. Egr1-3 also contain an R1 domain that binds coregu-

lators NAB1 and 2 [20–22]; NABs are best characterized as corepressors [23], but can also act

as coactivators [24]. Egr4 and WT1 lack an R1 domain, however, WT1 also exhibits trans-acti-

vation and -repression activities in a target gene-specific manner [19, 25–29]. The molecular

details that dictate the effect of Egr1-3 and WT1 on target gene expression—activation or

repression—are not fully understood.

Egr proteins are also immediate early genes (IEGs) induced rapidly and transiently in

response to several stimuli including growth factors, cytokines, neurotransmitters, and multi-

ple cellular stressors (e.g., hypoxia and oxidative stress) [30–32]. Upon induction, Egr proteins

contribute to several cell behaviors including proliferation, apoptosis, and differentiation in

a cell type- and stimulus-specific manner [11, 33–35]. Roles for Egr1-3 are particularly well-

documented in the nervous system, where Egr1 and 3 play important roles in learning and
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memory through regulation of genes that contribute to synaptic plasticity and long-term

potentiation [36–50]. Egr2 is expressed in Schwann cells, where it promotes peripheral nerve

myelination through, at least in part, activation of the gene encoding myelin protein zero

[51–56].

A role for Egr proteins in PC12 differentiation is also established. Levkovitz et al. (2001)

determined that NGF-induced neurite outgrowth is inhibited by transfection with a truncated

Egr3 consisting of its DNA-binding domain that acts as a dominant-negative on Egr-mediated

transactivation [57]. Transfection with Egr1 siRNA by Ravni et al. (2008) similarly inhibited

neurite outgrowth induced by PACAP (pituitary adenylate cyclase-activating polypeptide)

[58]. Identification of Egr transcriptional targets that contribute to PC12 differentiation has

been limited to the gene encoding p35, which activates Cdk5 kinase activity via protein-protein

interactions [59]. Harada et al. (2001) demonstrated that Egr1-mediated induction of p35

expression is necessary for Cdk5 activation and neurite outgrowth in response to NGF. The

present study provides evidence that Egr1 contributes to PC12 differentiation via regulation of

several additional transcriptional targets.

Materials and Methods

Cell culture

PC12 cells [3] were maintained in growth medium consisting of Dulbecco’s modification of

Eagle’s medium (DMEM) supplemented with 10% fetal bovine serum (FBS) and 5% horse

serum (HS) at 37˚C, 10% CO2. For gene expression and Western blot experiments, 106 cells

were plated per 60-mm dish in growth medium and incubated for 24 h before medium was

replaced with reduced serum medium (DMEM + 0.5% HS). For ChIP experiments, 6 x 106

cells were plated per 150-mm dish in growth medium and incubated for 72 h before medium

was replaced with reduced serum medium. After placing in reduced serum medium, cells were

incubated another 24 h before treatment with 50 ng/ml NGF (EMD Millipore, 480275) or 25

ng/ml EGF (EMD Millipore, 324831).

Real-time reverse transcriptase polymerase chain reaction (RT-PCR)

For gene expression experiments, total RNA was extracted using TRIzol Reagent (Thermo

Fisher Scientific, 15596026) as follows. Cell cutlures were washed once with PBS and lysed in

500 μl of TRIzol, 100 μl of chloroform were added to each lysate, and samples then incubated

for 3 min at room temperature. Samples were subjected to centrifugation at 12,000 x g for 15

min at 4˚C and the aqueous phase collected. Two hundred μl of 2-propanol were added to

each sample and samples incubated for 10 min at room temperature. Samples were subjected

to centrifugation at 16,000 x g for 10 min at 4˚C and the supernatants removed. RNA pellets

were washed by adding 1 ml of 70% ethanol, vortexed briefly, and then subjected to centri-

fugation at 16,000 x g for 15 min at 4˚C. The supernatants were removed and RNA pellets air

dried for approximately 10 min. RNA pellets were then suspended in 50 μl of nuclease-free

water and incubated at 60˚C for 10 min before spectrophotometry to determine nucleic acid

concentrations.

Reverse transcription reactions were conducted on 900 ng of nucleic acids from each sam-

ple using TaqMan Reverse Transcription kit (Life Technologies, N8080234), according to the

manufacturer’s instructions. Real-time PCR reactions where then conducted using SYBR

Select Mater Mix (Life Technologies, 4472908), according to the manufacturer’s instructions.

