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Abstract

Comprehensive two-dimensional gas chromatography coupled with mass spectrometry (GC×GC-

MS) has been used to analyze multiple samples in a metabolomics study. However, due to some 

uncontrollable experimental conditions, such as the differences in temperature or pressure, matrix 

effects on samples, and stationary phase degradation, there is always a shift of retention times in 

the two GC columns between samples. In order to correct the retention time shifts in GC×GC-MS, 

the peak alignment is a crucial data analysis step to recognize the peaks generated by the same 

metabolite in different samples. Two approaches have been developed for GC×GC-MS data 

alignment: profile alignment and peak matching alignment. However, these existing alignment 

methods are all based on a local alignment, resulting that a peak may not be correctly aligned in a 

dense chromatographic region where many peaks are present in a small region. False alignment 

will result in false discovery in the downstream statistical analysis. We, therefore, develop a global 

comparison based peak alignment method using point matching algorithm (PMA-PA) for both 

homogeneous and heterogeneous data. The developed algorithm PMA-PA first extracts feature 

points (peaks) in the chromatography and then searches globally the matching peaks in the 

consecutive chromatography by adopting the projection of rigid and non-rigid transformation. 

PMA-PA is further applied to two real experimental data sets, showing that PMA-PA is a 

promising peak alignment algorithm for both homogenous and heterogeneous data in terms of F1 

score, although it uses only peak location information.
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1. Introduction

Multiple samples are usually analyzed in a metabolomics study to obtain a better statistical 

power, by assessing the biological variation between samples as well as the technical 

variation generated during sample analysis. Due to some uncontrollable experimental 

conditions, such as the differences in temperature or pressure, matrix effects on samples, and 

stationary phase degradation, there is always a shift of retention times in the two gas 

chromatography (GC) columns between samples. Therefore, the peak alignment is a crucial 

data analysis step to recognize the peaks generated by the same metabolite in different 

samples. In order to correct the retention time shifts in the two dimensional GC system, two 

approaches have been developed to align comprehensive two-dimensional gas 

chromatography coupled with mass spectrometry (GC×GC-MS) data: profile alignment and 

peak matching alignment.

Four profile alignment methods have been reported using the two-dimensional retention 

times: the rank annihilation method1, a correlation-optimized shifting method2, a piecewise 

retention time alignment3, and a two-dimensional correlation optimized warping4. Aligning 

metabolite peaks solely based on the two-dimensional retention times may introduce a high 

rate of false-positive alignment because some metabolites with similar chemical functional 

groups have similar retention times in both GC dimensions. For this reason, four peak 

matching methods, MSort5, DISCO6, mSPA7, and SWPA8 were developed using both the 

two-dimensional retention times and mass spectrum similarity for alignment. The main 

difference between MSort/mSPA and DISCO/SWPA approaches is that DISCO and SWPA 

can be applied to both homogeneous and heterogeneous data while MSort and mSPA are 

only able to align homogeneous data. The homogeneous data mean that all samples were 

analyzed under the identical experiment conditions and the heterogeneous data refer that 

experiment data were acquired under different experiment conditions. However, these 

existing alignment methods are all based on a local alignment, resulting that a peak is likely 

to be not correctly aligned in a dense chromatographic region where many peaks are present 

in a small region. False alignment will result in false discovery in the downstream statistical 

analysis.

Point matching algorithms (PMAs) are often used in the domains of computer vision and 

medical imaging. It first extracts feature points in the image and then searches globally the 

matching points in the consecutive images by adopting the projection of rigid and non-rigid 

transformation. There are several versions of PMA including the iterated closest-point 

algorithm (ICP)9, robust point matching (RPM)10, the thin-plate spline RPM (TPS-RPM)11, 

coherent point drift (CPD)12, etc. The CPD method has two versions: rigid and nonrigid. 

The rigid CPD is an iterative method based on Gaussian Mixture model, while the nonrigid 

CPD regularizes the displacement field between the point sets following the motion 

coherence theory, optimally computing the transformation. A key advantage of CPD over 
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other PMA methods is the ability to dramatically reduce computational complexity and 

expense.

