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Abstract

The purpose of this study is to evaluate a new method to improve performance of computer-aided 

detection (CAD) schemes of screening mammograms with two approaches. In the first approach, 

we developed a new case based CAD scheme using a set of optimally selected global 

mammographic density, texture, spiculation, and structural similarity features computed from all 

four full-field digital mammography (FFDM) images of the craniocaudal (CC) and mediolateral 

oblique (MLO) views by using a modified fast and accurate sequential floating forward selection 

feature selection algorithm. Selected features were then applied to a “scoring fusion” artificial 

neural network (ANN) classification scheme to produce a final case based risk score. In the second 

approach, we combined the case based risk score with the conventional lesion based scores of a 

conventional lesion based CAD scheme using a new adaptive cueing method that is integrated with 

the case based risk scores. We evaluated our methods using a ten-fold cross-validation scheme on 

924 cases (476 cancer and 448 recalled or negative), whereby each case had all four images from 

the CC and MLO views. The area under the receiver operating characteristic curve was AUC = 

0.793±0.015 and the odds ratio monotonically increased from 1 to 37.21 as CAD-generated case 

based detection scores increased. Using the new adaptive cueing method, the region based and 

case based sensitivities of the conventional CAD scheme at a false positive rate of 0.71 per image 

increased by 2.4% and 0.8%, respectively. The study demonstrated that supplementary information 

can be derived by computing global mammographic density image features to improve CAD-

cueing performance on the suspicious mammographic lesions.
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1. Introduction

Breast cancer screening is widely considered as an effective approach to detect breast cancer 

at its early stages and to reduce the mortality rate of cancer patients. Among all available 

cancer screening imaging modalities, mammography is the only imaging modality that is 

accepted to conduct population based breast cancer screening to date (Smith et al., 2015). 

However, due to the overlapping dense fibroglandular tissue in two-dimensional (2D) 

projection images and the large variability of breast lesions, reading and interpreting 

mammograms is difficult. Radiologists may miss or overlook early cancers (Birdwell et al., 
2001) and also generate high false positive recall rates (Hubbard et al., 2011). Although 

previous study has well demonstrated that image double reading could significantly improve 

the performance of screening mammography (Thurfjell et al., 1994), it is not a practical and 

viable option due to the shortage of radiologists in most countries around the world. Thus, in 

the last few decades, many Computer-Aided Detection (CAD) schemes of breast 

mammograms have been proposed and developed as a “second reader” in efforts to assist 

radiologists in reading/interpreting mammograms (Birdwell et al., 2001). However, despite 

their relatively-high lesion detection sensitivities, the current commercialized CAD schemes 

generate substantially high false positive (FP) detection rates and also have high correlations 

in positive lesion detection with radiologists (Gur et al., 2004a). Thus, studies have shown 

that the success of using current CAD to improve the detection of malignant masses has 

been less than overwhelming (Gur et al., 2004b), and many radiologists generally ignore 

CAD-cued suspected mass regions in clinical practice due to their low confidence in the 

CAD-cued results (Zheng et al., 2006a). The task of continuously exploring new approaches 

to develop and use CAD is thus ongoing/still needed (Nishikawa and Gur, 2014).

Recently, we proposed a different approach to improve the efficacy of CAD for 

mammography by developing a case based CAD scheme (Tan et al., 2014; Tan et al., 
2015b). Namely, by computing global mammographic density based image features from all 

four craniocaudal (CC) and mediolateral oblique (MLO) view mammograms, we trained a 

classifier to analyze the bilateral global mammographic image features and their differences 

to generate a likelihood score of the case in question being positive for cancer. Thus, unlike 

the current lesion based CAD schemes that generate many FP detections, our new case 

based CAD scheme outputs only one likelihood score for each case in question of being 

positive or negative for cancer. We hypothesize that since radiologists read four-view 

mammograms simultaneously and the bilateral asymmetry of mammographic density or 

tissue patterns is the first important sign for detecting suspicious lesions, developing a case 

based CAD scheme to determine the cancer risk based on the quantitative assessment of 

bilateral mammographic tissue asymmetry may play a useful role to warn radiologists to pay 

more attention to reading the suspicious signs/lesions on these cases.

In the current lesion based CAD schemes, the local image based features (e.g., shape, 

texture, and spiculation features) were only computed on the segmented lesion region of 

interest (ROI). Thus, in this study, we hypothesize that the performance of the lesion based 

CAD schemes may be improved by combining supplementary information derived from our 

global bilateral mammographic density feature analysis based CAD scheme (Tan et al., 
2015b; Tan et al., 2014). This was observed in our preliminary studies on a smaller dataset 
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(Tan et al., 2016a). In this study, we also extend the image feature set of our case based CAD 

scheme to include many more diverse features that had performed well in our recent breast 

cancer risk prediction scheme (Tan et al., 2016b). The purpose of this study is to analyze 

whether fusion of the case based CAD risk score (Tan et al., 2016b; Häberle et al., 2012) 

with lesion based CAD scores can help improve the performance of lesion based CAD 

cueing used in current clinical practice to assist radiologists in reading mammograms.

