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Abstract

The role played by epistasis between alleles at unlinked loci in shaping population fitness has been 

debated for many years and the existing evidence has been mainly accumulated from model 

organisms. In model organisms, fitness epistasis can be systematically inferred by detecting non-

independence of genotypic values between loci in a population and confirmed through examining 

the number of offspring produced in two-locus genotype groups. No systematic study has been 

conducted to detect epistasis of fitness in humans owing to experimental constraints. In this study, 

we developed a novel method to detect fitness epistasis by testing the correlation between local 

ancestries on different chromosomes in an admixed population. We inferred local ancestry across 

the genome in 16,252 unrelated African Americans and systematically examined the pairwise 
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correlations between the genomic regions on different chromosomes. Our analysis revealed a pair 

of genomic regions on chromosomes 4 and 6 that show significant local ancestry correlation (p-

value = 4.01 × 10−8) that can be potentially attributed to fitness epistasis. However, we also 

observed substantial local ancestry correlation that cannot be explained by systemic ancestry 

inference bias. To our knowledge, this study is the first to systematically examine evidence of 

fitness epistasis across the human genome.
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Introduction

Epistasis between alleles in unlinked loci has been considered to play an important role in 

shaping genetic variation, and the empirical evidence is mainly restricted to model 

organisms [Corbett-Detig, et al. 2013; Cutter 2012; Presgraves 2010]. In inbreeding studies 

of mice, functionally related unlinked genes under selection exhibited greater gametic phase 

disequilibrium (GPD) than did unrelated genes [Petkov, et al. 2005]. A recent experiment 

using Drosophila melanogaster recombinant inbred lines demonstrated that genetic 

incompatibilities are widespread within the species, and that the Dobzhansky-Muller model 

of reproductive incompatibilities, often used to explain reproductive isolation between 

species, did not need to be invoked to account for this observation [Rohlfs, et al. 2010]. In 

humans, epistasis is frequently suggested as a potential explanation for the missing 

heritability observed in genome-wide association studies, although this hypothesis still has a 

very limited evidentiary basis [Manolio, et al. 2009; Zuk, et al. 2012]. Recently, many cis 
interactions of two SNPs on gene expression levels have been reported in humans [Hemani, 

et al. 2014]. However, these interactions are likely to be explained by single variants in GPD 

in each of the interacting SNPs [Dudbridge and Fletcher 2014], suggesting the challenge in 

detecting true interactions.

Only a few studies have investigated fitness epistasis in human subjects, also known as 

coevolution [Raj, et al. 2012; Rohlfs, et al. 2010; Single, et al. 2007]. Based on the 

assumption that a functional interactive coevolution could be maintained through 

complementary mutations over evolutionary history [Jothi, et al. 2006; Rohlfs, et al. 2010], a 

protein-protein network study reported that by using polygenetic distance metrics of the 

large-scale high-throughput protein-protein interaction data the Alzheimer's disease (AD) 

associated genes PICALM, BIN1, CD2AP, and EPHA1 present coevolution evidence [Raj, 

et al. 2012]. The killer immunoglobulin receptor (KIR) and HLA loci have shown a 

signature of coevolution, with strong negative correlation, between the gene frequencies of 

KIR and the corresponding HLA ligand [Single, et al. 2007]. Combinations of KIR and 

HLA variants have different degrees of resistance to infectious diseases that affect human 

survival during epidemics [Parham 2005]. Rohlfs, et al. developed a method using composite 

linkage disequilibrium and genotype association scores to detect GPD between the candidate 

coevolved gamete-recognition genes ZP3 and ZP3R [Rohlfs, et al. 2010]. However, a recent 

experiment showed that ZP3R is not involved in sperm-zona pellucida binding in mouse 
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fertilization and suggested that there is no coevolution evidence between ZP3 and ZP3R 
[Muro, et al. 2012]. Crucially, no study has convincingly reported an interaction between 

two unlinked loci on fitness epistasis in humans, largely because of the scarcity of available 

data and inadequate statistical power. Thus, how epistasis, through its effect on fitness, 

shapes genetic variation at the population level is largely unknown in humans.

The European population is estimated to have migrated from Africa 90-120 thousand years 

ago [Tishkoff and Williams 2002]. The regional sub-populations evolved independently to 

adapt to a range of environments before contemporary gene flow occurred as a result of 

geographic cohabitation in the Western Hemisphere. African-Americans inherit their 

genome from both African and European ancestors. Fitness epistasis can result in ancestry 

correlations between different chromosome regions. Genotyping technologies and analysis 

algorithms now make it possible to distinguish European from African ancestry sequences at 

a high resolution across the genome [Baran, et al. 2012; Price, et al. 2009; Tang, et al. 2006]. 

As a consequence, we hypothesized that the dense SNPs genotyped in large African-

American GWAS studies should make it possible to test fitness epistasis in humans by 

testing ancestry correlations across the genomic regions. In this study, we propose to develop 

a new approach to detect fitness epistasis in an admixed population.

Methods

Theoretical model of fitness epistasis on different chromosomes in an admixed population

We assumed that the African and European populations have been exposed to different 

environments. Besides genetic random drift, adaptation will also contribute to the variation 

of genotype frequencies in each population. It is reasonable to assume that some alleles with 

selective advantage in one population may have selective disadvantage or be neutral in 

another population because of different environments (e.g. the thrifty gene hypothesis [Neel 

1962]). Under this assumption we expect substantial allele frequency difference between 

African and European populations at loci under selection pressure. In particular, the African 

and European genomes may carry different variants that have either a selective advantage or 

a selective disadvantage in North America. Theoretically, we demonstrated that the presence 

of a two-locus fitness epistasis, defined as a two-locus fitness not equal to the product of the 

corresponding marginal fitnesses, can create correlations between local ancestries at 

unlinked loci.

We use African Americans as an example to demonstrate our model. We assume that the ith 

and jth loci are located on two different chromosomes and there is no linkage between them 

during transmission from one generation to the next generation. Both the ith and jth loci have 

two alleles, Ai and ai, and Aj and aj. We use superscript A and E to respectively represent an 

African and a European allele, i.e.  and  represent an African and a European Ai allele, 

respectively. The parameters used in this section are described in Table 1. The genotype 

frequencies before selection are the products of allele frequencies as presented in Table 2. 

We assume a general fitness model for two-locus genotypes as well as the marginal fitnesses 

that are displayed in Table 3. The two-locus genotype frequencies after selection can be 

calculated using the above tables, assuming independence between the ith and jth locus. For a 
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two-locus genotype, we count the number of alleles inherited from African ancestral 

population as an individual's local ancestry at a locus.

Let Xi and Xj be random variables representing the number of African ancestry alleles at the 

ith and jth loci in an individual, respectively. The covariance between Xi and Xj after 

selection can be written as, after some algebra,

where c is the inverse of the average fitness:

When only the ith locus contributes the fitness variation, we have s22 = s21 = s20, s12 = s11 = 

s10 and s02 = s01 = s00. In this case, it is easy to check that cov(Xi, Xj) = 0.

