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Abstract

The time-to-time fluctuations (TTFs) of resting-state brain activity as captured by resting-state 

fMRI (rsfMRI) have been repeatedly shown to be informative of functional brain structures and 

disease-related alterations. TTFs can be characterized by the mean and the range of successive 

difference. The former can be measured with the mean squared successive difference (MSSD), 

which is mathematically similar to standard deviation; the latter can be calculated by the 

variability of the successive difference (VSD). The purpose of this study was to evaluate both the 

resting state-MSSD and VSD of rsfMRI regarding their test–retest stability, sensitivity to brain 

state change, as well as their biological meanings. We hypothesized that MSSD and VSD are 

reliable in resting brain; both measures are sensitive to brain state changes such as eyes-open 

compared to eyes-closed condition; both are predictive of age. These hypotheses were tested with 

three rsfMRI datasets and proven true, suggesting both MSSD and VSD as reliable and useful 

tools for resting-state studies.
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1 Introduction

The now overwhelming resting-state fMRI (rsfMRI)-based resting-state research starts from 

a scrutiny to the once assumed physiological “noise”: the restless fluctuations of brain 

activity at rest [5, 34]. Because the blood-oxygen-level-dependent (BOLD) signal generally 

acquired in rsfMRI is non-quantitative, a direct comparison of rsfMRI signal between 

different scan times or across subjects is meaningless. Rather, rsfMRI is assessed in relation 

to a reference region such as in the inter-regional functional connectivity (FC) analysis [5] or 

to the neighboring voxels or the baseline mean [27, 38, 40, 42, 44]. While these methods 

have been very successful for identifying consistent and informative resting-state brain 

activity patterns, they do not directly characterize the time-to-time fluctuations (TTFs) of 

brain activity at each voxel. Moreover, they usually only consider the slowly fluctuating 

components of rsfMRI, leaving the high-frequency part as “noise,” which certainly should 

be under scrutiny because fluctuations of neural activity, even if they look like high-

frequency “noise,” have been found to beneficial for detecting weak signal [3, 13, 30, 41] or 

for achieving a large functional capacity for the neural system to respond to stimuli [25, 26, 

36].

Two types of methods have been used to assess TTFs of resting-state brain activity using 

rsfMRI. The first one is to measure the power spectrum percentage of different frequency 

bands [32, 43, 45, 47]. Because the percentage is calculated in relation to the entire 

spectrum, these methods cannot provide a gross measure for the fluctuations of the entire 

temporal process. Another issue is that those methods need empirically determined 

frequency cutoffs to define different frequency bands, which may not be accurate and not 

suitable for assessing fluctuations with time-varying frequencies. The second type of 

methods directly characterizes TTFs by calculating statistical variability, such as variance or 

standard deviation (SD), two measures of the average disparity of the entire data samples to 

the mean value. These time-domain methods were widely used in biological signal 

processing [8, 19]. As compared to the frequency-based methods, the statistical approaches 

are independent of any a priori frequency band specifications and they provide an index for 

the extent of overall fluctuations. Fransson [15] first noticed that variance of BOLD fMRI 

decreased in the default mode network during task-induced deactivations. Samanez-Larkin 

et al. found that variability of BOLD fMRI measured by the mean squared successive 

difference (MSSD) [39] throughout the midbrain and striatum with peaks in the substantia 

nigra, ventral tegmental area increased with age when the subjects are performing a risk-

taking task. Garrett et al. [16] calculated SD as a measure of regional variability of fMRI 

data during a resting (fixation) condition and found that a reduction in rsfMRI SD is 

predictive of aging. He [18] later noticed that variance of fMRI was higher during rest 

condition as compared to a task-performing condition. While these studies showed 

interesting findings about temporal brain fluctuations at rest, the resting-state data were 

extracted from the control resting blocks from task-performing experiments, which were 

inevitably affected by the task-performing blocks. Few studies have assessed TTFs of the 

brain using rsfMRI. Maxim et al. modeled the noise of rsfMRI data with a fractional 

Gaussian noise model and demonstrated that variance of rsfMRI was higher in ventricles and 

the rim of cortices and patients with Alzheimer’s disease had higher variance in places near 
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the ventricles and sulcal CSF [29]. Kaneoke et al. [21] showed higher variance also in 

regions near brain ventricles and CSF but lower variance in many other places including 

temporal lobes, striatum, insula, visual cortex, and prefrontal cortex. No one has yet paid 

attention to the higher-order TTFs.