2. Materials and methods

2.1. A full-field digital mammography (FFDM) image dataset with mass-like abnormalities

Under an institutional review board (IRB)-approved image data collection protocol, we have 

been collecting a large and diverse FFDM image dataset from our clinical database. An IRB-

certified research staff randomly selected screening mammography cases based on the 

screening outcome (i.e., positive or negative for cancer) recorded in the existing clinical 

database without viewing the mammograms. All the FFDM examinations were acquired 

using Hologic Selenia FFDM systems. The fully-anonymized FFDM images and 

corresponding clinical information were transferred and stored in a research dataset for our 

studies after a de-identification process.

We assembled a dataset of 924 cases including: (1) 454 verified cancer cases, i.e. masses 

that were detected during mammographic screening examination and that were confirmed by 

diagnostic work-up (Group 1); (2) 22 interval cancer cases consisting of masses that were 

detected in the interval between two screening mammographic examinations (Group 2); (3) 

5 patients who had been recalled for diagnostic work-up of high-risk pre-cancer cases (e.g., 

lobular carcinoma in situ) with recommended surgical excision of lesions (Group 3); (4) 88 

patients recalled for diagnostic work-up with masses that were ultimately determined to be 

benign (Group 4); (5) 355 screening cases that were rated as negative, i.e. not recalled 

during the screening examinations (Group 5).

All 924 cases had all four FFDM images acquired from CC and MLO views of the left and 

right breasts. Thus, our FFDM dataset consisted of 3,696 images altogether. After 

assembling the FFDM dataset, a three-step process consisting of a review, verification and 

final confirmation of identifying/marking the center-of-mass as well as the encapsulating 

margin of the mass in question were performed by the radiologists. These steps were 

performed using information from de-identified source documents provided by research staff 

(honest brokers). Table 1 summarizes the case distribution as well as the distribution of 

marked mass regions in each different group/category of cases in the FFDM dataset. 

Altogether, 1,275 mass ROIs were marked including 963 ROIs associated with cancer and 

312 associated with benign and high-risk abnormalities.

2.2. The lesion based computer-aided detection (CAD) scheme

The detailed description of our lesion based CAD scheme has been reported in our previous 

publications (Zheng et al., 2012a; Zheng et al., 1995). The CAD scheme had performed 

comparably with two leading commercial CAD schemes on a large independent clinical 

database (Gur et al., 2004a). A brief description of the scheme is provided in this section, 
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and the reader is referred to the references (Zheng et al., 1995; Zheng et al., 2012a; Gur et 
al., 2004a) for a detailed description.

The CAD scheme consists of three main image processing stages. In the first stage, we used 

a Difference-of-Gaussian (DoG) filter as a blob detector to identify suspicious mass regions. 

This stage typically detects between 10 and 50 suspicious mass regions depending on the 

density of the breast and patterns of overlapping fibro-glandular tissue (FGT). In the second 

CAD stage, we applied a multilayer topographic region growth algorithm to segment the 

mass candidate regions using the results of the first stage as the initial seed point. After the 

second stage, the number of suspicious mass candidates typically reduces to less than five 

per image. In the third stage of the CAD scheme, we computed 14 shape, texture and gray 

level based features on each segmented mass region. We then applied the features to a multi-

feature based artificial neural network (ANN) classifier to generate a detection score 

indicating the likelihood of the segmented mass region in question being positive for cancer. 

Finally, we applied an operating threshold to the detection scores of the ANN classifier; only 

the suspicious regions with detection scores that were greater than the threshold were cued 

on the images, whereas the other regions were discarded. Figure 1 displays two examples of 

applying our CAD scheme on two cancer cases in our image dataset.

2.3. A case based CAD scheme incorporating new bilateral asymmetry based features

We recently developed a case based CAD scheme that computed global mammographic 

density based features from four-view (CC and MLO) mammograms (Tan et al., 2015b; Tan 

et al., 2014), and fused the features using a novel “scoring fusion” classifier. In the initial 

schemes, we had computed the simpler gray level and density based features, including 

mean, standard deviation, skewness, and run length statistics (RLS) features (Galloway, 

1975). However, our recent studies (Tan et al., 2015a; Tan et al., 2016b) showed that the 

more complex texture and structural similarity based features including Weber Local 

Descriptor (WLD) (Chen et al., 2010) and Structural SIMilarity (SSIM) index (Wang et al., 
2004) features were very useful for predicting short-term breast cancer risk occurrence in 

sequential FFDM images. Thus, in this study, we comprehensively extended our image 

feature set to compute numerous texture, structural similarity, and mammographic density 

based features in order to improve the performance of our case based CAD scheme. We 

computed altogether 158 features that can be divided into four general subgroups: (1) 

structural similarity features, (2) WLD and Gabor directional similarity features, (3) gray 

level co-occurrence matrix (GLCM) and RLS features, and (4) other gray level magnitude 

and texture based features. These features have been explained in detail in previous 

publications (Tan et al., 2016b; Tan et al., 2015a; Chen et al., 2010; Casti et al., 2015; Wang 

et al., 2004; Soh and Tsatsoulis, 1999), and we will just provide their brief description in this 

section.