Primer sequences used for real-time PCR are listed in S1 Table.
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Immunoblot

Following treatment with NGF or EGF, cells were washed twice with phosphate-buffered

saline (PBS), lysed directly in 300 μl of 2X Laemmli buffer, and heated to 95–100˚C for 5 min.

Twenty μl of each lysate were loaded and electrophoresed through SDS-polyacrylamide gels

(10% for Egr1 immunoblots, 12% for Egr2-4, WT1, and β-actin immunoblots), transferred to

nitrocellulose membrane, and immunoblot conducted to detect Egr1 (Santa Cruz, sc-110,

1:1000 dilution), Egr2 (Covance, PRB-236P, 1:500 dilution), Egr3 (Cell Signaling, 2559, 1:1000

dilution; Santa Cruz, sc-191, 1:500 dilution; Sigma, SAB2104196, 1 μg/ml working concentra-

tion), Egr4 (Santa Cruz, sc-19868, 1:500 dilution), WT1 (Santa Cruz, sc-68880, 1:500 dilution)

and β-actin (Sigma, A5441, 1:20,000 dilution).

Membranes were blocked in 5% nonfat dried milk in TBS + 0.2% Tween-20 (blocking

buffer) for 30 min at room temperature and then incubated with primary antibody diluted in

blocking buffer for 12–18 h at 4˚C. Membranes were then washed three times for 15 min in

TBS + 0.2% Tween-20 and incubated with secondary antibody (goat anti-rabbit HRP-conju-

gate, Bio-Rad, 172–1019, 1:3000 dilution; goat anti-mouse HRP-conjugate, Bio-Rad, 170–

6516, 1:3000 dilution) diluted in blocking buffer for 1–2 h at room temperature. Membranes

were washed three times for 15 min in TBS + 0.2% Tween-20 after which bands were detected

by chemiluminesce (Western Lightning Plus-ECL, Enhanced Chemiluminescence Substrate,

Perkin Elmer, NEL105001).

Chromatin immunoprecipitation (ChIP)

ChIP assays were performed as previously described [60]. For each experimental condition,

cells from three 15-cm plates were scrapped, pooled, and crosslinked in 1% formaldehyde for

10 min at 37˚C. Cells were then subjected to centrifugation at 800 x g for 4 min at 25˚C and

resulting cell pellets were washed twice with 15 ml of cold PBS supplemented with protease

inhibitors (1 mM PMSF, 1 μg/ml aprotinin, 1 μg/ml pepstatin A). Cells were lysed in 4 ml of

PIPES lysis buffer (5 mM PIPES, 85 mM KCl, 0.5% NP-40, pH 8.1) supplemented with prote-

ase inhibitors, subjected to centrifugation at 800 x g for 5 min at 4˚C, and resulting nuclear pel-

lets washed twice with 15 ml cold PBS supplemented with protease inhibitors. Pellets were

resuspended in 1.2 ml of PBS lysis buffer (1% NP-40, 0.5% sodium deoxycholate, 0.1% SDS

in PBS) supplemented with protease inhibitors and subjected to sonication using a Branson

Sonifier S-250D Digital Ultrasonic Cell Disrupter with four 30-sec pulses at 25% amplitude.

Samples were subjected to centrifugation at 16,000 x g for 15 min at 4˚C and supernatants col-

lected. One hundred μl of the supernatant were transferred to a clean tube, combined with

200 μl high salt lysis buffer, and stored at -20˚C for use as “input fractions” during subsequent

real-time PCR. Remaining volumes from sonication were precleared by incubation with 80 μl

of protein A agarose 50% slurry for 30 min at 4˚C with mixing followed by centrifugation at

16,000 x g for 30–60 sec at 4˚C. Supernatants were collected and separated into 350 μl volumes

for immunoprecipitation (IP) using 5 μg of the following antibodies: Egr1 (Santa Cruz, sc-

110), Egr2 (Covance, PRB-236P), Egr3 (Santa Cruz, sc-191), Egr4 (Santa Cruz, sc-19868), and

