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Abstract

Medical imaging serves many roles in patient care and the drug approval process, including 

assessing treatment response and guiding treatment decisions. These roles often involve a 

quantitative imaging biomarker, an objectively measured characteristic of the underlying anatomic 

structure or biochemical process derived from medical images. Before a quantitative imaging 

biomarker is accepted for use in such roles, the imaging procedure to acquire it must undergo 

evaluation of its technical performance, which entails assessment of performance metrics such as 

repeatability and reproducibility of the quantitative imaging biomarker. Ideally, this evaluation will 

involve quantitative summaries of results from multiple studies to overcome limitations due to the 

typically small sample sizes of technical performance studies and/or to include a broader range of 

clinical settings and patient populations. This paper is a review of meta-analysis procedures for 

such an evaluation, including identification of suitable studies, statistical methodology to evaluate 

and summarize the performance metrics, and complete and transparent reporting of the results. 

This review addresses challenges typical of meta-analyses of technical performance, particularly 

small study sizes, which often causes violations of assumptions underlying standard meta-analysis 

techniques. Alternative approaches to address these difficulties are also presented; simulation 

studies indicate that they outperform standard techniques when some studies are small. The meta-
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analysis procedures presented are also applied to actual [18F]-fluorodeoxyglucose positron 

emission tomography (FDG-PET) test–retest repeatability data for illustrative purposes.
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meta-analysis; meta-regression; systematic review

1 Introduction

Medical imaging is useful for physical measurement of anatomic structures and diseased 

tissues as well as molecular and functional characterization of these entities and associated 

processes. In recent years, imaging has increasingly served in various roles in patient care 

and the drug approval process, such as for staging,1,2 for patient-level treatment decision-

making,3 and as clinical trial endpoints.4

These roles will often involve a quantitative imaging biomarker (QIB), a quantifiable feature 

extracted from a medical image that is relevant to the underlying anatomical or biochemical 

aspects of interest.5 The ultimate test of the readiness of a QIB for use in the clinic is not 

only its biological or clinical validity, namely its association with a biological or clinical 

endpoint of interest, but also its clinical utility, in other words, that the QIB informs patient 

care in a way that benefits patients.6 But first, the imaging procedure to acquire the QIB 

must be shown to have acceptable technical performance; specifically, the QIB it produces 

must be shown to be accurate and reliable measurements of the underlying quantity of 

interest.

Evaluation of an imaging procedure’s technical performance involves assessment of a 

variety of properties, including bias and precision and the related terms repeatability and 

reproducibility. For detailed discussion of metrology terms and statistical methods for 

evaluating and comparing performance metrics between imaging systems, readers are 

referred to several related reviews in this journal issue.5,7,8 A number of studies have been 

published describing the technical performance of imaging procedures in various patient 

populations, including the test–retest repeatability of [18F]-fluorodeoxyglucose (FDG) 

uptake in various primary cancer types such as nonsmall cell lung cancer and 

gastrointestinal malignancies,9–13 and agreement between [18F]-fluorothymidine (FLT) 

uptake and Ki-67 immunohistochemistry in lung cancer patients, brain cancer patients, and 

patients with various other primary cancers.14 Given that studies assessing technical 

performance often contain as few as 10–20 patients9,13,15 and the importance of 

understanding technical performance across a variety of imaging technical configurations 

and clinical settings, conclusions about technical performance of an imaging procedure 

should ideally be based on multiple studies.

This paper describes meta-analysis methods to combine information across studies to 

provide summary estimates of technical performance metrics for an imaging procedure. The 

importance of complete and transparent reporting of meta-analysis results is also stressed. 