The first feature subgroup consists of the structural similarity features. We first computed 

the SSIM index metric proposed by Wang et al. (Wang et al., 2004). Given x = {xi| i = 1, …, 

M} and y = {yi| i = 1, …, M} are two nonnegative image signals that have been aligned with 

each other, the SSIM index is defined as:
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(1)

whereby , , . C1 and 

C2 are two small positive constants. Casti et al. (Casti et al., 2015) extended the SSIM index 

metric to a Correlation-Based SSIM or CB-SSIM index to estimate the structural similarity 

between two different-sized regions. Given xR and yL, a pair of right and left rectangular 

regions of size A × B and P × Q pixels, respectively, the CB-SSIM index is defined as:

(2)

whereby μR and μL are the mean values of the right and left breast regions, respectively. 

corr(xR, yL) is the two-dimensional (2D) cross-correlation between the 2 regions:

(3)

whereby −P + 1 ≤ p ≤ A – 1 and −Q + 1 ≤ q ≤ B – 1. corr(xR, xR) and corr(yL, yL) are two 

auto-correlation functions of xR and yL, respectively. K1 is a small positive constant set to 

0.01 (Wang et al., 2004), (Casti et al., 2015). As SSIM is highly sensitive to small geometric 

distortions, such as small rotations, scale, and translations, a Complex Wavelet SSIM index 

(CW-SSIM) was proposed (Sampat et al., 2009) and defined as:

(4)

whereby cx = {cx, i|i = 1, …, N} and cy = {cy,i|i = 1, …, N} are two sets of coefficients 

extracted at the same spatial location in the same wavelet subbands of the two images being 

compared in the complex wavelet transform domain, and c* denotes the complex conjugate 

of c. K is a small positive constant. Similar to what was performed in the spatial domain, 

Casti et al. (Casti et al., 2015) defined a new correlation-based complex wavelet SIMilarity 

(CB-CW-SSIM) index defined as:
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(5)

whereby cR and cL are the complex wavelet coefficients obtained by decomposing regions 

xR and yL, respectively. In this study, we replicated all the parameters recommended in Refs. 

(Casti et al., 2015; Wang et al., 2004; Sampat et al., 2009). As we computed all the structural 

similarity features on the whole and dense breast regions extracted using the method 

proposed in our previous publication (Chang et al., 2002; Tan et al., 2013), we computed 

altogether 8 structural similarity features for each case.

The second feature group consists of the WLD and Gabor directional similarity features. 

Inspired by Weber's Law, WLD features are simple yet robust texture features that have 

outperformed the Gabor (Marcelja, 1980), scale-invariant feature transform (SIFT) (Lowe, 

2004), and local binary pattern (LBP) (Ojala et al., 2002) features in various pattern 

detection and recognition tasks (Chen et al., 2010). The two main components of WLD are 

the differential excitation and orientation filter responses. Gabor filter features have been 

widely used for face recognition (Haghighat et al., 2013) and detection of architectural 

distortion in prior mammograms (Rangayyan et al., 2010). In this study, we computed the 

SSIM, CB-SSIM, CW-SSIM, and CB-CW-SSIM structural similarity features on the WLD 

differential excitation and gradient orientation responses and on the Gabor magnitude and 

phase responses of the image central regions. Thus, altogether 40 directional similarity 

features were computed to analyze the bilateral differences between the left and right image 

feature responses. Figure 2 displays an example of a positive (cancer) case in which a mass 

(blue arrow) was detected and later confirmed by pathology as an invasive ductal carcinoma 

(IDC). The Gabor magnitude response, WLD differential excitation and gradient orientation 

components of the abnormal (right) breast (Figs. 2b-d) have structural dissimilarity in the 

region around the mass (red circle) compared to the normal (left) breast (Figs. 2e-h), which 

demonstrates that the Gabor and WLD features can identify changes that make the breast 

susceptible to cancer development.

In the third feature group, we computed the GLCM and RLS features to analyze the gray 

level distributions and patterns within the images. We computed the following RLS features 

on the whole and dense breast regions: short and long run emphasis, run length non-

uniformity, low and high gray level run emphasis, short run low and high gray level 

emphasis, long run low and high gray level emphasis, gray level non-uniformity, and run 

percentage. We also computed the following GLCM based features: contrast, energy, 

homogeneity defined by Soh and Tsatsoulis (Soh and Tsatsoulis, 1999), homogeneity 

defined in Matlab®, inverse difference normalized, inverse difference moment normalized 

(Clausi, 2002), maximum probability, correlation defined in Matlab®, and correlation 

defined in (Haralick et al., 1973). Thus, we computed a total of 80 RLS and GLCM features 

on the whole and dense breast regions.