WT1 (Santa Cruz, sc-68880). Samples were incubated with antibody for 12–18 h at 4˚C after

which 60 μl of protein A agarose 50% slurry were added and incubated for 2 h at 4˚C. Samples

were subjected to centrifugation at 16,000 x g for 30–60 sec at 4˚C, supernatant discarded, and

protein A agarose beads subjected to five sequential washes with 1 ml of the following buffers:

[1] low salt wash buffer (20 mM Tris, 150 mM NaCl, 2 mM EDTA, 0.1% SDS, 1% Triton X-

100, pH 8.1), [2] high salt wash buffer (20 mM Tris, 500 mM NaCl, 2 mM EDTA, 0.1% SDS,

1% Triton X-100, pH 8.1), [3] LiCl wash buffer (10 mM Tris, 1mM EDTA, 250 mM LiCl, 1%

IGEPAL-Ca 630, 1% deoxycholic acid, pH 8.10, [4] and [5] Tris-EDTA, pH 8.0. Antigens were
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then eluted from protein A agarose by two sequentional incubations in 150 μl elution buffer

(1% SDS, 100 mM sodium bicarbonate) for 15 min at room temperature, which were pooled

into one 300 μl eluate for each sample/experimental condition. Each eluate and input fraction

was incubated with 200 mM NaCl for 12–18 h at 65˚C to reverse crosslinks, after which DNA

was purfied using QIAquick Gel Extraction Kit (Qiagen, 28706); 900 μl Buffer QG and 300 μl

2-propanol were added to each sample for step 1, after which the procedure was conducted

according to the manufacturer’s protocol. Real-time PCR was then conducted on 1:40 dilu-

tions of input fraction DNA and 1:10 dilutions of IP fraction DNA using using SYBR Select

Mater Mix (Life Technologies, 4472908) according to the manufacturer’s instructions and

primers that anneal within 250 bp of respective predicted transcription factor binding sites

(see S2 Table). Recovery of each binding site during IP was quantified as % input.

Results

Expression analysis of Egr family members in PC12 cells following NGF

treatment

Mullenbrock et al. (2011) identified 69 genes preferentially up-regulated in PC12 cells 2–4 h

after NGF treatment as compared to EGF treatment; 21 of those genes contained putative Egr

binding sites (identified using the V$KROX_Q6 position weight matrix) within 5 kb upstream

of their transcription start sites that were conserved in human, mouse and rat (Fig 1 and S2

Table). Given the homology within their DNA-binding domains and the similarity of response

elements to which they bind, all five Egr family members were examined as potential regula-

tors of this gene set in response to NGF.

Effects of NGF on Egr expression levels were evaluated first. Consistent with their charac-

terization as IEGs, NGF induced a robust increase in Egr1-4 transcripts at 30 min post-treat-

ment, followed by a gradual decline through 4 h (Fig 2A). Transcript levels of WT1 increased

more modestly and slowly, peaking at 2 h, then declining through 4 h. Egr1 and 2 protein levels

were affected similarly to their transcripts; Western blot for both proteins detected bands near

their predicted molecular weights (82 kD predicted for Egr1, 50 kD predicted for Egr2) that rap-

idly accumulated through 1 h of NGF treatment and then gradually declined to near basal levels

through 6 h (Fig 2B). Western blot analysis for Egr3, Egr4, and WT1 detected prominent bands

near their predicted molecular weights (50 kD predicted for Egr3 and 4, 49 kD predicted for

WT1) in untreated cells, all of which remained largely unchanged through 4 h of NGF treatment

(Fig 2C). For Egr3 in particular, three different antibodies were used to evaluate its levels, all of

which detected bands in the range of its predicted molecular weight and none of which exhibited

a clear or consistent change in response to NGF (results from Sigma, SAB2104196 are shown in

Fig 2C; data not shown from Cell Signaling, 2559 and Santa Cruz, sc-191). This expression anal-

ysis altogether demonstrates that NGF causes transient induction of mRNAs for all Egr family

members and a corresponding induction of Egr1 and 2 protein; corresponding changes in Egr3,

Egr4, and WT1 protein levels, on the other hand, were not detected.