In the case of the multiplicative model, two-locus fitness is the product of corresponding 

marginal fitness, that is, skl = ukvl for k=0, 1 or 2 and l=0, 1 or 2. In this case, cov(Xi, Xj) = 

0. The other special cases of two-locus fitness will not lead to covariance of 0 (Appendix 1). 

The above theoretical calculation suggests that all the fitness models except the 

multiplicative fitness model will create correlations between unlinked local ancestries.

A combination of an African allele at one locus and a European allele at the other locus may 

have fitness advantage, resulting in a negative local ancestry correlation. A positive 

correlation suggests that alleles from the same ancestral population at unlinked loci are more 

likely to be transmitted together. In this case, two alleles from the same ancestral population 

have a fitness advantage. Our model assumes local ancestry does not contribute to fitness in 

a two-locus genotype. Since the local ancestry frequency has smaller variation across the 

genome than the frequency of a genetic variant in the African-American population, testing 

the correlation between local ancestries is more powerful than testing the correlation 

between SNPs. Furthermore, admixture linkage disequilibrium extends much further than 

background linkage disequilibrium (LD); therefore, testing correlations between local 

ancestries has less statistical penalty because of multiple comparisons than testing the 

correlation between SNPs.

Statistical Model

Because of high correlation between adjacent local ancestries, we divided the genome into 

bins with average length 400kb. The local ancestry at the middle marker was used to 

represent the local ancestry of a bin. To estimate the correlations between the bins, we 
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propose to use a linear regression model between pairs of bins on different chromosomes, 

described by

(1)

where Xi is the local African ancestry in the ith bin, Xj is the local African ancestry in the jth 

bin, and X̄
–i is the average ancestry calculated by excluding the chromosome where the ith 

bin is located. We did not perform this analysis for bins falling on the same chromosomes, 

because of the high local ancestry correlation within a chromosome.

Using X̄
–i instead of the average of the local ancestries across the whole genome, denoted as 

X̄, to control the effect of population admixture or population structure, results in unbiased 

estimates. To see this, it is reasonable to assume that the background correlations between 

bins on different chromosomes are created by common population admixture history; 

therefore, the background correlation between different chromosomes is the same. In this 

model, Xi and Xj are not on the same chromosome, nor are Xi and X̄
–i. Thus, cov(Xi, Xj – 

X̄
–i) = cov(Xi, Xj) – cov(Xi, X̄

–i) = 0. Since model (1) is equivalent to Xi = β0 + β1(Xj – X̄
–i) 

+ β2X̄
–i + ε, under the null hypothesis,

On the other hand, using X̄ to control the effect of population admixture results in a negative 

bias because X̄ includes local ancestries on the chromosome that Xi is located on and these 

are highly positively correlated with Xi. Thus, cov(Xi, Xj – X̄) = cov(Xi, Xj) – cov(Xi, X̄) < 

0 under the null hypothesis. We also compared regression model (1) with the following two 

regression models:

(2)

and

(3)

where PC1, ..., PC10 are the first 10 principal components calculated using LD-pruned 

genome-wide markers.

Samples and local ancestry inferences

We applied the statistical models to the African-American samples with available genome-

wide genotypes from three large datasets: 1) the Candidate Gene Association Resources 

(CARe) study initiated by the National Heart, Lung, and Blood Institute (NHLBI), which 

Wang et al. Page 5

Genet Epidemiol. Author manuscript; available in PMC 2018 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



includes 8,367 African-American subjects collected from five cohorts, the Atherosclerosis 

Risk in Communities study (ARIC), the Jackson Heart Study (JHS), the Coronary Artery 

Risk Development in Young Adults study (CARDIA) the Cleveland Family Study (CFS), 

and the Multi-Ethnic Study of Atherosclerosis (MESA) [Zhu, et al. 2011] -- the Affymetrix 

6.0 platform was used for genotyping. These genotype data was downloaded from the 

dbGAP database; 2) the Family Blood Pressure Program (FBPP), also initiated by the 

National Heart, Lung, and Blood Institute, which collected 3,636 African-American subjects 

from three center networks, GenNet, GENOA and HyperGEN [2002] -- the genotyping 

platforms used were Affymetrix 6.0 and Illumina 1M; 3) the Women's Health Initiative 

(WHI), with 8150 African-American subjects who were genotyped with the Affymetrix 6.0 

platform. Standard quality controls for SNPs were performed.

We inferred local ancestries (the probabilities of an allele being inherited from parental 

populations) at each genetic locus across the genome for the three datasets using the 

software HAPMIX [Price, et al. 2009] and SABER+ [Tang, et al. 2006]. Both HAPMIX and 

SABER+ can be applied to dense genetic markers allowing for gametic phase disequilibrium 

between markers. HAPMIX was applied to the CARe for inferring local ancestries, while 

SABER+ was applied to the CARe, FBPP and WHI. SABER+ has been substantially 

improved since the first version, which results in similar performance compared to other 

software (correlation with HAPMIX is 0.97 ± 0.01 in the CARe). It has been demonstrated 

that both SABER+ and HAPMIX can reliably make local ancestry inference for African-

American subjects. We eliminated related samples and samples with extremely low (≤5%) or 

high (≥98%) African proportions (Supplementary Fig. S1). After that, 16,252 samples were 

used in the downstream analysis.

Because of high correlation between adjacent local ancestries, we divided the genome into 

7,389 bins with average length of 400kb. The local ancestry at the middle marker was used 

to represent the local ancestry of a bin. There are 213 bins located within 2 Mb of the 

chromosome boundaries or centromeres, and these bins were excluded in the analysis, as 

suggested by Bhatia et al [Bhatia, et al. 2014] because of potential larger inference errors. 

We also conducted inverse-variance weighted meta-analysis to combine the results of the 

three datasets using the METAL software [Willer, et al. 2010].

Simulation of African Americans under no selection

We also simulated three cohorts of African-Americans using the method described in 

HAPMIX [Price, et al. 2009]. The sample sizes are 6238, 1864, and 8150, which equal the 

sample sizes of the CARe, FBPP, and WHI after applying sample quality control. In order to 

save computation time, we chose one out of every three markers in the HapMap phase 3 

data, resulting in 461,005 markers. We applied the HapMap YRI and CEU phased 

haplotypes as ancestral haplotypes to construct the haploid genome of an admixed 

individual. We randomly sampled YRI and CEU haplotypes with 80%/20% probabilities. 

Beginning with the first marker of a chromosome, we randomly sampled a haplotype based 

on haplotype frequencies in the sampled ancestry population. When a recombination event 

occurred, a new sampling was drawn from the reference haplotypes with the same 

probability. A recombination event between two adjacent markers was sampled with 
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probability (1 – e–dt), where d is the genetic distance (in Morgans) and t is the number of 

generations since admixture for an individual. We added variability to the local ancestries by 

generating an integer t from the normal distribution N(6,1) to make the distribution more 

similar to the real data (Supplementary Fig. S2). We recorded genotypes and true local 

ancestries and inferred the local ancestries using SABER+ [Tang, et al. 2006]. HapMap YRI 

and CEU populations were used as reference ancestral panels. We selected the same 7176 

bins after excluding the 213 bins as used in the real data and applied the statistical models. 