Tan et al. Page 6

Phys Med Biol. Author manuscript; available in PMC 2018 January 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



In the fourth feature group, we computed 30 other gray level magnitude and texture based 

features described in (Gierach et al., 2014; Häberle et al., 2012). These features included 5 

moments based features, 3 percentage density (PD) measures similarly defined as PD 
defined by the Cumulus software (Byng et al., 1994; Tan et al., 2014), features based on the 

directional gradients and gradient direction computed using a Sobel operator, as well as 

other regional and gray level based features.

As the feature dimensionality (158 features) is very high compared to the dataset size, we 

need to reduce the number of features due to the “curse of dimensionality” (Powell, 2007). 

Thus, we applied a fast and accurate modified sequential floating forward selection (SFFS) 

method by exploiting the information loss of the Mahalanobis distance in high dimensions, 

as proposed by Ververidis and Kotropoulos (Ververidis and Kotropoulos, 2008). In order to 

prevent or minimize overfitting on the training set, the feature insertion and exclusion 

procedure in this modified SFFS has been implemented with an early stopping criterion to 

limit the number of feature insertion and exclusion steps (Ververidis and Kotropoulos, 

2009). In addition, we also used a repeated ten-fold cross-validation to estimate the correct 

classification rate (CCR) of the feature selection results. By taking these steps, we could 

select a small sets of the relevant optimal features, while minimize the risk of classifier 

“overfitting” during the classification stage. Finally, the feature selection was only applied 

on the training set of each cycle, which was kept completely independent and separated from 

the evaluation set.

The texture and density of the overlapping breast fibro-glandular tissue (FGT) patterns in the 

CC and MLO views are often different (see Figure 1) due to the different projection 

directions. Thus, the bilateral mammographic texture/density asymmetric patterns computed 

from the two (CC and MLO) views can be different (Zheng et al., 2006b; Wang et al., 2011). 

In order to fuse the image feature differences and supplementary information computed from 

both views, we first extracted the maximum feature computed between left and right breasts 

of each individual view, and then applied the features to a “scoring fusion” artificial neural 

network (ANN) classification scheme described in detail in our previous publications (Tan et 
al., 2014; Tan et al., 2015a). The “scoring fusion” classifier generates a final case based 

classification score, which can be used as a standalone case based CAD scheme, or can be 

incorporated with the lesion based CAD scores using a new case based adaptive cueing 

method that will be explained in the next section.

2.4. New adaptive cueing of lesion based CAD scores using a case based CAD probability 
score

To assess the supplementary information provided by the global feature extraction based 

method, we combined the “scoring fusion” ANN-generated classification scores of our case 

based CAD scheme with our lesion based CAD-generated scores using a case based 

adaptive cueing method. We had previously analyzed this method for cuing subtle masses 

that were only visible on one view in the “prior” images (Wang et al., 2012). In brief, we 

desire to adaptively adjust the original lesion based CAD-generated detection scores (Sorg) 

of a detected suspicious mass region based on the computed case based score (Scase) of the 

case associated with each detected region. In order to do this, we can project each original 
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CAD score (Sorg) into a new cueing reference line using the following projection equation to 

compute a new CAD cueing score (Snew):

(6)

Whereby α is an angle between the projection line and the horizontal axis (i.e., Scase = 0); 

tan(α) is the slope of the projection line to the horizontal axis. Based on equation (6), when 

α = 0, Snew = Sorg.

In order to explain how our new case based adaptive cueing approach works, Figure 3 

displays two examples of suspicious mass regions (marked R1 and R2). The original lesion 

based CAD scheme generated detection scores, Sorg for the two regions, R1 and R2 as 0.51 

and 0.56, respectively. Using a lesion-based CAD operating threshold of T = 0.55 as used in 

our original scheme (Gur et al., 2004a), for the projection line slope (i.e., the dashed line) 

shown in the figure, region R2 is marked (cued) and region R1 is discarded (not cued). 

However, as region R1 has a high corresponding case based CAD score, when projecting 

this region unto a new reference line (i.e., the dashed line in Figure 3), its new cueing score 

computed using equation (6) is Snew = 0.61. Region R2 was originally cued as Sorg = 0.56. 

After applying the adaptive case based cueing method, Snew = 0.47. Thus, using the case 

based adaptive cueing approach, the originally uncued lower score (region R1) will be cued, 

whereas the originally cued higher score (region R2) will be discarded.

2.5. Data analysis and performance assessment and comparison

We trained and evaluated our scheme using a ten-fold cross-validation method. In this 

method, the sum of positive (cancer) cases and negative (cancer-free) cases in our dataset 

were randomly divided into 10 exclusive partitions. Nine partitions were used to train the 

“scoring fusion” ANN classifier in each validation cycle using the bilateral image features 

computed from the CC and MLO view images, respectively. The trained classifier was then 

applied to the cases in the remaining evaluation partition. For case based adaptive cueing, 

the result of the trained classifier was also used to adaptively cue or adjust the lesion based 

CAD scores in the evaluation partition. We iteratively repeated this procedure 10 times using 

the 10 different combinations of partitions. Thus, each of the positive and negative cases in 

our dataset was evaluated once for the case based CAD scheme, and with and without 

adaptive cueing for the lesion based CAD scheme.