Our data for Egr1 are consistent with previous studies that also demonstrated induction of

Egr1 transcript and protein in PC12 cells with near identical kinetics following NGF treatment

[59, 61]. Induction of Egr2-4 transcripts by NGF in PC12 cells has also been shown, however,

these studies did not evaluate protein levels [10, 62, 63]. To our knowledge, effects of NGF on

WT1 expression in PC12 cells has not been previously described. Several studies have docu-

mented corresponding transcript and protein inductions for Egr family members in cells other

than PC12 in response to a variety of growth factors [59, 64–69]; however, previous examples

of Egr transcript induction without concomitant protein induction (as shown here for Egr3,

Egr4, and WT1) have not been previously documented.

Egr1 Transcriptional Targets in Neuronal Differentiation of PC12 Cells
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Fig 1. Predicted Egr binding sites and ChIP primer locations upstream of genes preferentially expressed during sustained ERK signaling

in response to NGF. Of the 69 genes that Mullenbrock et al. (2011) determined are preferentially expressed during sustained ERK signaling in

response to NGF, 21 contained putative Egr binding sites within 5 kb upstream of their transcription start site (TSS). The locations of each Egr

binding site are denoted by the vertical blue lines. The red horizontal lines denote the relative locations of primer sets used for real time PCR to detect

Egr1 Transcriptional Targets in Neuronal Differentiation of PC12 Cells
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Egr1 binds upstream of several predicted target genes following NGF

treatment

Binding of Egr family members to upstream regions of genes with putative Egr binding sites

was examined next in PC12 cells by ChIP. Primers were designed within 250 bp of each pre-

dicted Egr binding site to quantify their recovery by real-time PCR, except for the three

Egr binding to nearby Egr binding site(s). For genes with multiple dispersed Egr binding sites, multiple primers sets were designed (denoted P1, P2,

etc.) to detect Egr binding to the nearest predicted Egr binding site.

doi:10.1371/journal.pone.0170076.g001

Fig 2. Time course analysis of Egr family expression following NGF treatment. PC12 cell cultures were

treated with 50 ng/ml NGF for 0–4 h before harvest. (a) Total RNA was extracted and subjected to real-time

RT-PCR to quantify changes in mRNA levels or (b) total cell lysates were prepared and subjected to SDS-PAGE

and Western blot analysis to evaluate changes in protein levels. NS, nonspecific band.

doi:10.1371/journal.pone.0170076.g002
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putative sites upstream of Rdh10 for which primer design was limited due to high GC content

(see Fig 1 and S2 Table for primer locations and sequences). Several genes (Vgf,Kdm6b/Jmjd3,

Trib1, Sema6a, and Sgk1) contained multiple dispersed Egr binding site candidates, for which

multiple primer sets were used (denoted P1, P2, etc. for each target gene) to evaluate Egr bind-

ing within the respective regions. Primers to amplify a region approximately 100 bp upstream

of the Myog gene, which lacks an Egr binding site, were used as a negative control for Egr

binding.

Binding of Egr1 was examined first due to its established role in PC12 differentiation [58,

59]. Since the data in Fig 2B show that Egr1 levels peak at 1 h post-NGF treatment, cells were

treated with NGF for 0 or 1 h and subjected to ChIP with either anti-Egr1 antibody or non-

immune IgG as a negative control; real-time PCR was then conducted on input and IP frac-

tions to quantify recovery during IP as % input. As shown in Fig 3A, % input values for most

predicted Egr targets were similar to Myog following Egr1 ChIP from untreated cells, whereas

% input for Sik1/Snf1lk was 7-fold greater, indicating Egr1 is bound upstream of only Sik1/
Snf1lk in the absence of NGF. After 1 h of NGF treatment, % input values increased well above

that of Myog for several targets. Of the 20 genes examined, 15 exhibited average values greater

than 2-fold above Myog, of which 12 were statistically significant (p< 0.05) and 2 approached

significance (p-values for Ptgs1 and F3 from a one-tailed Student’s t test were 0.056 and 0.053,

respectively). To our knowledge, 10 of these genes (Trib1, Phlda1, Sema6, Kctd11, Sik1/Snf1lk,

Kdm6b/Jmjd3, Mafb, Hbegf, Ankrd34c, and Ptgs1) are novel Egr1 targets, whereas 5 (Vgf, Arc,

Tph1, Sgk1, and F3) were previously identified targets [70–74]. For genes that were tested with

multiple primer sets, data for the set with highest % input value are included in Fig 3; results

from the remaining primer sets are provided in S1 Fig. These data indicate that Egr1 induction

by NGF results in its binding upstream of approximately 17% of the genes that are preferen-

tially expressed during sustained ERK signaling, whereas Egr1 is constitutively bound to Sik1/
Snf1lk. The molecular explanation for Egr1’s differential binding to Sik1/Snf1lk versus the

other targets was not examined.