The aims of this paper were to assess TTFs in the resting brain regarding its test–retest 

stability, sensitivity to state change, and associations with age. The former two remain new. 

The third part has been done in [16] but with a small cohort of subjects and not with rsfMRI. 

We used the large cohort from the 1000 Functional Connectomes Project (FCP) (http://

fcon_1000.projects.nitrc.org). A fourth goal of this paper was to assess the second-order 

TTFs. While SD or variance of the raw rsfMRI data measures mean temporal fluctuations of 

the resting brain, they do not characterize second-order TTFs, which is the variation of the 

time-to-time fluctuation (mean change rate of the dynamic changes of the raw data, similar 

to the acceleration rate). The rationale for assessing the second-order TTFs is that if a range 

of dynamic neural activity (variability or the first-order TTFs) is required for the neural 

system to have an optimal performance in response to stimuli [25, 26, 36], it is likely that a 

range of the change rate of TTFs is also needed for the system to have a minimal time to 

respond to stimuli but still under some innate biological constraints such as energy and 

action potential magnitude and rate [2]. We assessed the mean strength and variation of the 

TTFs with the normalized MSSD (nMSSD), and the variability of successive difference 

(VSD), respectively. MSSD is a non-biased estimation to SD [39], but it involves a 

successive differentiation process which makes it less sensitive to low-frequency drift, a 

well-known confound in fMRI. Our hypotheses were: Both nMSSD and VSD of rsfMRI are 

stable across time; nMSSD and VSD can indicate brain activity changes such as eyes-open 

versus eyes-closed condition; nMSSD and VSD are predictive of age and are different across 

genders.

2 Method

2.1 Data and subjects

Three rsfMRI datasets were used for evaluating both nMSSD and VSD. Dataset 1 was 

acquired at the University of Pennsylvania; datasets 2 and 3 were downloaded from public 

neuroimaging sharing database.

Dataset 1 was reported in previous studies [22, 23, 40]. Sixteen young healthy human 

subjects [age 25 ± 4.6 (mean ± SD), age range 20–35, 7 males] were recruited from local 

community in Philadelphia. The study was approved by the University of Pennsylvania 

Institutional Review Board, and all subjects provided signed written consent form before 

being enrolled in the experiments. All subjects’ information was anonymized and de-

identified prior to analysis in this study.

Dataset 2 was provided by Zang et al. from Beijing Normal University [28]. Forty-eight 

subjects (age: 22.5 ± 2.2, age range 18–30, 24 males) were scanned twice; one session with 

eyes open and the other with eyes closed (EOEC). Imaging data were downloaded from 

http://fcon_1000.projects.nitrc.org/indi/IndiPro.html [28].
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Dataset 3 was also downloaded from the 1000 Functional Connectomes Project (FCP) Web 

site (http://fcon_1000.projects.nitrc.org). One thousand and forty-nine subjects from 22 

different sites were included as in our previous paper [40] (age = 26.94 ± 11.34) years, age 

range: 7.88–85 years, 466 males, 583 females).

The collection and publicly sharing of datasets 2 and 3 were approved by each contributor’s 

respective ethics committee. See Refs. [28] and [6] for details. All subjects’ imaging data 

were anonymized and de-identified prior to download and analysis.

2.2 Imaging acquisition

For dataset 1, all MR images were acquired on a Siemens 3 Tesla Trio whole-body scanner 

(Erlangen, Germany) at the Hospital of the University of Pennsylvania using an eight-

channel array coil. High-resolution T1-weighted images were acquired using a 3D-

MPRAGE sequence with following parameters: TR = 1620 ms, TE = 3 ms, flip angle = 15°, 

and slice thickness = 1.0 mm. Resting-state fMRI images were acquired using a T2*-

weighted gradient echo echo-planar-imaging (EPI) sequence with following parameters: TR 

= 2 s, TE = 30 ms, slice thickness = 3.3 mm, 35 slices, FOV = 220 × 220 mm2, matrix = 64 

× 64, and 150 time points. During the resting-state scan, the subjects were instructed to lie 

still and keep eyes open [22, 23]. Each subject took a second (retest) scan about 2 months 

after the first scan.