In order to assess the performance of our new case based CAD scheme to identify FFDM 

examinations with high risk of being positive (i.e., cancer), we used several performance 

assessment indices. We first computed the AUC including the mean and standard deviation 

of AUC values over the ten folds of the cross-validation experiments for the two individual 

(CC and MLO) views, as well as the “scoring fusion” (combined) result. The curves were 

computed using a ROC curve fitting program that applies an expanded binormal model and 

the maximum likelihood estimation method (ROCKIT http://www.-radiology.uchicago.edu/

krl/, University of Chicago, 1998). We then sorted the classification scores of all evaluation 

cases (including both cancer and cancer-free cases) in ascending order and selected five 

Tan et al. Page 8

Phys Med Biol. Author manuscript; available in PMC 2018 January 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.-radiology.uchicago.edu/krl/
http://www.-radiology.uchicago.edu/krl/


threshold values to segment all cases into five subgroups/bins with an approximately equal 

number of cases within each subgroup. We computed the adjusted odds ratios (ORs), which 

are defined as a measure of association between an exposure (in our study, bilateral 

asymmetry between the mammographic image features of left and right breasts) and an 

outcome (breast cancer occurrence) (Szumilas, 2010), for all subgroups using a multivariate 

statistical model, and analyzed an OR increasing trend using a publically-available statistical 

software package, R (https://www.r-project.org/). In addition, we also computed the 

classification accuracy, positive predictive value (PPV), negative predictive value (NPV), 

and generated a confusion matrix table using a threshold at the midpoint of the classification 

scores.

To assess the performance of our lesion based CAD scheme, we analyzed all the recorded 

CAD scores and computed the free-response receiver operating characteristic (FROC) 

curves with and without applying the new case based adaptive cueing method. We reported 

both region (ROI) based and case based FROC performance. For the case based analysis, a 

mass region was counted as “detected” if it was cued by CAD on either one or both views of 

the same examination. For the ROI based analysis, each mass region was independently 

counted. Then, using an operating threshold at the same level as previously implemented for 

evaluation (Gur et al., 2004a), we compared the actual CAD-cueing performance including 

sensitivity and FP rate per image. All evaluation results were tabulated and compared.

3. Results

Figure 4 displays and compares three ROC curves of the case based CAD scheme optimized 

based on the image features computed from the individual CC and MLO views, and as a 

combined result using the “scoring fusion” method of both views. Table 2 displays the 

corresponding AUC results of the three ROC curves plotted in Figure 4. Using DeLong's test 

(DeLong et al., 1988) for two correlated ROC curves, the AUC results of the CC and MLO 

based classifiers were not significantly different from each other at the 5% significance level 

(p > 0.94). However, the AUC result of the “scoring fusion” classifier was significantly 

different from that of the two individual classifiers (p < 0.003), which demonstrates that 

combining image features from both views significantly improved performance. 

Furthermore, we also observed that the new combined result of 0.793±0.015 was a 

significant improvement over the results of our initial case based CAD scheme of AUC = 

0.707±0.031 in Ref. (Tan et al., 2015b). This demonstrates that the new structural similarity, 

texture, and gray level magnitude based features described in Section 2.3 significantly 

improved the performance of our initial case based CAD scheme (Tan et al., 2015b). The 

new CAD scheme even outperformed our preliminary scheme that had been trained with the 

addition of three epidemiology based risk factors of age, family breast cancer history and 

subjectively-rated mammographic density (BIRADS), i.e., AUC = 0.779±0.025 in the 

previous study (Tan et al., 2015b). The high performance of the new scheme, which was 

entirely trained on image features was likely due to the efficacy of the new computed 

features including structural similarity that can better detect bilateral asymmetry between 

both breasts, and also better capture the textural information of the breast compared to the 

more simplistic gray level statistical based features that were implemented in the initial 

scheme (Tan et al., 2015b) – see Figure 2.
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Table 3 summarizes the ORs and corresponding 95% confidence intervals (CIs) computed 

for the five subgroups (bins) of FFDM examinations. An increasing trend was observed in 

the case based CAD generated classification scores from subgroups 1 to 5. Namely, the 

computed ORs monotonically increased from 1.0 to 37.21 in subgroups 1 to 5 using the 

cases in subgroup 1 as a baseline. We obtained the result that the slope of a regression trend 

using the data pairs between the classification scores and the adjusted ORs was significantly 

different from zero (p < 0.01). This demonstrates a positive association of classification 

scores generated by the case based CAD scheme and an increasing risk probability trend of 

the FFDM examinations of interest being positive. Similar to the AUC performance, the 

computed ORs for our new case based CAD scheme are much higher than that of our 

previous scheme (Tan et al., 2015b), using only image features (1 to 7.31) and including 

epidemiology features (1 to 31.55).