ChIP with anti-Egr2 antibody yielded similar results to Egr1, but with notable differences

(Fig 3B). In untreated cells, Egr2 binding was not detected for any targets, including Sik1/
Snf1lk. After NGF treatment, 11 targets exhibited % input values greater than 2-fold above

Myog, which were the same targets bound by Egr1 after NGF treatment excluding Mafb. How-

ever, values for those 11 targets were 3- to 8-fold lower than % input values from Egr1 ChIP.

Whether these differences reflect differential binding of Egr1 versus Egr2 upstream of target

genes or differential effectiveness of the respective antibodies in ChIP was not determined.

ChIP with anti-Egr3, -Egr4 or -WT1 antibodies did not demonstrate binding of these family

members upstream of any putative targets before or after NGF treatment (data not shown).

Altogether, these ChIP data demonstrate that NGF induces Egr1 binding upstream of sev-

eral genes that are preferentially up-regulated during sustained ERK signaling, indicating it

may contribute to their expression at 2–4 h. The data provide more modest evidence for Egr2

binding, suggesting it may also play a role. Given the more robust data for Egr1, additional

experiments focused on further examining its role in the network.

NGF induces sustained Egr1 expression and binding to target genes

associated with PC12 neuronal differentiation

To begin examining how Egr1 might contribute to the preferential expression of its target

genes 2–4 h post-NGF versus -EGF treatment, Western blot analysis and densitometry were

conducted to compare its levels 0–4 h after treatment with each growth factor. Both NGF and

EGF induced strong up-regulation of Egr1 at 1h followed by a decline to near basal levels

Egr1 Transcriptional Targets in Neuronal Differentiation of PC12 Cells
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through 2–4 h (Fig 4A); however, Egr1 declined more rapidly after 1 h of EGF treatment. This

is consistent with a previous study by Harada et al. (2001), who also demonstrated sustained

Egr1 expression through 3 h of NGF treatment compared to EGF; moreover, the authors

showed that sustained Egr1 levels caused sustained expression of p35, which in turn promoted

differentiation via sustained activation of Cdk5 [59]. These observations together with those

from Fig 3A suggest that sustained Egr1 levels in response to NGF may result in sustained

binding and regulation of its target genes.

To test this, ChIP was conducted to first determine if Egr1 similarly binds a subset of pre-

dicted targets in response to EGF when at peak levels 1 h after treatment (Fig 4B). As expected,

% input values for all tested targets were similar to Myog after Egr1 IP from untreated cells,

Fig 3. ChIP analysis to evaluate binding of Egr1 and Egr2 upstream of genes with predicted Egr

binding sites. PC12 cultures were treated with or without 50 ng/ml NGF for 1 h and subjected to ChIP

assay using antibodies against Egr1, Egr2, or an IgG control. Real-time PCR was then conducted on the

immunoprecipitated DNA using primers within 250 bp of each predicted Egr binding site (see Fig 1 and S2

Table for primer locations and sequences). For genes with multiple dispersed Egr binding sites, multiple

primer sets (denoted P1, P2, etc.) were used; only data for the set that detected highest level of binding are

included here (see S1 Fig for data from the remaining primer sets). Primers to amplify a region approximately

100 bp upstream of the Myog gene were used as a negative control for Egr1 binding. (a) Data from Egr1 ChIP

are plotted as % input and are averages from three to four independent experiments ± S.E. *, One-tailed

Student’s t tests were conducted comparing the % input value for Myog after Egr1 IP to the % input values for

each predicted Egr target after Egr1 IP, which yielded p values� 0.05 for 12 predicted Egr targets. (b) Data

from Egr2 ChIP are plotted as % input and are averages from two independent experiments ± S.E.

doi:10.1371/journal.pone.0170076.g003
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whereas values increased above Myog after EGF treatment. Comparison of % input values for

each gene independently after 1 h NGF versus 1 h EGF treatment showed no significant differ-

ence (S3 Table), indicating Egr1 binds its targets at similar levels after 1 h of treatment with