The performance of the different methods was evaluated using both true and inferred 

ancestries. We expect no epistasis effect since the different chromosomes were simulated 

independently. We also performed meta-analysis to combine the results of the three 

simulated datasets.

Results

Testing fitness epistasis on different chromosomes

Simulation—We compared the performance of the three statistical models (1), (2) and (3) 

in the simulated 6,238 African Americans. The distributions of true and estimated global 

ancestry are similar and are shown in Supplementary Fig. S3. The inference accuracy 

between inferred and true local ancestries over the 7176 bins is 99.2%. The estimated 

coefficients of Xj using both true local ancestry and estimated local ancestry are presented in 

Supplementary Figs. S3-S5. In model (1), under the null hypothesis β1 = 0, we would expect 

the mean of estimated β1 between two local ancestries on two different chromosomes to be 

. Among the three regression models, model (1) results in the smallest mean 

(−9.72×10−5±0.0126 for true ancestry, −9.55×10−5±0.0127 for inferred local ancestry), 

followed by model (3) (−0.0003±0.0236, −0.00035±0.0238) and model (2) 

(−0.0103±0.0132, −0.0104±0.0132), respectively. As we expected, both models (2) and (3) 

resulted in negative . We also observed that regression model (1) resulted in a uniform 

distribution of p-values as well as an uninflated QQ plot, but neither model (2) nor model (3) 

do (Supplementary Figs. S3-S5). The other two simulated datasets with sample sizes 1864 

and 8150 had similar results (Supplementary Table S1). We performed meta-analysis of the 

results from model (1) of the three simulated datasets. We did not observe any inflation for 

testing β1 = 0 (λGC = 0.976).

Real data—We applied model (1) to the CARe, FBPP and WHI. The average African 

ancestry distributions for the three cohorts were similar (Supplementary Fig. S1). The total 

number of pairwise correlations between the bins on different chromosomes is 24,314,538. 

The distributions of estimated β1 and the corresponding p-values, and the QQ plots for the 

CARe, FBPP and WHI are presented in Supplementary Fig. S6. The genomic control 

parameters λ1 are 1.206, 1.203 and 1.251 in the CARe, FBPP and WHI, respectively. 

Adjusting for either the global ancestry or 10 principal components leads to negative biased 

mean β1 and large genomic control parameters (Supplementary Figs. S7 and S8), which is 

consistent with our simulation. Thus, we used the results from regression model (1) for the 

following analysis.
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We combined the results from the CARe, FBPP and WHI using genomic control corrected 

inverse-variance weighted meta-analysis in METAL [Willer, et al. 2010]. Fig. 1 presents the 

distributions of the estimated β1 and p-values, and the QQ plot for testing β1 = 0. The 

average of estimated β1 is 0.0007±0.009, which is comparable to the means of individual 

cohort analysis. Although we applied the genomic control procedure before the meta-

analysis, the QQ plot still shows a substantial departure from the diagonal line (λGC = 

1.097), indicating that true signals drive this departure. We examined the mutual consistency 

of the signals in the three cohorts by examining how many of the top independent pairwise 

correlations (p-value < 10−5) in one cohort were replicated in another cohort. We observed 

that 11-20% of the pairwise correlations in one cohort could be replicated (Supplementary 

Table S2), which is substantially larger than the expectation of 5% under the null.

We are concerned about the inflated λGC value of the meta-analysis. Since there was no 

inflation in the meta-analysis of simulated data (λGC = 0.976), the observed inflated λGC 

value in real data might be driven by true epistasis. We applied a Bonferroni multiple 

comparison method to determine the genome-wide significance level for the pairwise 

correlation tests. The number of independent bins Nchri for each chromosome was estimated 

using the method of Li and Ji [Li and Ji 2005]. We estimated 1232, 1272 and 1160 

independent bins across the genome in the CARe, FBPP and WHI, respectively. The total 

number of independent tests in our analysis was calculated as 

. We calculated this number for the CARe, FBPP and WHI 

separately. The maximum of the three values is 765,342, from FBPP, corresponding to a 

genome-wide significance level p-value = 6.5 × 10−8. Using this threshold, we observed one 

pair of bins, at chromosome 4: 56.04Mb and chromosome 6: 84.41Mb, to be significantly 

correlated (p-value = 4.01×10−8). The three dimensional plot of –log10 (p-value) between 

the chromosome 4 and chromosome 6 is shown in Fig. 2 A. We next examined whether the 

chromosome 4 and 6 regions demonstrate any selection evidence individually. We calculated 

the integrated haplotype score (iHS) [Voight, et al. 2006] statistic scanning for evidence of 

recent positive selection in the regions of chromosome 4: 55.4-56.6Mb and chromosome 6: 

83.8-85.0Mb using HapMap YRI, CEU and CARe samples (Fig. 2 B). The selection signals 

with |iHS| > 2.5 correspond to the extreme 1% of |iHS| values across the genome [Voight, et 

al. 2006]. We observed multiple loci with positive selection evidence in Africans, Europeans 

and African Americans in the correlated regions. Additionally, we observed 36 independent 

pairwise regions with suggestive correlation evidence (p-value < 10−5; Table 4). Similar 

selection patterns were also observed for these regions by iHS statistic scanning (regions 

with p-value <10−6 are shown in Supplementary Fig. S9).

To investigate whether the significant correlation between the regions on chromosomes 4 

and 6 is due to the inferred local ancestry error, we analyzed the Mendelian inconsistency of 

inferred local ancestry in 50 nuclear families sampled from the Cleveland Family Study 

from CARe. The number of offspring varies from 1 to 6. We calculated the Mendelian 

inconsistency using PLINK software [Purcell, et al. 2007] and observed 6.8% Mendelian 

inconsistency per bin per family. However, the Mendelian inconsistencies are 1.8% and 

3.9% in the two genomic regions with significant local ancestry correlation. Note the 

Mendelian inconsistency rate is not the same as the real local ancestry error rate. In our 
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simulation, the correlation between the errors of local ancestry inference among different 

chromosomes is 0.046 ± 0.018 with a variance of error estimated to be 0.0007. Notably, the 

local ancestry estimation accuracy could decrease if the ancestral panel was misspecified. 

The CEU and YRI reference samples from HapMap are reasonable ancestral panels for 

African Americans and we do not expect a substantial increment of error rate [Brisbin, et al. 

2012].

Impact of biases introduced by systematic errors—We next examined how much 

bias could be induced by the local ancestry inference error. Assuming that an observed local 

ancestry is the sum of a true ancestry and an inference error, that is  at locus i, 

where  is the true ancestry and εi is the error at locus i, then the correlation between the 

ith and jth loci is

(4)

where ρX
T is the true local ancestry correlation between the ith and jth loci, ρε is the 

correlation between εi and εj, ρXε1 is the correlation between the true local ancestry and the 

error at the same locus, and ρXε2 is the correlation between the true local ancestry at the ith 

locus and the error at the jth locus. The second term in equation (4) is the bias. Since Var(εi) 

is negligible compared to , the bias can be approximated by 

. Using simulated data, we estimated that ρXε1 is between 

−0.2 and 0.1, ρXε2 is between −0.04 and 0.05, and |ρX
T| is less than 0.1. We estimated that 

the bias is less than 0.003, which does not explain the observed local ancestry correlations.