Table 4 displays a confusion matrix when applying a threshold at the midpoint (i.e., 0.5) of 

the CAD-generated classification scores of all evaluation cases. The FFDM cases with 

CAD-generated classification scores greater than 0.5 were assigned to the positive (“high 

risk”) case group. Otherwise, the cases were assigned to the negative (“low risk”) case 

group. Using this criterion, the case based CAD scheme correctly classified 72.1% (666 of 

924) of cases in the evaluation subsets. The classification accuracy was slightly lower in the 

negative case group, which was 71.4% (320 of 448), than in the positive case group, which 

was 72.7% (346 of 476). The computed PPV was 73.0% (346 of 474) and the NPV was 

71.1% (320 of 450).

Table 5 displays the result of increasing the projection line angle/slope to modify the cueing 

weights on cases with a higher score generated by our case based CAD scheme. From Table 

5, we observe that by increasing the projection line angle at the same FP rate of 0.89 per 

image, the ROI based sensitivity gradually increases from 68.8% up to a maximum value of 

71.2% at α = π / 19, followed by a general decreasing trend. Figure 5 displays the ROI and 

case based FROC curves obtained with and without applying case based adaptive cueing to 

the original lesion based scores (Sorg) at α = π / 19 (note that we used α = π / 19 as it 

produced the highest ROI based sensitivity among all the results in Table 5). Tables 6 and 7 

tabulate and compare the corresponding ROI and case based FROC sensitivity results, 

respectively. The results show that better sensitivity results are obtained by incorporating the 

global feature or case based CAD scores using the adaptive cueing method at lower FP rates 

(i.e., between 0.5 to 1.1 FP/image). From the tables, we observe that improvements of 

sensitivities of up to 2.4% and 0.8% were obtained for the ROI and case based results, 

respectively, using the case based adaptive cueing method. Using DeLong's test (DeLong et 
al., 1988), the original sensitivity and the adaptive cueing sensitivity results were statistically 

significantly different from each other at the 5% significance level (p < 0.05).

As the previous results were obtained by deriving the optimal value of angle, α 
retrospectively on the evaluation set, we also repeated the experiments and report the results 

of optimizing α for each individual training partition independently. By optimizing α on the 

training partitions, the results of varying α on each individual training partition were very 

close for α = π / 10, π / 16, π / 19, π / 22, and π / 28, with just very slight differences in the 

results obtained at the same false positive per image rate (or non-lesion localization 
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fraction). However, we found that α = π / 10 produced a slightly better result than all the 

other values of α for all ten training partitions. The poorest result was obtained for α = π / 4, 

whose sensitivities were considerably lower than the corresponding sensitivities of the other 

values of α, which is consistent with the results obtained in Table 5. Figure 6 displays the 

ROI and case based FROC curves obtained with and without applying case based adaptive 

cueing to the original lesion based scores (Sorg) using α optimized on each training partition 

individually.

4. Discussion

As current CAD of mammograms are generally regarded to be disappointing in terms of 

adding value to improve screening mammography efficacy, researchers have suggested that 

the task of exploring new approaches to use and develop CAD schemes is still required 

(Nishikawa and Gur, 2014). Thus, several researchers have proposed different/alternative 

CAD approaches in efforts to improve the efficacy of CAD (Samulski et al., 2010; Moin et 
al., 2011). This study examined two different and new approaches to improve performance 

and/or clinical utility of CAD for screening mammography.

In the first approach, we examined a case based CAD scheme that extracted many image 

features from all four images of each patient, applied a fast and accurate modified SFFS 

feature selection algorithm (Ververidis and Kotropoulos, 2008) individually to the two 

views, and combined the classification scores of both views using a “scoring fusion” (Tan et 
al., 2014) ANN classifier. By expanding the image feature set with the inclusion of many 

more texture, spiculation, mammographic density, and structural similarity or bilateral 

asymmetry based features (i.e., 158 features, altogether), the performance of our preliminary 

case based CAD scheme (Tan et al., 2015b) significantly improved. The performance 

improvement was consistently observed using different performance measurement metrics 

including AUC and ORs.

The advantages of our case based CAD scheme compared to the conventional lesion based 

schemes are two-fold. Firstly, the case based cueing can cue/provide “warning signs” to 

attract radiologists' attention to take a closer look at the cases with the “high-risk” 

classification scores. Due to the low cancer prevalence rate (i.e., < 1%) in the population 

based screening environment and studies also show that a high percentage of missed/

overlooked breast cancers were visually detectable in the retrospective reviews (Birdwell et 
al., 2001), this could be one of the main reasons that cause radiologists to overlook the 

subtle cancer cases from the overwhelmingly negative ones. Thus, the case based CAD 

scheme will be useful to cue the “warning signs” on the cases with high risk of being 

positive for cancer. The “warning signs” will attract radiologists' attention to pay more 

careful attention to the subtle lesions or abnormalities in these cases.