To resolve the aforementioned challenges on existing peak alignment algorithms, we 

develop a global comparison based peak alignment method using PMA (PMA-PA). The 

developed PMA-PA algorithm employs the CPD method. We choose the CPD method 

because of the following properties: (i) robustness to degradations such as outliers and 

missing points, (ii) ability to deal with high dimensional data efficiently, and (iii) ability to 

reduce computational complexity and expense. Note that outliers are the points (peaks) that 

have no corresponding points (peaks) to align due to missing points in a corresponding data 

set. That is, outliers and missing points are correspondingly defined. The proposed PMA-PA 

algorithm can further deal with both homogeneous and heterogeneous data. In this study, we 

particularly focus on examining the feasibility and ability of PMA-PA in relation to peak 

alignment using the two dimensional retention times only.

2. Materials and Methods

2.1. GC×GC-MS Data

A mixture of 76 compound standards (8270 MegaMix, Restek Corp., Bellefonte, PA), C7–

C40 saturated alkanes (Sigma-Aldrich Corp., St. Louis, MO) and a deuterated six 

component semi-volatiles internal standard (ISTDF) mixture (Restek Corp., Bellefonte, PA) 

at a concentration of 2.5 μg/mL were analyzed on a LECO Pegasus 4D GC×GC-MS 

instrument (LECO Corporation, St. Joseph, MI, USA) equipped with a cryogenic modulator. 

The GC×GC-MS analyses were repeated 10, 2, and 4 times under three different 

temperatures, 5 °C/min, 7 °C/min, and 10 °C/min, respectively, resulting in a total of 16 data 

sets. All GC×GC-MS analyses were performed on a LECO Pegasus 4D time-of-flight mass 

spectrometer (TOF-MS) with a Gerstel MPS2 autosampler. The Pegasus 4D GC×GC-MS 

instrument was equipped with an Agilent 7890 gas chromatograph featuring a LECO two-

stage cryogenic modulator and secondary oven. A 30 m × 0.25 mm i.d. × 0.25 μm film 

thickness, Rxi-5 ms GC capillary column (Restek Corp., Bellefonte, PA) was used as the 

primary column for the GC×GC-MS analysis. A second GC column of 1.2 m × 0.10 mm i.d. 

× 0.10 μm film thickness, BPX-50 (SGE Incorporated, Austin, TX) was placed inside the 

secondary GC oven after the thermal modulator. The helium carrier gas flow rate was set to 

1.0 mL/min at a corrected constant flow via pressure ramps. A 1 μL liquid sample was 

injected into the liner using the splitless mode with the injection port temperature set at 

260 °C. The primary column temperature was programmed with an initial temperature of 

60 °C for 0.5 min and then ramped at a variable temperature gradient to 315 °C. The 

secondary column temperature program was set to an initial temperature of 65 °C for 0.5 

min and then also ramped at the same temperature gradient employed in the first column to 

320 °C accordingly. The thermal modulator was set to +20 °C relative to the primary oven, 

and a modulation time of 5 s was used. The MS mass range was 10–750 m/z with an 

acquisition rate of 150 spectra per second. The ion source chamber was set at 230 °C with 

the MS transfer line temperature set to 260 °C, and the detector voltage was 1800 V with 

electron energy of 70 eV. These data sets were previously used for development of DISCO6, 

mSPA7, and SWPA8 algorithms.
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2.2. Sketch of CPD algorithm

As mentioned above, PMA is a process of finding a spatial transformation that aligns two 

point sets. Let {M, S} be two point sets in a finite-dimensional vector space Rd, which 

contain l and n points, respectively, i. e., |M| = l, M ⊂ Rd, |S| = n, and S ⊂ Rd. Note that d = 

2 in this study. A key procedure of PMA is to find a transformation T to be applied to the 

moving ’model’ point set M such that the difference between M and the static ’scene’ set S 
is minimized, i.e. to find Tmin:

(1)

In this work, we apply the Coherent Point Drift (CPD) algorithm for both rigid and nonrigid 

point set registrations, introduced by Myronenko and Song12. CPD considers the alignment 

of two point sets, ’model’ and ’scene’ sets, as a probability density estimation problem and 

applies Gaussian mixture models (GMMs) to both point sets. Then it fits GMM centroids 

representing the ’model’ set to the ’scene’ set by maximizing the likelihood, and aligns two 

point sets using the posterior probabilities of the GMM components. By doing so, it 

preserves the topological structure of the points sets during the alignment, which is a critical 

characteristic of CPD. In order to account for outliers and missing points, an extra 

distribution term, such as large Gaussian15 or uniform distribution16, is included to the 

GMM components. In the CPD method, a uniform distribution is added to the mixture 

model to account for outliers and missing points. The GMM probability density function of 

CPD is as follows:

(2)

where , and ω is a weight between 0 and 1. Then CPD 

reparameterizes the GMM centroid location by a set of parameters θ and ω, and fits the two 

density functions together by maximizing the likelihood, or equivalently, by minimizing the 

negative log-likelihood function

(3)

under the assumption that the data are independently and identically distributed.

To estimate θ and ω, the Expectation-Maximization (EM) algorithm is used14. The initial θ0 

and ω0 are guessed and plugged into the log likelihood function,  in the E-step. 

Then, in the M-step, according to the Bayes’ Theorem, the new parameters θ1 and ω1 are 

found by minimizing the expectation of the log-likelihood function
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(4)

where the indices correspond to the indices of the parameters. In the rigid case, CPD 

imposes the coherence constraint by reparameterization of GMM centroid locations with 

rigid parameters and derive a closed form solution of the maximization step of the iteration. 

In the nonrigid case, it imposes the coherence constraint by regularizing the displacement 

field and using the variational calculus to derive the optimal transformation. For more 

details, we refer the reader to the work of Myronenko and Song12.

2.3. Z-score standardization

The domains of the first and the second dimension retention times in GC×GC-MS data are 

different from each other. For instance, the first dimension retention time ranges from 300s 

to 4000s, while the second dimension retention time ranges 0s to 5s. This discrepancy often 

hampers accurate peak alignment, in particular, for the heterogeneous case. To resolve this 

difficulty, we use the z-score that is a common method to standardize a variable. It is defined 

as

(5)

where E(X) and σ(A) are the expectation and its standard deviation of the variable X, 

respectively. We apply z-score to precondition the data sets.

2.4. PMA-PA algorithm

The developed PMA-PA algorithm aligns the two sets of peaks generated from two GC×GC-

MS experiments by the CPD method. However, the CPD method finds the transformation of 

the ’model’ data set only, resulting that the aligned results are not consistent with the choice 

of the ’model’ data set. Therefore, to produce the consistent aligned peak pairs regardless of 

the choice of the ’model’ data set, the PMA-PA performs the CPD alignment two times by 

switching the role of the ’model’ and the ’scene’ data sets. Then the consensus is carried out 

to preserve the peak pairs only that are present in both CPD-based aligned lists.

2.5. Performance evaluation

To reflect the real systemic biases generated from GC×GC-MS experiments, we employed 

the real experiment data sets and used the compound names identified at each data set to 

evaluate the performance of the developed PMA-PA algorithms. That is, if the aligned peaks 

(points) have the same compound name, we consider this matching as a positive matching 

pair. If not, this matching will be considered as a negative matching pair.

In particular, as described before, the first data set of 16 experiments was generated by the 

mixture of compound standards, meaning that these compounds were artificially introduced 
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in the samples. As shown in Fig. 1, most of these compound standards were detected and 

correctly identified from each experimental data set. Furthermore, to reflect the 

heterogeneous cases, the experiments were carried out under three different temperatures, 

5 °C/min, 7 °C/min, and 10 °C/min. The peak alignments within the same temperatures 

represent the homogeneous alignment, while those between the different temperatures 

represent the heterogenous alignment. In addition to the data acquired from mixture of 

compound standards, the real biological data were used to reflect a dense chromatographic 

region where many peaks are present in a small region as can be seen in Fig. 2. Since these 

data were carried out under the same experimental conditions, the peak alignments among 

these biological data reflect the homogeneous alignment.