Fig 4. Sustained Egr1 expression and binding upstream of target genes in response to NGF versus

EGF. (a) PC12 cell cultures were treated with 50 ng/ml NGF or 25 ng/ml EGF for 0–4 h. Total cell lysates were

harvested and subjected to SDS-PAGE and Western blot for Egr1. Egr1 levels were quantified by densitometry

and converted to % maximum levels for ten independent experiments and plotted (average ± S.E.). (b) PC12

cultures were treated with or without 25 ng/ml EGF for 1 h and subjected to ChIP assay using antibodies against

Egr1 or an IgG control. Real-time PCR was then conducted on the immunoprecipitated DNA using primers

within 250 bp of predicted Egr binding sites (see Fig 1 and S2 Table for primer locations and sequences).

Primers to amplify a region approximately 100 bp upstream of the Myog gene were used as a negative control

for Egr1 binding. Data are plotted as % input and are averages from three to six independent experiments ±S.

E. *, One-tailed Student’s t tests were conducted comparing the % input value for Myog after Egr1 IP to the %

input values for each predicted Egr target after Egr1 IP, which yielded p values� 0.05. (c) PC12 cell cultures

were treated with 50 ng/ml NGF or 25 ng/ml EGF for 0–4 h and subjected to ChIP with anti-Egr1 antibody.

Immunoprecipitated DNA was then subjected to real-time PCR with primers to detect Egr1 binding to a subset

of its target genes, which was quantified as % input. Percent input values were then converted into % maximum

values, which were plotted. *, One-tailed Student’s t tests were conducted comparing the % input values at

each time point after NGF versus EGF treatment, which yielded p values� 0.05 at the 3-hour time point for Arc,

Kctd11, Trib1, Tph1, and Vgf.

doi:10.1371/journal.pone.0170076.g004
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either growth factor. Next, maintenance of Egr1 binding upstream several targets at 1–4 h

post-treatment was evaluated by ChIP. For these experiments, the time point with highest %

input value was defined as maximum binding and values for remaining time points were con-

verted to % maximum. Similar to its protein levels, Egr1 binding to all targets peaked at 1 h

post-treatment with either NGF or EGF and then gradually declined through 4 h (Fig 4C).

However, binding was comparatively sustained after NGF treatment, specifically at the 2 and 3

h time points, which mirrors changes in Egr1 protein levels. These data confirm that NGF

induces sustained expression and binding of Egr1 to several target genes that are preferentially

expressed during sustained ERK signaling and more broadly supports the hypothesis that Egr1

acts cooperatively with CREB and AP-1 to activate a transcriptional program that is associated

with sustained ERK signaling in response to NGF (Fig 5).

Discussion

The experiments described here extend a previous study aimed at understanding how differ-

ences in ERK signaling duration cause distinct behavioral responses in PC12 cells; more specif-

ically, how sustained ERK signaling lasting 3–4 h in response to NGF induces neuronal

differentiation, whereas more transient ERK signaling lasting 30–60 min in response to EGF

promotes proliferation [8]. The previous study identified a transcriptional program that is acti-

vated by sustained ERK signaling in response to NGF, in which CREB and AP-1 act as part of

a transcription factor network that preferentially up-regulates a set of 69 genes 2–4 h after

treatment with NGF versus EGF. The present study tested the hypothesis that Egr proteins

(Egr1-4 and WT1) act cooperatively with CREB and AP-1 to activate this gene set, which is

Fig 5. AP-1, CREB, and Egr1 cooperatively regulate 28 genes during their preferential expression in

response to NGF and sustained ERK signaling. The Venn diagram summarizes genes bound by AP-1,

CREB, and/or Egr1 during their preferentially expression in response to NGF and sustained ERK signaling, as

detected by Mullenbrock et al. (2011) and the present study.

doi:10.1371/journal.pone.0170076.g005
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based on computational analysis that identified putative Egr binding sites upstream of 21

genes within the set of 69. Of the five Egr family members, our data provides strongest evi-

dence that Egr1 contributes to this transcriptional program.