Candidate genes—Only a few genes have previously been reported to have a 

phylogenetic history consistent with coevolution or co-adaptation [Raj, et al. 2012; Rohlfs, 

et al. 2010; Single, et al. 2007] in humans. We tested the local ancestry correlations between 

a set of these genes in our combined CARe, FBPP and WHI data and were able to verify 

coevolution between EPHA1 and PICALM (p-value = 0.0077, Table 5). We did not observe 

co-evolution between ZP3 and ZP3R, which is consistent with the report by Muro et al 

[Muro, et al. 2012].
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Testing natural selection by examining excess of local ancestry

There is a debate that testing excess of local ancestry may not be a powerful method to 

detect positive selection because of the biases introduced by random genetic drift, sampling 

error, and local ancestry inference error [Bhatia, et al. 2014; Jin, et al. 2012]. Briefly, a 

statistic , is used to test for natural selection at the ith locus, where Xi and X̄ are 

defined as before, and Vtot is the variance of Xi calculated across the genome. S follows a 

standard normal distribution if there is no natural selection. We tested the excess of local 

ancestry in the CARe, FBPP and WHI separately, as well as in the pooled data using the 

inverse-variance weighted method. Although we observed a few regions whose local 

ancestries were 3 standard deviations away from the mean in individual cohorts (Fig. 3A), 

the excesses disappeared after pooling the three cohorts. We did not observe any significant 

regions after correcting for multiple comparisons. Similar to the previous report [Bhatia, et 

al. 2014], we observed high pairwise correlations of local ancestries among the three cohorts 

(Fig. 3B), which can be attributed to genetic random drift and historical recombination.

We investigated why we were unable to identify any selection evidence by examining the 

excess of local ancestry when we increased the sample size. It is possible that our combined 

sample size still does not have good power to detect any selection evidence. However, we 

noted that Vtot is the squared standard deviation instead of the standard error, and it does not 

approach 0 as the sample size increases. To verify this, Vtot consists of two components: 

variance due to sampling error (Vsample) and variance due to random genetic drift (Vdrift). 

According to the Wright-Fisher's random genetic drift model [Hartl and Clark 2007], the 

variance of an allele with an initial frequency p, after t generation is:

(5)

where N is the effective population size. The sampling variance is , where n is 

the sample size. Here we considered African ancestry as an allele. Then p is the average 

African ancestry that can be estimated for each cohort. After knowing both Vtot and Vsample, 

Vdrift = Vtot – Vsample. We estimated the variance components Vtot, Vsample and Vdrift for the 

CARe, FBPP and WHI, as well as the large cohort studied in Bhatia et al. [Bhatia, et al. 

2014] (Table 6). We observed that Vdrift is consistent in all four cohorts and is less 

dependent on the sample size than Vsample. When the sample size increases, the proportion 

of variance due to genetic drift increases. Thus, the power of test statistic S will be 

determined by sampling error when the sample size is small and by the variance due to 

genetic drift when the sample size is large. In other words, the statistic S does not have 

adequate power, even when the sample size is increased, unless the excess of local ancestry 

is substantial and largely caused by selection pressure, such as observed by Tang et al [Tang, 

et al. 2007]. This observation is also consistent with Bhatia et al., who did not identify 

directional selection evidence since admixture [Bhatia, et al. 2014]. In this analysis, the 

estimated sample variance assumes all the individuals are independent because we 

eliminated related subjects in our QC. However, we estimated pairwise kinship coefficients 

using GCTA [Yang, et al. 2010] and using them estimated the effective sample sizes for both 
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the CARe and FBPP. The effective sample sizes for the CARe and FBPP are 5886 and 1783, 

respectively. Using these effective sample sizes, the estimated Vdrift is similar. Given the 

estimated variance due to random genetic drift in Table 6, we can estimate the effective 

population size by applying equation (5). Assuming African Americans have been admixed 

for 8 to 12 generations, the effective population size is estimated to be between 32,000 and 

48,000.

Discussion

Although fitness epistasis has been a widely accepted guiding principle in studying the 

genetic basis of intrinsic, post-zygotic reproductive isolation [Orr and Turelli 2001], few 

attempts have been made to test this question in humans. Because of recent admixture, the 

African-American population makes fitness epistasis detectable. We developed a new 

method to detect fitness epistasis by testing the correlation between local ancestries on 

different chromosomes in an admixed population after separating out the background 

correlation. A negative correlation indicates two alleles from different ancestral populations 

have fitness advantage, while a positive correlation indicates two alleles from the same 

ancestral population have fitness advantage. Simulation data suggest that our method 

(Equation 1) is unbiased (Supplementary Fig. S3). Alternative methods that adjust for either 

global ancestry or principal components result in biased correlation estimates 

(Supplementary Figs. S4 and S5). Applying this method to three large African-American 

cohorts, the CARe, FBPP and WHI, allowed us to observe a pair of significantly correlated 

genomic regions: chromosome 4: 56.04Mb and chromosome 6: 84.41Mb (p-value = 

4.01×10−8). Multiple loci in both regions show selection evidence by iHS statistical 

scanning [Voight, et al. 2006] in Africans, Europeans and African Americans (Fig. 2B).

We reported an additional 36 pairs of regions with suggestive correlation signals (Table 4. p-

value < 10−5). These regions harbor multiple genes whose selection evidence has been 

reported in the literature. The hemoglobin beta (HBB) gene (11p25.5) protecting against 

sickle cell anemia has been detected with selection signals of high population differentiation 

frequencies and long haplotype signals [Ohashi, et al. 2004; Pagnier, et al. 1984]. The matrix 

metallopeptidase 3 (MMP3) protein (11q22.3) is involved in multiple physiological 

processes, such as embryo development, reproduction, and disease processes. It has been 

suggested to show positive selection evidence of low nucleotide diversity and population 

differentiation (Fst) [Rockman, et al. 2004]. The MDR1 multidrug transporter (7q21.12) has 

been detected with the selection signal of a long haplotype [Tang, et al. 2004]. The CD59 
molecule complement regulatory protein (11p13) associating with hemolytic anemia and 

thrombosis [Osada, et al. 2002], and the broad antiviral enzyme APOBEC3G [Zhang and 

Webb 2004] (22q13.1-q13.2) encoding an inhibitor of HIV, have been reported to show 

strong positive selection by comparing the function-altering mutations between species. 

Besides these genes reported to be under selective pressure in the literature, all the detected 

genome regions in this study demonstrate evidence of selection on using the iHS statistic 

[Voight, et al. 2006], although the iHS signals may not directly contribute to epistasis 

signals. Thus, our results add a new aspect of interactions among genes that were already 

reported to undergo natural selection. However, replication studies are warranted to further 

confirm or refute the epistasis in these pairwise genomic regions.
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Since selection is often associated with phenotypes, it is possible that our detected regions 

with selection signals may harbor variants or genes associated with phenotypes. 