The EOEC data (dataset 2) were acquired in a Siemens Trio 3T whole-body scanner too. 

Each subject underwent one high-resolution T1 3D-MPRAGE scan: TR = 2530 ms, TE = 

3.39 ms, flip angle = 7°, and slice thickness = 1.33 mm, and 3 resting-state fMRI scans with 

the following parameters: TR = 2 s, TE = 30 ms, slice thickness = 3.5 mm, slice gap = 0.7 

m, 33 slices, FOV = 200 × 200 mm2, matrix = 64 × 64, and 240 time points [28]. The second 

and third resting-state scans were shuffled and counterbalanced across the subjects so that 

half of the subjects were instructed to close their eyes during the second scan and instructed 

to keep their eyes open during the third scan, and the other half of the subjects were 

instructed to keep their eyes open during the second scan and keep their eyes closed during 

the third scan [28]. These two EOEC scans were used in this study.

Acquisition parameters for the rsfMRI dataset 3 were: imaging duration: 4.15–9.8 min; 

voxel size: 2–4 mm within plane; and slice thickness, 3–5.5 mm. Structural images were 

acquired as well. Full acquisition settings can be found in the 1000 FCP webpage http://

fcon_1000.projects.nitrc.org.

2.3 Data preprocessing

Data preprocessing was performed with the standard pipeline [6] using FSL [20] and AFNI 

[11] software. Briefly, the rsfMRI images were corrected for slice timing and motion, and 

were subsequently smoothed using a Gaussian kernel with full width at half maximum 

(FWHM) = 6 mm [31] and high-pass filtered (0.009 Hz). CSF and white matter signals, as 

well as the motion parameters and their derivatives, were regressed out.

Li et al. Page 4

Med Biol Eng Comput. Author manuscript; available in PMC 2018 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://fcon_1000.projects.nitrc.org
http://fcon_1000.projects.nitrc.org
http://fcon_1000.projects.nitrc.org


2.4 Metrics of TTF

The mean strength and variation of rsfMRI TTF with respect to time were calculated as the 

nMSSD and the VSD. Since fMRI is a relative measure, we removed the scale by dividing 

the TTF metrics by the mean of rsfMRI signal at each voxel. Assuming that rsfMRI time 

series at one voxel is [x1, x2, …, xn] (n is the number of acquisitions), its first derivative with 

respect to time was calculated as dx = [dx1, dx2, …, dxn−1], where dxj = xj+1 − xj. Then, the 

nMSSD was calculated by

(1)

VSD was calculated as

(2)

where SD means taking standard deviation and |.| means taking absolute. To avoid digital 

data underflow during processing, nMSSD and VSD were multiplied by 1000, respectively. 

nMSSD and VSD maps were smoothed and registered into the Montreal Neurological 

Institute (MNI) standard brain space using FSL FNIRT.

2.5 Group-level analysis

Test–retest reliability was evaluated with intra-class correlation (ICC) [37]. First, one-way 

ANOVA was used to calculate the within-subject mean square (MSw) and between-subject 

mean square (MSb). ICC value was then calculated according to the following equation 

voxel by voxel [37].

(3)

where K = 2 is the number of observations for each subject. ICC value ranges from 0.0 to 

1.0. Cicchetti et al. [9, 10] proposed a guideline to quantify the reliability as poor (ICC 

below 0.4), fair (ICC in the range of 0.41–0.59), good (ICC in the range of 0.60–0.74), or 

excellent (ICC above 0.75). Portney et al. [33] suggested that an ICC < 0.5 represents poor 

reliability, ICC in the range of 0.5–0.74 represents moderate reliability, and ICC > 0.75 

represents good reliability. Therefore, an ICC > 0.5 is often chosen as an acceptable 

reliability criteria in many studies [1, 22, 35], and was used in this paper to define high test–

retest stability too.