The second advantage of the case based CAD scheme is that unlike the lesion based scheme, 

which segments and pinpoints the locations of many candidate detections within an image, 

the case based scheme generates only one cancer likelihood score per case. Previous studies 

have shown that the lesion based schemes not only generate many FP detections that are 

distracting to radiologists, but also have high correlation in positive lesion detection with 
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radiologists (Gur et al., 2004a). In contrast, our case based CAD scheme estimates the 

bilateral asymmetry between left and right breasts based on the computation of global 

mammographic density, texture, and spiculation based features, which is a completely new 

approach different from the current lesion based schemes. Furthermore, unlike the lesion 

based schemes that typically cue more FPs on the images with denser breast tissue (Ho and 

Lam, 2003), since our case based CAD scheme estimates bilateral asymmetry between 

image features extracted from the left and right breasts, it is not correlated to the 

mammographic density assessed from only one image (Zheng et al., 2012b; Tan et al., 
2015a).

In the second approach, we analyzed a new case based adaptive cueing method to adjust the 

cancer likelihood/probability scores of our in-house lesion based CAD scheme (Zheng et al., 
2012a). As the two different types of lesion and case based CAD schemes are developed 

based on very different concepts and are unlikely to be highly correlated, we incorporated 

the classification scores generated by the case based scheme into the lesion based scheme 

using an adaptive cueing method that was examined previously to increase mass cueing 

performance on two views (Wang et al., 2012). Although the case based adaptive cueing 

method improved the performance of the lesion based scheme slightly, i.e., 2.4% and 0.8% 

sensitivity increases were observed for ROI and case based performance, respectively, the 

performance increases demonstrated the potential of fusing two different classification 

scores that contribute supplementary information using a simple fusion method. 

Furthermore, the sensitivity increases were observed at lower FP rates (≤ 1.1 FP per image), 

which are the preferred operating thresholds (in order to generate low FP detections or recall 

rates) in present CAD schemes used in the clinical practice.

A possible avenue of future work would be to investigate other more complex fusion 

methods, such as an ANN “scoring fusion” method (Tan et al., 2014) or by using fixed 

weights (Wang et al., 2011). In this study, we had assumed the existence of a linear 

relationship, i.e. we used a linear projection line to adjust (raise/decrease) the lesions' cueing 

scores. In reality, a non-linear relationship between the case based and lesion based 

classification scores, which can only be derived by implementing more complex fusion 

methods might yield a better classification performance. However, as a preliminary study 

and a new concept that to our knowledge is being analyzed for the first time, the initial 

sensitivity improvements indicate that this is an important new approach and/or a paradigm 

changing step in the direction of improving the performance of CAD schemes for detecting 

soft tissue abnormalities (namely, masses).

Another unique characteristic of this study is that we analyzed our scheme on a relatively 

large and diverse FFDM database of 924 cases, whereby each case had all four images from 

the CC and MLO views i.e., 3696 images altogether. Compared to the previous studies that 

had also proposed new CAD approaches i.e., Refs. (Samulski et al., 2010) (120 cases) and 

(Moin et al., 2011) (200 cases), this study was conducted on a much more large/diverse 

dataset. This also increases the reliability of assessing our scheme's performance.

In summary, we examined two new concepts/approaches of developing CAD schemes for 

screening mammograms. The first approach demonstrated the potential usefulness/utility of 
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a case based CAD scheme that generates a case based risk/probability score based on the 

detection and analysis of bilateral mammographic density and asymmetry (structural 

similarity) global image features. The second approach demonstrated that potential 

improvements can be obtained by fusing the case based CAD scores derived from global 

image features with the conventional lesion based CAD scores derived from local (i.e., ROI) 

extracted features. Despite the encouraging results, this study also has a number of 

limitations that needs to be addressed in our future work. First, the case based CAD scheme 

was trained entirely on image based features. In our previous study (Tan et al., 2015b), we 

observed that adding the epidemiology based risk factors of age, family breast cancer history 

and subjectively-rated mammographic density (BIRADS) considerably improved our 

scheme's performance. Second, as this is a retrospective study with an enriched number of 

positive cases in the image dataset, it does not represent the cancer prevalence ratio of 

screening examinations in clinical practice. Thus, the performance of our two schemes 

require proper validation in future prospective studies. Third, this is just a preliminary 

technology development study. In order to analyze the effectiveness of our scheme in 

radiologists' routine clinical workflow, the performance of our scheme has to be validated in 

future observer performance studies. Thus, in this study, we assessed two different 

approaches to CAD schemes for mammograms that need to be examined further before they 

can be utilized by radiologists in clinical practice.
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Figure 1. 
Two examples of applying our lesion based computer-aided detection (CAD) scheme on two 

cancer cases in our image dataset. Figures 1 (a) and (c) display the first example with a 

cancerous mass detected by the scheme (i.e., indicated with light blue arrow) in both the CC 

and MLO images of the left breast. Figures 1 (b) and (d) display the results obtained on the 

second example – a cancerous mass was marked with a FP detection (magenta arrow).
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Figure 2. 
Example of a positive (cancer) case in which a mass (blue arrow) was detected on the CC 

view FFDM of the right breast (a); the Gabor magnitude response (b); WLD differential 

excitation (c); and gradient orientation (d) images computed on the central region of the 

right breast (red circle indicates approximate mass location). Corresponding images of the 

left (normal) breast (e)-(h).
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Figure 3. 
An illustration of using the case based adaptive cueing method to adaptively change the 