Consequently, any regions showing association evidence to phenotypes will further 

strengthen our findings. However, our three cohorts are population-based samples; therefore, 

we are unable to conclude that our detected potential epitasis evidence reflects any specific 

disease associations.

We applied multiple methods to separate the local ancestry correlation from the confounding 

of global ancestry, including either controlling the global ancestry or adjusting for principal 

components of genotype data across the genome. Our simulations suggest that the best 

approach is to adjust for the global ancestry by excluding one of the two chromosomes 

where a locus is located (Supplementary Figs. S3-S5). This approach also has the smallest 

bias in estimating local ancestry correlations in real data (Supplementary Figs. S6-S8). 

However, we also observed an inflated λGC value (1.097), which may be driven by either 

some systemic biases, such as inaccurate local ancestry inference and the confounding of 

global ancestry, or true genome-wide distributed weak fitness epistasis, which requires a 

large sample size to detect. Since we applied the genomic control procedure when 

combining the three cohorts, it is less likely that the observed inflated λGC value is driven by 

the former. In our simulations, we did not observe an inflated λGC when fitness epistasis 

was absent. As observed in the simulated data, the use of estimated local ancestries 

generates similar genomic control values as those from true local ancestries (Supplementary 

Table S1). Our simulations thus suggest that local ancestry inference error cannot explain the 

ancestry correlation we observed. Because admixture LD may expand to over a 20cM region 

[Patterson, et al. 2004; Zhu, et al. 2006], a small number of epistasis loci would lead to a 

large departure of the QQ plot from the diagonal line, resulting in an inflated λGC value. 

This phenomenon is similar to admixture mapping analysis by examining the excess of local 

ancestry. We simulated marginal admixture mapping signals to understand the inflation of p-

values due to admixture LD. We randomly selected one of the 7176 bins as the causal bin in 

the 6238 simulated African Americans with effect size b = 0.3. We then generated a binary 

trait from a binomial distribution with , where X is the local ancestry of the 

causal bin. We performed association tests between the generated trait and the 7176 bins and 

calculated the λGC. This simulation was repeated 100 times, and we observed that one 

associated bin can cause the λGC value to be 1.04 ± 0.12. 26% of the λGC values were larger 

than 1.1. Therefore, we expect a small number of fitness epistasis loci will lead to a large 

departure of the QQ plot from the diagonal line, or an inflated λGC value.

We focused on examining the correlation of local ancestry only on different chromosomes. 

Since the random genetic drift on different chromosomes is independent because of 

independent segregations, it less likely affects the observed correlations between two 

different chromosome regions. In fact, this is one of the advantages of examining the 

correlation of local ancestry on different chromosomes for testing epistasis.

In our analysis, we divided chromosomes into bins with average size 400kb in order to 

reduce the computational burden. It is well known that the local ancestry in neighboring bins 

are highly correlated since the admixture LD can extend to 20 cM [Patterson, et al. 2004; 

Zhu, et al. 2006]. Thus, the 24,314,538 pairwise tests are not independent. We therefore 
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applied the widely used method of Li and Ji to calculate the number of independent tests [Li 

and Ji 2005]. We calculated the number of independent tests in the three cohorts separately, 

resulting in 1232, 1272, and 1160 tests in the CARe, FBPP and WHI, which falls into the 

range between 1,000 to 1,500 estimated by Bhatia et al [Bhatia, et al. 2014]. We further 

performed genomic control corrected meta-analysis for reducing the potential bias. Hence, 

our analysis method could still be conservative. It is a concern that random genetic drift, 

sampling error, and local ancestry inference error may introduce bias in estimating local 

ancestry correlation [Bhatia, et al. 2014]. However, this bias cannot explain the observed 

local ancestry correlation.

We noted that the replication rates among the CARe, FBPP and WHI are relatively low 

(Supplementary Table S2). Given the weak correlation between local ancestries, we expect 

the power of our study to be still low. Because of the winner's curse, we may have 

overestimated the effect sizes. We used the median of absolute effect sizes that have P-value 

< 0.05. The median is 0.02 and the power for sample sizes 6238, 1864, 8150 is 0.352, 0.139 

and 0.439, respectively, at the significance level 0.05. Since the correlations of local 

ancestries we tested fall on two different chromosomes, the independent segregation of 

different chromosomes will reduce the correlation created by fitness interaction in each 

generation, which leads to even more challenges in detecting epistasis. It should also be 

noted that our method is only applicable to detect fitness interactions in recently admixed 

populations such as African Americans or Hispanics. However, the fitness interactions 

detected in this study may also exist in other populations if similar environmental adaptation 

processes occur.

Our analysis only replicated previously reported coevolution between EPHA1 and PICALM 
(p-value = 0.0077, Table 5). We did not observe coevolution between ZP3 and ZP3R, which 

is consistent with the report by Muro et al, who suggested a lack of experimental support 

[Muro, et al. 2012]. The fitness epistasis between HLA and KIR was identified through 

examining the correlations between the frequencies of functionally relevant receptor-ligand 

pairs in these two genes across 30 geographically distinct world populations [Single, et al. 

2007]. This current study examines local ancestry correlation in the African-American 

population, a population with a short history. Thus, the power of the current study is still 

limited.

The problem of epistasis in non-model systems is challenging. Future analyses are needed to 

further confirm the fitness epistasis signals detected in this study. The current regression 

model in equation (1) may be affected by the potential confounders such as local ancestry 

inference error. Improving the accuracy of local ancestry inference will improve the 

statistical model of detecting fitness epistasis. With the technological improvement and cost 

reduction of next generation sequencing, we would expect new statistical methods will be 

emerged for local ancestry inference. In particularly, such new statistical methods using 

whole genome sequencing data will increase the accuracy of local ancestry inference. 

However, improving local ancestry inference using whole genome sequencing data is our 

future direction to extend the current work.
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Our work demonstrates that local genomic correlation can be induced by fitness epistasis 

and does not necessarily parallel global population structure, which is largely attributable to 

migration and population admixture. It is also challenged in controlling local ancestry 

correlation between different genomic regions, owing to the confounding global ancestry in 

admixed populations. Current genetic association analysis either applies genomic control 

[Devlin, et al. 2001] or principal components approaches [Price, et al. 2006; Zhang, et al. 

2010; Zhu, et al. 2008; Zhu, et al. 2002] to control the effect of cryptic relatedness or 

population structure. These approaches may work well for population structure that can be 

inferred using whole genome data, but may be less effective when local population structure 

exists, such as the correlated local genomic regions on different chromosomes arising from 

natural selection. In particular, conditioning on local ancestry, fine mapping is possible, as 

suggested by Qin et al. [Qin, et al. 2010; Wang, et al. 2011]. We demonstrated that paired 

correlated genomic regions on different chromosomes exist. Since these paired genomic 

regions are located on different chromosomes, recombination presumably weakens the 

correlation created by natural selection in each generation. Thus, the observed local ancestry 

correlations may reflect a compromise between natural selection and recombination. It is 

therefore unlikely to observe high correlation induced by fitness epistasis.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Appendix 1. Special cases of two-locus fitness model

The notations and definitions are the same as described in Methods.