Suppose that there are l points in the ’model’ set M = {m1, m2, ⋯, ml}, and n points in 

the ’scene’ set S = {s1, s2, ⋯, sn}, with u positive matching pairs 

, where u ≤ min(l, n). If a certain point matching 

method is applied to the two data sets, M and S, and ν matched pairs are found, then the true 

positive rate (TPR) and predictive positive value (PPV) are defined as follows:

(6)

where TP is the number of positive matching pairs that were aligned as positive (true 

positive) and is less than or equal to min(u, ν). The F1 score is defined as the harmonic 

average of TPR and PPV, i.e.

(7)

2.6. Tuning parameters

The CPD method has two types of transformation: rigid and nonrigid transformation. The 

rigid transformation requires the three tuning parameters: maximum step, tolerance, and ω ∈ 
[0, 1), while the nonrigid transformation has two more tuning parameters in addition to those 

of the rigid transformation: maximum step, tolerance, ω ∈ [0, 1), β ∈ [1, 5], and λ ∈ [1, 5]. 

The first two tuning parameters, maximum step and tolerance, control when to stop the EM 

iteration. The third parameter ω plays a role in preconditioning the amount of the potential 

outliers/missing points in the data sets. As can be seen in Equation (2), the smaller ω, the 

more outliers/missing points because the uniform distribution will have more weights as the 

ω decreases. The parameter β in the nonrigid transformation represents the width of 

smoothing Gaussian filter13, i.e. the less β, the less oscillations (high frequency waves), 

resulting in the transformation function smoother. The last parameter λ tunes the weight of 

the penalty term, i.e. as λ decreases, the likelihood function becomes dominated, while as λ 
increases, the objective function becomes smoother. According to our application to real 

experiment data sets, the tuning parameters, maximum step and tolerance, barely affect the 

result. However, the parameter ω plays a critical role in improving the performance of both 

rigid and nonrigid methods. And β and λ need only for the nonrigid algorithm. We also 
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consider the two more factors that affect the performance of peak alignment, which are the 

z-score standardization and the rigid/nonrigid transformations.

In case of the rigid transformation, we explore the effect of ω on the peak alignment by 

taking 10 points by dividing the interval [0, 0.999] into 9 equal-width subintervals. 

Similarly, in case of the nonrigid transformation, we evaluate the influence of ω, β, and λ on 

the peak alignment by taking 10 cut-points for each interval of the three tuning parameters.

3. Implementations

3.1. Homogeneous cases

The developed PMA-PA algorithms are applied to the homogeneous data sets A1 to A10 and 

the performance results are depicted in Figure 3. The rigid method without z-score is the 

most sensitive to the tuning parameter ω, while the nonrigid without z-score has little 

influence on the change of ω. The methods with z-score show the similar behavior in regard 

to ω. The best performance occurs when the rigid without z-score is applied with ω of 0 in 

terms of the PPV-TPR plot. Note that the best performance will occur when the point is 

located in the top right-most area in the PPV-TPR plot.

The nonrigid method has two more tuning parameters, β and λ. Both plots (Figures 3b and 

3c) clearly show that there is no effect of β and λ on the method without z-score, but their 

influence on the method with z-score is not ignorable. The nonrigid method without z-score 

outperforms that with z-score when β and λ are considered.