Li et al. Page 5

Med Biol Eng Comput. Author manuscript; available in PMC 2018 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Paired T test was performed to assess the nMSSD and VSD difference between the EO and 

EC resting state using the EOEC dataset. The statistical significance was defined with an un-

corrected p value of 0.001 and a spatial extent threshold of 30 voxels [24] [4].

The 1049 FCP data were used to test the hypothesis that nMSSD and VSD are predictive of 

age and gender. TR (the sampling rate of rsfMRI) was divided off from both nMSSD and 

VSD to convert them into sampling rate-independent values. Simple regression was used to 

assess the relation of each voxel’s nMSSD or VSD to age or gender (both in the same 

model). Because the sample size of the FCP data is large, a family-wise error (FWE)-

corrected p value of 0.05 was used to define the significant relationship clusters.

3 Results

3.1 Mean nMSSD and VSD map

To give an intuitive view of nMSSD and VSD of the TTF in the resting brain, Fig. 1 shows 

the averaged nMSSD (calculated with Eq. 1) and the averaged VSD (calculated with Eq. 2) 

of the test–retest rsfMRI scans of the young healthy subjects from dataset 1. The mean 

nMSSD of the first scans of the young subjects (Fig. 1a) was very similar to the mean 

nMSSD of the second (retest) scans (Fig. 1b). The mean VSD of the first scans of the young 

subjects (Fig. 1c) was also very similar to the mean VSD of the second scans (Fig. 1d). Both 

nMSSD and VSD of brain tissue regions were lower than those of CSF regions.

To test the difference between nMSSD and VSD, we presented the ratio of nMSSD and 

VSD of one scan of one example subject in Fig. 1e. In Fig. 1e, each voxel showed the value 

of nMSSD of that location divided by VSD of the same location. In this figure, similar but 

not the same nMSSD/VSD ratios were shown across the brain.

3.2 Test–retest reliability of nMSSD and VSD

Figure 2 shows the test–retest stability analysis results. Both nMSSD (Fig. 2a) and VSD 

(Fig. 2b) showed very high ICC scores (calculated with Eq. 3) in nearly the entire gray 

matter, especially in visual cortex, posterior cingulate cortex, precuneus, parietal cortex, and 

frontal lobe. nMSSD and VSD showed very similar spatial distribution patterns of ICC 

scores across the brain though VSD showed spatially more extended high ICC (>0.5) 

distributions.

3.3 Resting nMSSD and VSD changes in response to the EO–EC state change

Figure 3 shows the EO–EC state change-induced TTF alterations. As compared to the eyes-

closed condition, the eyes-open resting condition had lower nMSSD (Fig. 3a) and lower 

VSD (Fig. 3b) in superior temporal cortex, middle temporal cortex, visual cortex, basal 

ganglia, and the motor network including primary cortex, supplementary motor area (SMA), 

and thalamus. Eyes-open condition showed higher VSD (Fig. 3b) in bilateral middle 

occipital lobe. The hypo (lower in the eyes-open condition) patterns of nMSSD and VSD 

appeared to be similar, but VSD presented larger and more spatially distributed supra-

threshold clusters. While the results were presented with an uncorrected threshold similar to 

the previous EO–EC papers, a portion of the EO–EC nMSSD and VSD difference patterns 
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sustained even with a more stringent threshold (p < 0.05, FWE corrected) as shown in 

Supplementary Fig S2.

3.4 Age and gender effects of rsfMRI nMSSD and VSD

Figure 4 shows the regression analysis results from the 1049 FCP dataset. nMSSD was 

negatively (p < 0.05 with family-wise error (FWE) correction) correlated with age in visual 

cortex, posterior cingulate cortex (PCC), precuneus, bilateral parietal cortex, and right 

dorsolateral prefrontal cortex (dlPFC) (Fig. 4a). VSD showed negative correlation (Fig. 4c) 

with age in similar regions. In addition, VSD showed correlation with age in left lateral 

orbito-frontal cortex (OFC). No positive correlations were found between age and nMSSD 

or VSD. As compared to females, male subjects had higher nMSSD (Fig. 4b) and VSD (Fig. 

4d) in frontal lobe, caudate, insula, temporal cortex, anterior cingulate cortex (ACC), and 

cerebellum. VSD was higher in males in the same regions with larger cluster extension. 