In an additive model, skl = uk + vl

In this case, cov(Xi, Xj) ≠ 0.

Here we show two special cases in the additive model:

1) When both marginal fitnesses are additive, we have

and

then
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2) When both marginal fitnesses are dominant, we have

and

then

In a heterogeneity model, skl = uk + vl – ukvl, we have exactly the same expression as the 

additive model

In the special case of heterogeneity when s22 = s21 = s20 = s12 = s02 = 1 and s11 = s10 = s01 = 

s00 = 0,

AjAj Ajaj ajaj

1 0 0

AiAi 1 1 1 1

Aiai 0 1 0 0

aiai 0 1 0 0

we have cov(Xi, Xj) = −4λ2c2(pmi – pAi) (pmj – pAj)pmi pmj.

In the case s22 = 1 and skl = s for all other k and l, which assumes selection advantage only 

occurs to individuals carrying both AiAi and AjAj genotypes, we have

and
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where

Noticeably, pmi falls in the range between pAi and pEi, and pmj is between pAj and pEj. When 

positive selection at the ith locus occurs mainly in one ancestral population, e.g. the African 

population, and selection at the jth locus mainly occurs in the other ancestral population, e.g. 

the European population, we would expect pmi < pAi and pmj > pAj, which results in cov(Xi, 

Xj) < 0. Furthermore, we can write out the correlation between the local ancestries as

The above fitness models will create correlations between unlinked local ancestries.

References

Multi-center genetic study of hypertension: The Family Blood Pressure Program (FBPP). 
Hypertension. 2002; 39(1):3–9. [PubMed: 11799070] 

Baran Y, Pasaniuc B, Sankararaman S, Torgerson DG, Gignoux C, Eng C, Rodriguez-Cintron W, 
Chapela R, Ford JG, Avila PC. Fast and accurate inference of local ancestry in Latino populations. 
Bioinformatics. 2012; 28(10):1359–67. others. [PubMed: 22495753] 

Bhatia G, Tandon A, Patterson N, Aldrich MC, Ambrosone CB, Amos C, Bandera EV, Berndt SI, 
Bernstein L, Blot WJ. Genome-wide scan of 29,141 African Americans finds no evidence of 
directional selection since admixture. Am J Hum Genet. 2014; 95(4):437–44. others. [PubMed: 
25242497] 

Brisbin A, Bryc K, Byrnes J, Zakharia F, Omberg L, Degenhardt J, Reynolds A, Ostrer H, Mezey JG, 
Bustamante CD. PCAdmix: principal components-based assignment of ancestry along each 
chromosome in individuals with admixed ancestry from two or more populations. Hum Biol. 2012; 
84(4):343–64. [PubMed: 23249312] 

Corbett-Detig RB, Zhou J, Clark AG, Hartl DL, Ayroles JF. Genetic incompatibilities are widespread 
within species. Nature. 2013; 504(7478):135–7. [PubMed: 24196712] 

Cutter AD. The polymorphic prelude to Bateson-Dobzhansky-Muller incompatibilities. Trends Ecol 
Evol. 2012; 27(4):209–18. [PubMed: 22154508] 

Devlin B, Roeder K, Wasserman L. Genomic control, a new approach to genetic-based association 
studies. Theor Popul Biol. 2001; 60(3):155–66. [PubMed: 11855950] 

Dudbridge F, Fletcher O. Gene-environment dependence creates spurious gene-environment 
interaction. Am J Hum Genet. 2014; 95(3):301–7. [PubMed: 25152454] 

Hartl, DL.; Clark, AG. Principles of population genetics. Sinauer Associates; Sunderland, Mass: 2007. 

Wang et al. Page 17

Genet Epidemiol. Author manuscript; available in PMC 2018 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Hemani G, Shakhbazov K, Westra HJ, Esko T, Henders AK, McRae AF, Yang J, Gibson G, Martin 
NG, Metspalu A. Detection and replication of epistasis influencing transcription in humans. 
Nature. 2014; 508(7495):249–53. others. [PubMed: 24572353] 

Jin W, Xu S, Wang H, Yu Y, Shen Y, Wu B, Jin L. Genome-wide detection of natural selection in 
African Americans pre- and post-admixture. Genome Res. 2012; 22(3):519–27. [PubMed: 
22128132] 

Jothi R, Cherukuri PF, Tasneem A, Przytycka TM. Co-evolutionary analysis of domains in interacting 
proteins reveals insights into domain-domain interactions mediating protein-protein interactions. J 
Mol Biol. 2006; 362(4):861–75. [PubMed: 16949097] 

Li J, Ji L. Adjusting multiple testing in multilocus analyses using the eigenvalues of a correlation 
matrix. Heredity (Edinb). 2005; 95(3):221–7. [PubMed: 16077740] 

Manolio TA, Collins FS, Cox NJ, Goldstein DB, Hindorff LA, Hunter DJ, McCarthy MI, Ramos EM, 
Cardon LR, Chakravarti A. Finding the missing heritability of complex diseases. Nature. 2009; 
461(7265):747–53. others. [PubMed: 19812666] 

Muro Y, Buffone MG, Okabe M, Gerton GL. Function of the acrosomal matrix: zona pellucida 3 
receptor (ZP3R/sp56) is not essential for mouse fertilization. Biol Reprod. 2012; 86(1):1–6.

Neel JV. Diabetes mellitus: a “thrifty” genotype rendered detrimental by “progress”? Am J Hum 
Genet. 1962; 14:353–62. [PubMed: 13937884] 

Ohashi J, Naka I, Patarapotikul J, Hananantachai H, Brittenham G, Looareesuwan S, Clark AG, 
Tokunaga K. Extended linkage disequilibrium surrounding the hemoglobin E variant due to 
malarial selection. Am J Hum Genet. 2004; 74(6):1198–208. [PubMed: 15114532] 

Orr HA, Turelli M. The evolution of postzygotic isolation: accumulating Dobzhansky-Muller 
incompatibilities. Evolution. 2001; 55(6):1085–94. [PubMed: 11475044] 

Osada N, Kusuda J, Hirata M, Tanuma R, Hida M, Sugano S, Hirai M, Hashimoto K. Search for genes 
positively selected during primate evolution by 5′-end-sequence screening of cynomolgus monkey 
cDNAs. Genomics. 2002; 79(5):657–62. [PubMed: 11991714] 

Pagnier J, Mears JG, Dunda-Belkhodja O, Schaefer-Rego KE, Beldjord C, Nagel RL, Labie D. 
Evidence for the multicentric origin of the sickle cell hemoglobin gene in Africa. Proc Natl Acad 
Sci U S A. 1984; 81(6):1771–3. [PubMed: 6584911] 

Parham P. MHC class I molecules and KIRs in human history, health and survival. Nat Rev Immunol. 
2005; 5(3):201–14. [PubMed: 15719024] 

Patterson N, Hattangadi N, Lane B, Lohmueller KE, Hafler DA, Oksenberg JR, Hauser SL, Smith 
MW, O'Brien SJ, Altshuler D. Methods for high-density admixture mapping of disease genes. Am 
J Hum Genet. 2004; 74(5):979–1000. others. [PubMed: 15088269] 