The overall performance in homogeneous cases is displayed in Figure 3d in terms of F1 

score. As shown in other figures, the variance of the nonrigid method without z-score is the 

smallest among others and the rigid method without z-score has the largest variance. The 

ANOVA followed by Tukey’s post hoc tests demonstrates that the nonrigid without z-score 

significantly achieves the highest mean F1 score compared to other methods as shown in 

Table 1. The cases with the maximum F1 score are further shown in Table 2. Interestingly, 

the maximum F1 score occurs when the rigid without z-score is used with ω = 0, although it 

is not significantly different from when the nonrigid without z-score is used with ω = 0, β = 

5, and λ = 2.2.

3.2. Heterogeneous cases

The results of the heterogeneous cases are shown in Figure 4. In this case, we aligned two 

sets of experiment data that were generated in different temperatures, i.e., (A and B), (A and 

C), and (B and C), using PMA-DA.

As expected, we can see that its performance is quite different from that of the homogeneous 

cases. Although the effect of ω is little to the methods without z-score similar to the 

homogeneous cases, the peak alignment performs much better with the methods with z-

score. Likewise, the effects of β and λ are relatively large in the nonrigid method with z-

score, but it outperforms the nonrigid method without z-score in terms of the PPV-TPR plot.
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As can be seen in Figure 4d, the influence of tuning parameters on peak alignment is smaller 

without z-score, but the overall performance is much better with z-score than that without z-

score. In terms of the overall mean F1 score (see Table 1), both methods with z-score 

achieve comparable peak alignments, but the one-way ANOVA with Tukey’s post hoc 

analysis confirms that the nonrigid method with z-score has significantly higher mean of F1 

scores than others. The maximum F1 score is observed when the nonrigid method with z-

score is applied with ω = 0.889, β = 2.2, and λ = 5, as shown in Table 2.

3.3. Analysis of biological data

The real biological data sets (D1–D5) are more dense than the data sets A, B, and C, as 

displayed in Figure 2. The developed algorithms are applied to these biological data sets and 

its results are displayed in Figure 5.

Similar to the previous cases, the nonrigid method without z-score shows the least sensitive 

to the tuning parameters. In case of ω, the rigid method with z-score can surpass the PPV of 

the nonrigid method without z-score, but its TPR is much less than that of the nonrigid 

method without z-score regardless of the cut-off values of ω. The effect of both β and λ is 

significant for the nonrigid method with z-score. In both tuning parameters, the PPV of the 

method with z-score is larger than that of the method without z-score, while the TPR without 

z-score is larger than that with z-score.

The overall F1 scores are shown in Figure 5d. Although the absolute F1 scores are less than 

those of homogeneous cases (see Figure 3d), the general trends are similar to each other. 

Namely, the rigid method without z-score has the largest variation, the nonrigid without z-

score has the highest mean F1 score and other methods have the similar mean F1 scores to 

each other (see Table 1).

The one-way ANOVA and Tukey’s post hoc analyses demonstrate that the nonrigid without 

z-score significantly achieves the highest mean F1 score among the four methods similar to 

the homogeneous cases (see Table 1). As can be seen in Table 2, the maximum F1 score 

occurs when the nonrigid method without z-score is used with ω = 0.999, β = 1, and λ = 1.

4. Concluding Remarks

A new peak alignment method, PMA-PA, is developed using point matching algorithms in 

order to deal with both homogeneous and heterogeneous GC×GC-MS data.

According to the application to the data sets A, B and C, the z-score standardization is 

necessary for heterogeneous cases but not for homogeneous cases in order to achieve the 

highest performance in peak alignment (Table 2), as we expected. The overall mean and 

maximum F1 scores demonstrate that the peak alignment will achieve the highest 

performance when the nonrigid method is utilized for both homogeneous and heterogenous 

data. This implies that the retention time shift is nonlinear. Note that, although the maximum 

F1 score is observed when the rigid method is used in homogeneous cases, the difference 

with the nonrigid method is not significant and further the overall mean F1 score of the 

nonrigid method is significantly higher than that of the rigid method (Table 1).
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The developed algorithm was also validated using real biological data sets, which is a 

homogeneous case. This application further confirms that the nonrigid method without z-

score performs the best among four methods in terms of the overall mean and maximum F1 

scores. However, its optimal tuning parameters are different from those with the 

homogeneous data A. The optimal value of ω was larger with the data set D (ω = 0.999) 

than that with the data set A (ω = 0). In other words, the homogeneous data set A was 

aligned only based on a uniform distribution, while the biological homogeneous data set D 

was aligned dominantly based on GMM (see Equation 2). This is because the data set A has 

little shift in retention time. On the other hand, the optimal values of β and λ are smaller 

with the data set D than those with the data set A (Table 2). This is because the data set D is 

more dense than the data set A.