Additional supra-threshold clusters of higher male VSD was found in ventral striatum and 

hippocampus.

4 Discussion

In this study, we characterized the time-to-time fluctuations in the resting brain using 

rsfMRI acquired without any task-performing interference. We assessed both the mean and 

the range of the time-to-time rsfMRI changes using nMSSD and VSD. nMSSD provides a 

scale-free measure for the mean squared differentiations of the raw rsfMRI and can be 

considered as a mean time-to-time fluctuation index. VSD characterizes the relative (or 

scale-free) standard deviation of the time-to-time rsfMRI signal changes and can be 

considered as a second-order variability measure. If normalized by the time of repetition 

(TR, the sampling rate of rsfMRI), nMSSD and VSD are similar to the mean speed and 

acceleration of the dynamic resting-state activity, respectively, which are both related to 

kinetic energy. Because human brain is an energy-constrained system [14] and consistent 

brain functionality needs a consistent energy consumption, it is likely that resting brain 

presents spatially distributed nMSSD and VSD and both measures would be stable across 

time. Although TTFs have been recently studied with standard deviation and MSSD, their 

patterns in resting brain remained unclear, not to mention their test–retest stability. This 

paper aimed to address these unsolved issues.

Using test–retest rsfMRI, we showed high reproducibility of both measures in most of the 

cerebral cortex. Gray matter had higher nMSSD and VSD than white matter because of 

more neural activity going on in gray matter. CSF shows the highest nMSSD and VSD 

because BOLD fMRI signal in CSF is mainly contributed by random noise. The test–retest 

analysis results and the inhomogeneous nMSSD/VSD ratio shown in this paper suggest 

nMSSD and VSD as two different but reliable indices for characterizing resting-state brain 

activity. Using rsfMRI data acquired with eyes closed and eyes open, nMSSD and VSD 

revealed brain difference patterns similar to those reported in previous studies [28, 46], 

suggesting that nMSSD and VSD are sensitive to regional activity alterations during brain 

state change.
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To examine the neurobiological relationship of nMSSD and VSD, we calculated their 

correlations with age and gender using a large cohort of subjects (n = 1049). The results 

repeated previously observed negative correlations between rsfMRI variability and age in 

visual cortex, precuneus, bilateral parietal cortex, lateral inferior frontal cortex, bilateral 

dlPFC, and PFC [16]. Precuneus, bilateral parietal cortex are parts of the default mode 

network whose resting activity has been shown to decrease with age by Damoiseaux et al. 

[12] early in 2008. VSD showed similar negative correlations with age. Different from [16], 

we did not find any positive correlations between resting TTFs and age. The main reason for 

this discrepancy could be the larger sample size and the more strict multiple comparison 

correction method used in this paper. Biswal et al. [6] reported both positive and negative 

correlations between age and ALFF. The negative correlations were located in similar areas 

to what we found in nMSSD or VSD but were more spatially distributed. Two reasons can 

contribute to such a difference. First, standard ALFF analysis only considers one particular 

frequency band but nMSSD and VSD are not constrained to any frequency bands. Second, a 

cluster-wise multiple comparison correction method was used in [6] which is different from 

the voxel-wise Bonferroni correction approach. Nevertheless, the decreased nMSSD and 

VSD in aging brain are consistent with previous studies based on variability and ALFF and 

suggest a less active and less adaptable resting state in the older adults. We observed a 

widespread gender effect in both nMSSD and VSD with males showing higher nMSSD and 

VSD, which is opposed to the higher ALFF in females’ findings in [6]. As mentioned above, 

nMSSD and VSD are independent of any specific frequency band, so they can be very 

different from what ALFF measures. Nevertheless, the higher nMSSD and VSD in males 

may be related to a higher energy consumption level in males’ brain as compared to females.

VSD seems to be relatively more sensitive for detecting the EOEC effects, for predicting age 

as well as gender. Theoretically, VSD is related to acceleration which is more directly 

related to kinetic energy than nMSSD. Since energy is the base of neural activity, the 

relatively higher sensitivity of VSD may suggest that VSD better reflects neural activity than 

nMSSD.