Petkov PM, Graber JH, Churchill GA, DiPetrillo K, King BL, Paigen K. Evidence of a large-scale 
functional organization of mammalian chromosomes. PLoS Genet. 2005; 1(3):e33. [PubMed: 
16163395] 

Presgraves DC. The molecular evolutionary basis of species formation. Nat Rev Genet. 2010; 11(3):
175–80. [PubMed: 20051985] 

Price AL, Patterson NJ, Plenge RM, Weinblatt ME, Shadick NA, Reich D. Principal components 
analysis corrects for stratification in genome-wide association studies. Nat Genet. 2006; 38(8):
904–9. [PubMed: 16862161] 

Price AL, Tandon A, Patterson N, Barnes KC, Rafaels N, Ruczinski I, Beaty TH, Mathias R, Reich D, 
Myers S. Sensitive detection of chromosomal segments of distinct ancestry in admixed 
populations. PLoS Genet. 2009; 5(6):e1000519. [PubMed: 19543370] 

Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, Bender D, Maller J, Sklar P, de Bakker 
PI, Daly MJ. PLINK: a tool set for whole-genome association and population-based linkage 
analyses. Am J Hum Genet. 2007; 81(3):559–75. others. [PubMed: 17701901] 

Qin H, Morris N, Kang SJ, Li M, Tayo B, Lyon H, Hirschhorn J, Cooper RS, Zhu X. Interrogating 
local population structure for fine mapping in genome-wide association studies. Bioinformatics. 
2010; 26(23):2961–8. [PubMed: 20889494] 

Raj T, Shulman JM, Keenan BT, Chibnik LB, Evans DA, Bennett DA, Stranger BE, De Jager PL. 
Alzheimer disease susceptibility loci: evidence for a protein network under natural selection. Am J 
Hum Genet. 2012; 90(4):720–6. [PubMed: 22482808] 

Wang et al. Page 18

Genet Epidemiol. Author manuscript; available in PMC 2018 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Rockman MV, Hahn MW, Soranzo N, Loisel DA, Goldstein DB, Wray GA. Positive selection on 
MMP3 regulation has shaped heart disease risk. Curr Biol. 2004; 14(17):1531–9. [PubMed: 
15341739] 

Rohlfs RV, Swanson WJ, Weir BS. Detecting coevolution through allelic association between 
physically unlinked loci. Am J Hum Genet. 2010; 86(5):674–85. [PubMed: 20381007] 

Single RM, Martin MP, Gao X, Meyer D, Yeager M, Kidd JR, Kidd KK, Carrington M. Global 
diversity and evidence for coevolution of KIR and HLA. Nat Genet. 2007; 39(9):1114–9. 
[PubMed: 17694058] 

Tang H, Choudhry S, Mei R, Morgan M, Rodriguez-Cintron W, Burchard EG, Risch NJ. Recent 
genetic selection in the ancestral admixture of Puerto Ricans. Am J Hum Genet. 2007; 81(3):626–
33. [PubMed: 17701908] 

Tang H, Coram M, Wang P, Zhu X, Risch N. Reconstructing genetic ancestry blocks in admixed 
individuals. Am J Hum Genet. 2006; 79(1):1–12. [PubMed: 16773560] 

Tang K, Wong LP, Lee EJ, Chong SS, Lee CG. Genomic evidence for recent positive selection at the 
human MDR1 gene locus. Hum Mol Genet. 2004; 13(8):783–97. [PubMed: 14976162] 

Tishkoff SA, Williams SM. Genetic analysis of African populations: human evolution and complex 
disease. Nat Rev Genet. 2002; 3(8):611–21. [PubMed: 12154384] 

Voight BF, Kudaravalli S, Wen X, Pritchard JK. A map of recent positive selection in the human 
genome. PLoS Biol. 2006; 4(3):e72. [PubMed: 16494531] 

Wang X, Zhu X, Qin H, Cooper RS, Ewens WJ, Li C, Li M. Adjustment for local ancestry in genetic 
association analysis of admixed populations. Bioinformatics. 2011; 27(5):670–7. [PubMed: 
21169375] 

Willer CJ, Li Y, Abecasis GR. METAL: fast and efficient meta-analysis of genomewide association 
scans. Bioinformatics. 2010; 26(17):2190–1. [PubMed: 20616382] 

Yang J, Benyamin B, McEvoy BP, Gordon S, Henders AK, Nyholt DR, Madden PA, Heath AC, Martin 
NG, Montgomery GW. Common SNPs explain a large proportion of the heritability for human 
height. Nat Genet. 2010; 42(7):565–9. others. [PubMed: 20562875] 

Zhang J, Webb DM. Rapid evolution of primate antiviral enzyme APOBEC3G. Hum Mol Genet. 2004; 
13(16):1785–91. [PubMed: 15198990] 

Zhang Z, Ersoz E, Lai CQ, Todhunter RJ, Tiwari HK, Gore MA, Bradbury PJ, Yu J, Arnett DK, 
Ordovas JM. Mixed linear model approach adapted for genome-wide association studies. Nat 
Genet. 2010; 42(4):355–60. others. [PubMed: 20208535] 

Zhu X, Li S, Cooper RS, Elston RC. A unified association analysis approach for family and unrelated 
samples correcting for stratification. Am J Hum Genet. 2008; 82(2):352–65. [PubMed: 18252216] 

Zhu X, Young JH, Fox E, Keating BJ, Franceschini N, Kang S, Tayo B, Adeyemo A, Sun YV, Li Y. 
Combined admixture mapping and association analysis identifies a novel blood pressure genetic 
locus on 5p13: contributions from the CARe consortium. Hum Mol Genet. 2011; 20(11):2285–95. 
others. [PubMed: 21422096] 

Zhu X, Zhang S, Tang H, Cooper R. A classical likelihood based approach for admixture mapping 
using EM algorithm. Hum Genet. 2006; 120(3):431–45. [PubMed: 16896924] 

Zhu X, Zhang S, Zhao H, Cooper RS. Association mapping, using a mixture model for complex traits. 
Genet Epidemiol. 2002; 23(2):181–96. [PubMed: 12214310] 

Zuk O, Hechter E, Sunyaev SR, Lander ES. The mystery of missing heritability: Genetic interactions 
create phantom heritability. Proc Natl Acad Sci U S A. 2012; 109(4):1193–8. [PubMed: 
22223662] 

Wang et al. Page 19

Genet Epidemiol. Author manuscript; available in PMC 2018 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. Correlations of local ancestries and the corresponding statistical evidence
(A) Distribution of estimated local ancestry correlations in the genomic control corrected 

meta-analysis. (B) Distribution of corresponding p-values in the genomic control corrected 

meta-analysis. (C) QQ-plot of p-values in the genomic control corrected meta-analysis.
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Figure 2. Correlation features and recent selection evidence of significant pairwise regions on 
chromosome 4 and chromosome 6
(A) –log10 (P-value) for testing the local ancestry correlations between chromosomes 4 and 

6 in meta-analysis. (B) The recent selection signals (|iHS| > 2.5) on chromosome 4: 

55.4-56.6Mb and chromosome 6: 83.8-85.0Mb, detected using HapMap Phase II YRI (blue), 

CEU (red) and CARe (black).
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Figure 3. Average local ancestries across the genome in the CARe, FBPP and WHI
(A) Differences between average local ancestries and their means across the genome in the 

CARe, FBPP and WHI. Red lines highlight the boundary of +/−3 standard deviation 

departure from the mean. (B) Scatter plots and correlations of local ancestries among the 

CARe, FBPP and WHI.
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Table 1

Definition of parameters used in theoretical model.