CAD-generated lesion based detection scores by incorporating the case based CAD scores, 

and projecting the original lesion based scores unto a new scoring reference line depicted by 

the dashed black line in the figure. Two purple (inner) vertical dashed lines indicate the 

original lesion based CAD scheme generated detection scores, Sorg for two regions, R1 and 

R2, while two orange (outer) vertical dashed lines indicate the new detection scores after 

applying the adaptive cueing method on R1 and R2, respectively.
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Figure 4. 
Comparison of three receiver operating characteristic (ROC) curves of our case based CAD 

scheme optimized on new features computed from individual CC and MLO views, and 

combined using a “scoring fusion” scheme of both views.
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Figure 5. 
ROI based and case based FROC curves obtained by applying our original lesion based 

CAD scheme in Ref. (Zheng et al., 2012a) to our evaluation dataset (924 cases), as well as 

the ROI and case based FROC curves obtained after applying the adaptive cueing method 

using the new case based CAD scheme scores at projection line angle, α = π / 19.
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Figure 6. 
ROI and case based FROC curves obtained after applying the adaptive cueing method using 

the new case based CAD scheme scores with projection line angle, α optimized on the 

training partitions of the cross-validation scheme. The curves are compared with the ROI 

and case based FROC curves obtained by applying our original lesion based CAD scheme in 

Ref. (Zheng et al., 2012a).
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Table 1

Case distribution and distribution of radiologist-marked mass-like abnormalities of our image dataset of 924 

full-field digital mammography (FFDM) cases.

Number of cases Total number of radiologist-marked mass-like abnormalities

All selected cases 924 1275

Cancer cases 454 918

Interval cancer cases 22 45

Benign cases 88 302

High-risk cases (with surgical excision) 5 10

Negative cases 355 0
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Table 2

Average AUC results and corresponding standard deviation intervals of three ANN classifiers of the case 

based CAD scheme trained with new features computed on the (1) CC and (2) MLO views, and (3) features 

combined using a “scoring fusion” method of both views.

No. Trained ANN classifier AUC

1 CC view features 0.758±0.016

2 MLO view features 0.758±0.016

3 Optimized “scoring fusion” method of both views 0.793±0.015
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Table 3

Summary of the adjusted odds ratios (ORs) and 95% confidence intervals (CIs) at five subgroups of the 

probability scores generated by the “scoring fusion” classifier of our case based CAD scheme.

Subgroup Number of cases (Positive – Negative) Adjusted Odds Ratio (OR) 95% Confidence Interval (CI)

1 25 – 160 1.00 Baseline

2 63 – 122 3.30 [1.97, 5.56]

3 103 – 82 8.04 [4.82, 13.41]

4 128 – 57 14.37 [8.51, 24.28]

5 157 – 27 37.21 [20.69, 66.93]

Phys Med Biol. Author manuscript; available in PMC 2018 January 21.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Tan et al. Page 25

Table 4

A confusion matrix obtained when applying a threshold at the midpoint of the case based CAD-generated 

probability scores.

Actual ↓ Negative cases Positive cases

Negative cases 320 128

Positive (cancer) cases 130 346
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Table 5

CAD adaptive cueing region (or ROI) and case based performance comparison by changing the scoring 

projection line slopes at a FP rate of 0.89 per image.

Projection line angle, α Adaptive cueing ROI based sensitivity at projection 
line angle, α (%)

Adaptive cueing case based sensitivity at projection 
line angle, α (%)

0.0 68.8 85.2

π / 4 64.5 78.1

π / 10 70.9 85.8

π / 16 71.1 86.2

π / 19 71.2 86.0

π / 22 70.9 86.2

π / 28 70.9 85.7
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Table 6

Corresponding sensitivity and FP rate results and increases in sensitivities using the adaptively cued scores for 

the ROI based FROC curves of Figure 5.

FP rate Original sensitivity (%) Adaptive cueing sensitivity at α = π/19 (%) Increase in sensitivity (%)

0.25 53.2 54.7 1.5

0.50 61.7 64.0 2.3

0.71 66.1 68.5 2.4

0.89 68.8 71.2 2.4

1.1 71.0 73.3 2.3

1.4 74.2 76.3 2.1

1.8 76.5 78.3 1.8
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Table 7

Corresponding sensitivity and FP rate results and increases in sensitivities using the adaptively cued scores for 

the case based FROC curves of Figure 5.

FP rate Original sensitivity (%) Adaptive cueing sensitivity at α = π/19 (%) Increase in sensitivity (%)

0.25 70.1 70.7 0.6

0.50 78.7 79.5 0.8

0.71 82.8 83.6 0.8

0.89 85.2 86.0 0.8

1.1 87.1 87.8 0.7

1.4 89.7 90.4 0.7

1.8 91.5 92.0 0.5
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