As expected based on its previous characterizations as an IEG, NGF induced strong, but

transient Egr1 expression; protein levels peaked 1 h after treatment and then declined to near

basal levels through 6 h. ChIP experiments demonstrated that 1 h of NGF treatment induced

Egr1 binding upstream of 11 of the 21 genes with predicted Egr binding sites, whereas Egr1

was bound upstream of one target, Sik1/Snf1lk, at similar levels in untreated and NGF-treated

cells. To our knowledge, nine of these 12 genes (Trib1, Phlda1, Sema6, Kctd11, Sik1/Snf1lk,

Kdm6b/Jmjd3, Mafb, Hbegf, and Ankrd34c) are novel Egr1 targets and three (Vgf,Arc, and

Tph1) were previously identified. The kinetics of Egr1 binding to a subset of these targets were

examined 0–4 h after NGF treatment; consistent with its expression pattern, binding peaked 1

h after NGF treatment and then gradually declined through 4 h. EGF induced similar effects

on Egr1 expression and binding upstream of target genes, but with notable differences. Both

Egr1 protein levels and binding upstream of targets peaked 1 h after EGF treatment; however,

both then declined more rapidly through 2–3 h compared to NGF treatment. These data col-

lectively demonstrate that, compared to EGF, NGF induces sustained Egr1 expression and

binding upstream of several target genes during the same timeframe in which those genes are

preferentially expressed, which supports our hypothesis that Egr1 contributes to the transcrip-

tional program activated by sustained ERK signaling. Given Egr1’s transactivation activity, the

simplest extrapolation is that Egr1 contributes to the program through sustained transactiva-

tion of its target genes. However, since Egr1 can also act as a transcriptional repressor, a more

complex mechanism for Egr1’s contribution cannot be ruled out.

The Venn diagram in Fig 5 summarizes our data and model for the cooperative roles of

AP-1, CREB, and Egr1 in regulation of transcriptional targets during PC12 differentiation. Of

the 69 genes preferentially up-regulated during sustained ERK signaling in response to NGF,

28 are bound by one or more of these three transcription factors within the same timeframe.

AP-1 binds the largest subset (21 genes), of which 16 are also bound by Egr1 and/or CREB. Of

the 12 Egr1 targets identified here, nine are similarly bound by AP-1 and/or CREB; and of the

15 CREB targets, all but one are also bound by AP-1 and/or Egr1.

One surprising result from the Egr1 ChIP experiments discussed here was the selective

binding of Egr1 upstream of only Sik1/Snf1lk in the untreated cells, especially given its low

expression levels compared to 1 h post-NGF treatment. AP-1, whose expression and binding

upstream of target genes are induced by NGF similarly to Egr1 [8], also binds upstream of

Sik1/Snf1lk. However, in contrast to Egr1, AP-1 binding to Sik1/Snf1lk was induced similarly

to AP-1 binding to its other targets. Nevertheless, selective binding of transcription factors to

specific target genes when at basal levels is not unprecedented. For example, transcription fac-

tors c-Myc, REST/NRSF, and Ste12, have been shown to selectively bind target genes when at

basal levels [75–77]. Enrichment of CpG islands in the vicinity of binding sites has been pro-

posed as a factor that promotes selective binding of transcription factors to sites via epigenetic

modifications [76]; however, comparison of sequences surrounding the Egr1 binding sites

identified in this study did not reveal a unique enrichment of CpG islands in the vicinity of the

two putative Egr binding sites upstream of Sik1/Snf1lk.

Of the 69 genes preferentially induced by NGF, approximately 50% have been implicated in

neuronal development and/or function [8], which is consistent with the Egr1 targets identified

here. Of the 12 Egr1 targets, eight have previously characterized roles in the nervous system. Vgf
and Hbegf both encode neurotrophic factors expressed throughout the nervous system and have

been implicated in several aspects of its development and maintenance [71, 78–81]. Kdm6b/
Jmjd3 encodes an H3K27 demethylase and Kctd11 encodes an adaptor for the ubiquitin ligase
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Cullin3, both which contribute to differentiation of embryonic and neural stem cells to neurons

[82–86]. Sema6a encodes the transmembrane protein semaphorin6a, which regulates axon

guidance and dendritic growth during development [87–89], whereas Arc encodes a post-syn-

aptic protein that plays important roles in synaptic plasticity associated with learning and mem-

ory [90, 91]. Mafb encodes a transcription factor that controls hindbrain segmentation and

development at least in part via regulation of Hoxa3 and Hoxb3 expression [92–94]. Tph1
encodes tryptophan hydroxylase-1, which catalyzes the rate-limiting step in serotonin synthesis;

it is expressed in mouse brain during late stages of development and then restricted to the pineal

gland in adulthood. Polymorphisms within the Tph1 gene have been implicated in multiple psy-

chiatric conditions [95–97].