λ The average proportion of African ancestry

pAi The Ai allele frequency at the ith locus in the African population

pEi The Ai allele frequency at the ith locus in the European population

λpAi The Ai
A

 allele frequency at the ith locus in the African-American population before selection

λ(1 – pAi) The ai
A

 allele frequency at the ith locus in the African-American population before selection

(1 – λ)pEi The Ai
E

 allele frequency at the ith locus in the African-American population before selection

(1 – λ)(1 – pEi) The ai
E

 allele frequency at the ith locus in the African-American population before selection

pmi = λpAi + (1 – λ)pEi The Ai allele frequency at the ith locus in the African-American population before selection
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Table 2

Genotype frequencies at ith locus in African-Americans before selection.

Genotype at A locus Genotype frequency

Ai
AAi

A λ2pAi
2

Ai
Aai

A 2λ2pAi (1 – pAi)

Ai
AAi

E 2λ(1 – λ)pAipEi

Ai
Aai

E 2λ(1 – λ)pAi(1 – pEi)

ai
Aai

A λ2(1 – pAi)
2

ai
AAi

E 2λ(1 – λ)(1 – pAi)pEi

ai
Aai

E 2λ(1 – λ)(1 – pAi)(1 – pEi)

Ai
EAi

E 1 − λ 2pEi
2

Ai
Eai

E 2(1 – λ)2pEi(1 – pEi)

ai
Eai

E (1 – λ)2(1 – pEi)
2
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Table 4

Top pairwise local ancestry correlated regions in the meta-analysis of the CARe, FBPP and WHI (p-value < 

10−5).

Region 1 (Mb) Gene
a Region 2 (Mb) Gene

a
P-value

b
Beta

c

chr1:20.61-21.45 chr3:21.09-25.52 1.46E-06 −0.0418

chr1:44.52-44.92 chr6:77.65-78.05 5.09E-06 −0.0408

chr1:155.29-156.13 chr10:3-3.4 3.42E-06 0.0401

chr1:91.19-101.08 chr11:2.79-7.57 HBB 3.88E-06 0.0405

chr1:228.03-239.48 chr17:3.64-5.87 1.92E-06 0.0419

chr2:50.59-50.99 chr6:17.59-17.99 6.96E-06 0.0401

chr2:235.61-236.01 chr3:58.44-58.84 7.51E-06 0.0395

chr3:39.94-42.54 chr5:178.47-178.87 1.36E-06 0.0426

chr3:125.6-126.18 chr19:37.05-44.57 1.51E-06 0.0421

chr4:10.29-10.69 chr6:16.04-16.97 8.61E-06 −0.0391

chr4:34.58-37.21 chr18:73.35-74.01 4.84E-06 0.0403

chr4:47.19-72.67 chr6:52.66-88.81 4.01E-08 −0.0488

chr4:86.88-87.28 chr9:137.46-138.31 7.58E-06 0.039

chr4:187.04-187.44 chr20:2.37-3.17 4.06E-06 0.0404

chr5:14.89-18.73 chr11:123.69-131.24 5.60E-07 0.0445

chr5:150.56-150.96 chr18:70.09-70.49 4.90E-06 0.0409

chr6:24.35-24.75 chr12:130.09-130.49 8.48E-06 0.0397

chr6:39.76-40.16 chr21:43.03-43.73 3.71E-06 0.0409

chr6:149.25-151.82 chr11:95.41-106.44 MMP3 2.53E-06 −0.0416

chr7:13.85-16.57 chr16:48.36-49.29 3.77E-06 0.0407

chr7:41.88-42.92 chr9:35.05-37.11 4.17E-06 −0.0407

chr7:80.48-90.76 MDR1 chr12:128.44-130.49 1.41E-07 0.0475

chr9:20.07-24.49 chr21:38.79-41.35 1.82E-06 0.0421

chr10:113.9-114.3 chr21:37.82-38.22 9.92E-06 0.0389

chr11:24.63-25.03 chr17:74.69-75.09 7.35E-06 0.0395

chr11:26.43-34.23 CD59 chr22:16.7-21.26 3.74E-07 0.0449

chr11:34.57-35.74 chr17:72.51-75.09 4.06E-06 0.041

chr12:115.24-115.64 chr13:21.16-21.56 8.39E-06 0.0378

chr12:129.3-130.49 chr21:42.45-45.05 1.88E-06 0.0414

chr13:38.44-38.84 chr16:81.87-82.41 5.72E-06 0.0391

chr13:79.41-79.81 chr19:12.82-13.22 9.72E-06 0.038

chr13:86.01-93.96 chr22:35.91-43.32 APOBEC3G 2.37E-06 0.0408

chr13:106.5-109.28 chr21:16.09-20.73 4.38E-06 0.0411

chr14:65.07-65.47 chr17:76.16-76.56 6.93E-06 0.0393

chr17:28.1-29.03 chr20:10.97-12.92 8.54E-07 0.0438

chr18:46.33-54.84 chr19:50.42-50.82 5.18E-06 0.0397

chr20:58-58.81 chr21:27.67-28.07 2.65E-06 0.041

a
Previous reported genes with selection evidence in the corresponding regions.
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b
Minimum p-value in each region.

c
β value corresponding to the minimum p-value.
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Table 5

Correlations between ancestral markers in candidate genes.

Gene1 Gene2 p
a β b

HLA KIR 0.7836 −0.0025

BIN1 CD2AP 0.2981 −0.0093

BIN1 EPHA1 0.2475 0.0104

BIN1 PICALM 0.242 −0.0105

CD2AP EPHA1 0.7385 −0.003

CD2AP PICALM 0.3006 −0.0092

EPHA1 PICALM 0.0077 −0.0234

ZP3R ZP3 0.9292 0.0008

a
P-value in meta-analysis of CARe, FBPP and WHI.

b
β value in meta-analysis.
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Table 6

Variance components in the CARe, FBPP, WHI and a larger African-American data from five cohorts.

Data n p Vtot Vsample Vdrift % variance due to genetic random 
drift

FBPP 1864 0.833 6.08×10−5 3.72×10−5 2.36×10−5 0.39

CARe 6238 0.804 2.61×10−5 1.26×10−5 1.35×10−5 0.52

WHI 8150 0.773 3.53×10−5 1.08×10−5 2.45×10−5 0.69

Cohorts in Bhatia et al [Bhatia, et al. 
2014]

29141 0.796 1.30×10−5 0.29×10−5 1.01×10−5 0.78
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