Default mode network has been repeatedly shown to have higher low-frequency fluctuations 

than the rest of the brain during rest [7, 34]. Such a contrast, however, was not clear in the 

resting nMSSD and VSD map in this paper. One reason could be that both nMSSD and VSD 

quantify TTF of the full spectrum rather than the low-frequency partition. Higher low-

frequency TTF in DMN does not necessarily mean higher TTF in the entire frequency band 

in DMN. Second, the traditional resting-state fMRI measures such as functional connectivity 

and amplitude of low-frequency fluctuations, are based on the original time series, but 

nMSSD and VSD are based on the absolute successive difference, which is different from 

the original time series and may contribute to the observed spatial distribution pattern 

difference.

The sampling rate (TR of rsfMRI) may affect both nMSSD and VSD. But as long as the 

same TR is used for all scans, its effects on the group-level comparison will be canceled out. 

We did control TR in the age and gender effects analysis because different TRs were used 

for the FCP data. But we noticed quite similar effects even without controlling TR.
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In rsfMRI, noise from human physiological motion is an unresolved problem, and head 

motion differences between groups may induce spurious group difference of rsfMRI metrics 

[17]. In current study, there was no significant difference of head motion between the 

compared groups: The mean relative head displacement of the two test–rest sessions of 

young healthy dataset was 0.047 ± 0.024 and 0.041 ± 0.016 mm (p = 0.345); the mean 

relative head displacement of the EO and EC sessions of Beijing EC–EC dataset was 0.042 

± 0.015 and 0.046 ± 0.019 mm (p = 0.057), respectively [20]. In addition to rigid head 

motion correction, we also regressed out the first derivatives of all the nuisance signals (6 

motion parameters and CSF, white matter signals) during image preprocessing, which 

should have substantially reduced the artifact induced by in-scanner subject physiological 

motion.

5 Conclusions

In summary, we found very high test–retest reliability of both nMSSD and VSD of rsfMRI 

in nearly the entire brain cortex, suggesting that the two TTF metrics are reproducible across 

time. We observed significant changes of nMSSD and VSD between the EO–EC sessions, 

indicating their sensitivity to brain state change. We also detected significant correlation 

between the two metrics and the age. These findings suggest nMSSD and VSD as 

reproducible and sensitive measures of brain dynamic fluctuations. Future studies are needed 

to assess their usefulness in translational applications and validate them as potential clinical 

biomarkers.
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Fig. 1. 
Mean nMSSD and VSD maps 16 healthy subjects included in the test–retest dataset. a, b are 

the mean nMSSD maps from the scan session 1 and session 2, c, d are the mean VSD maps 

from scan session 1 and session 2, respectively, and e is the nMSSD/VSD ratio map of a 

representative subject. L the left side of the brain. The digital numbers to the right of each 

axial image and the blue lines in the sagittal image indicate the physical locations along z 

direction (mm) of the corresponding axial images in MNI space
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Fig. 2. 
Test–retest stability analysis results for a nMSSD and b VSD. Hot color means ICC > 0.5. L 
the left side of the brain. The digital numbers to the right of each axial image and the blue 
lines in the sagittal image indicate the physical locations along z direction (mm) of the 

corresponding axial images in MNI space
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Fig. 3. 
Eyes-open versus eyes-closed rsfMRI time-to-time fluctuation difference. a Difference of 

nMSSD and b difference of VSD, respectively. Significance level was defined with a voxel-

wise p < 0.001 (un-corrected) and cluster size >30 voxels. Hot color means greater in eyes-

open condition; green color means greater in eyes-closed condition. L the left side of the 

brain. The digital numbers to the right of each axial image and the blue lines in the sagittal 

image indicate the physical locations along z direction (mm) of the corresponding axial 

images in MNI space
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Fig. 4. 
Age and gender effects on rsfMRI TTFs. The green spots in a, c indicate negative 

correlations between age and nMSSD, and VSD, respectively; hot spots in b, d mean the 

males had higher nMSSD or VSD, respectively, in those regions. Significance level was 

defined by p < 0.05 (FWE corrected), and cluster size >30 voxels. L the left side of the 

brain. The digital numbers to the right of each axial image and the blue lines in the sagittal 

image indicate the physical locations along z direction (mm) of the corresponding axial 

images in MNI space
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