On the basis of an anonymous reviewers suggestion, we also performed the PMA-PA using 

the one-way approach. In that case, instead of two PMA runs for the developed PMA-PA 

(i.e., two-way PMA-PA approach), we performed one PMA run and then used only the one-

to-one matchings for the peak alignment. All the results of the one-way PMA-PA 

approaches are in Tables 3–4. As can be seen in Tables 1–4, the overall trends of the one-

way PMA-PA are very similar to those of the two-way PMA-PA, but the overall F1 scores 

are higher in the two-way PMA-PA than in the one-way PMA-PA.

The z-score standardization can be considered as a non-rigid transformation so that one can 

expect that PMA-PA with non-rigid transformation would not be affected by z-score 

standardization, while PMA-PA with rigid transformation would be. However, as shown in 

Table 2, the z-score standardization significantly contributes on the performances of both 

non-rigid and rigid transformations in case of heterogeneous data. On the other hand, the 

parameter estimation in PMA is carried out by EM algorithms which are known to be local 

optimization. One of disadvantages on local optimization is that the initial guess or starting 

value is critical and can greatly affect the outcome of the optimization. Thus, due to the 

nature of the data, the heterogeneous case will require a good initial guess enough to find a 

solution. Indeed, both non-rigid and rigid transformations yielded poor performance without 

z-score standardization, while the performance is dramatically improved with z-score 

standardization. In that regard, it seems that the z-score standardization provides a good 

initial guess for the heterogeneous data sets, resulting in a better performance in peak 

alignment.

All existing approaches use either both the peak (location) distance and the mass spectral 

similarities or only the mass spectral similarities, while the developed approach uses the 

peak distance only. For this reason, there is no available approach to compare with the 

proposed PMA-PA, except for one of the methods carried out in Ref. 7, which is PAD with 

Euclidean distance but only for homogeneous cases. Comparing with the results of PAD 

available in the Supplementary Data II of Ref. 7, PMA-PA performs better than PAD for 

both homogeneous and mice data sets (PMA-PA vs. PAD: 93.61% vs. 92.53% for 

homogeneous and 48.40% vs. 47.28% for mice).

In conclusion, our applications to experiment data demonstrate that the points matching 

algorithm is promising for the peak alignment for both homogenous and heterogeneous data. 
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In particular, in this study, we used only peak position or location information for the peak 

alignment different from the existing methods that use either both the peak (location) 

distance and the mass spectral similarities or only the mass spectral similarities. Although 

the peak location includes the less information than the mass spectral similarity, the 

developed PMA-based alignment achieves the comparable performances in terms of F1 

scores6,7,8. In addition, this study shows that the nonrigid method is an optimal choice 

regardless of whether the data are homogeneous or heterogeneous.
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Fig. 1. 
Chromatograms of the first spiked-in data set. A1–A10: under 5 °C/min, B1–B2: under 

7 °C/min, and C1–C4: under 10 °C/min. The numbers indicate the number of compounds 

identified and the rug plot represents the density of each retention time.
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Fig. 2. 
Chromatograms of five GC×GC-MS data set acquired from metabolite extracts of mouse 

livers. The numbers indicate the number of compounds identified and the rug plot represents 

the density of each retention time.
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Fig. 3. 
Homogeneous case using the data sets A1–A10.
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Fig. 4. 
Heterogeneous case using the data sets A1–A10:B1–B2:C1–C4
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Fig. 5. 
Real biological data using the data sets D1–D5
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