Examination of Egr family members other than Egr1 provided more modest evidence for

contribution of Egr2 to the transcriptional program. Egr2 transcript and protein levels mirrored

those of Egr1 in response to NGF. ChIP experiments suggested induction of Egr2 binding to

predicted targets after NGF treatment with an overall pattern similar to Egr1. Target genes that

yielded highest % input values from Egr1 ChIP after 1 h of NGF treatment (e.g., Vgf,Trib1, and

Phlda1) also yielded highest values from Egr2 ChIP. However, the Egr2 ChIP values were overall

much lower (3- to 8-fold) than those from Egr1 ChIP, which could be due either to lower levels

of Egr2 binding to the Egr binding sites or lower efficiency of the Egr2 antibody for ChIP in

general. Given the modesty of the Egr2 ChIP results, additional experiments focused on Egr1.

Altogether, the experiments described here extend the study by Mullenbrock et al. (2011)

that characterized a transcriptional program in PC12 cells whose activity is associated with sus-

tained ERK signaling and neuronal differentiation. Mullenbrock et al. identified a set of 69

genes preferentially up-regulated during sustained ERK signaling and provided evidence that

transcription factors AP-1 and CREB cooperatively contribute to the preferential expression of

25 genes within the set. Data shown here provide evidence that transcription factor Egr1 also

plays a cooperative role through regulation of 12 genes within the set, nine of which are also

targeted by AP-1 and/or CREB during sustained ERK signaling (see Fig 5); we also identify

nine novel targets of Egr1 regulation in general. Identification of additional transcription fac-

tors that contribute to the transcriptional program associated with PC12 neuronal differentia-

tion awaits future experiments.

Supporting Information

S1 Fig. ChIP analysis to evaluate binding of Egr1 and Egr2 upstream of genes with multi-

ple predicted Egr binding sites. PC12 cultures were treated with or without 50 ng/ml NGF

for 1 h and subjected to ChIP assay using antibodies against Egr1, Egr2, or an IgG control.

Real-time PCR was then conducted on the immunoprecipitated DNA using primers within

250 bp of each predicted Egr binding site (see Fig 1 and S2 Table for primer locations and

sequences). For genes with multiple dispersed Egr binding sites, multiple primer sets (denoted

P1, P2, etc.) were used (see S1 Fig for data from the remaining primer sets). Primers to amplify

a region approximately 100 bp upstream of the Myog gene were used as a negative control for

Egr1 binding. (a) Data from Egr1 ChIP are plotted as % input and are averages from three to

four independent experiments ± S.E. �, Student’s t tests were conducted comparing the %

input value for Myog after Egr1 IP to the % input values for each predicted Egr target after

Egr1 IP, which yielded p values� 0.05 for several primer sets. (b) Data from Egr2 ChIP are

plotted as % input and are averages from two independent experiments ± S.E.

(TIFF)

S1 Table. Primer sequences used for real-time RT-PCR. Transcript levels of Egr1-4 and

WT1 were evaluated by real-time RT-PCR using the forward and reverse primers listed within
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this table.

(XLSX)

S2 Table. Putative Egr binding site locations and ChIP primer sequences and locations.

This table provides the locations and sequences of putative Egr binding sites identified within

the rat genome. Locations and sequences for forward and reverse primers used in real-time

PCR following ChIP are also listed, alongside their Figs 1 and 3 and S1 Fig designations.

(XLSX)

S3 Table. Comparison of % input values from Egr1 ChIP following 1 h of NGF or EGF

treatment. Percent input values for several Egr1 target genes after Egr1 ChIP from cells treated

with 50 ng/ul NGF or 25 ng/ul EGF for 1 h are listed and compared by Student’s t test. p values

for all Egr1 targets were� 0.25.

(XLSX)
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