To date, such reviews of the technical performance of imaging procedures have been largely 
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qualitative in nature.16 Narrative or prose reviews of the literature are nonquantitative 

assessments that are often difficult to interpret and may be subject to bias due to subjective 

judgments about which studies to include in the review and how to synthesize the available 

information into a succinct summary, which, in the case of an imaging procedure’s technical 

performance, is a single estimate of a performance metric.17 Systematic reviews such as 

those described by Cochrane18 improve upon the quality of prose reviews because they 

focus on a particular research question, use a criterion-based comprehensive search and 

selection strategy, and include rigorous critical review of the literature. A meta-analysis 

takes a systematic review of the extra step to produce a quantitative summary value of some 

effect or metric of interest. It is the strongest methodology for evaluating the results of 

multiple studies.17

Traditionally, a meta-analysis is used to synthesize evidence from a number of studies about 

the effect of a risk factor, predictor variable, or intervention on an outcome or response 

variable, where the effect may be expressed in terms of a quantity such as an odds ratio, a 

standardized mean difference, or a hazard ratio. Discussed here are adaptations of meta-

analysis methods that are appropriate for use in producing summary estimates of technical 

performance metrics. Challenges in this setting include limited availability of primary 

studies and their typically small sample size, which often invalidates approximate normality 

of many performance metrics, an assumption underlying standard methods, and between-

study heterogeneity relating to the technical aspects of the imaging procedures or the clinical 

settings. For purposes of illustration, meta-analysis concepts and methods are discussed in 

the context of an example of a meta-analysis of FDG positron emission tomography (FDG-

PET) test–retest data presented in de Langen et al.10

The rest of the paper is organized as follows. Section 2 gives an overview of the systematic 

review process. Section 3 describes statistical methodology for meta-analyses to produce 

summary estimates of an imaging procedure’s technical performance given technical 

performance metric estimates at the study level, including modified methods to 

accommodate nonnormality of these metric estimates. Section 4 describes statistical 

methodology for meta-regression, namely meta-analysis for when study descriptors that may 

explain between-study variability in technical performance are available. In both Sections 3 

and 4, techniques are presented primarily in the context of repeatability for purposes of 

simplicity. In Section 5, results of meta-analyses of simulated data and of FDG-PET test–

retest data from de Langen et al.10 using the techniques described in Sections 3 and 4 are 

presented. Section 6 describes meta-analysis techniques for when patient-level data, as 

opposed to just study-level data as is the case in Sections 3 and 4, are available. Like in 

Sections 3 and 4, the concepts in Section 6 are also presented primarily in the context of 

repeatability. Section 7 describes the extension of the concepts presented in Section 2 to 4, 

and Section 6 to other aspects of technical performance, including reproducibility and 

agreement. Section 8 presents some guidelines for reporting results of the meta-analysis. 

Finally, Section 9 summarizes the contributions of this paper and identifies areas of 

statistical methodology for meta-analysis that would benefit from future research to enhance 

their applicability to imaging technical performance studies and other types of scientific 

investigations.
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2 Systematic reviews of technical performance

Meta-analysis of an imaging procedure’s technical performance requires a rigorous 

approach to ensure interpretability and usefulness of the results. This requires careful 

formulation of the research question to be addressed, prospective specification of study 

search criteria and inclusion/exclusion criteria, and use of appropriate statistical methods to 

address between-study heterogeneity and compute summary estimates of performance 

metrics. Figure 1 displays a flowchart of the overall process. The following sections 

elaborate on considerations at each step.

2.1 Formulation of the research question

Careful specification of the question to be addressed provides the necessary foundation for 

all subsequent steps of the meta-analysis process and maximizes interpretability of the 

results. The question should designate a clinical context, class of imaging procedures, and 

specific performance metrics. Clinical contexts may include screening in asymptomatic 

individuals or monitoring treatment response or progression in individuals with malignant 

tumors during or after treatment. As an example, if FDG-PET is to be used to assess 

treatment response,19,20 then determining a threshold above which changes in FDG uptake 

indicate true signal change rather than noise would be necessary.9 Characteristics of the 

specific disease status, disease severity, and disease site may influence performance of the 

imaging procedure. For example, volumes of benign lung nodules might be assessed more 

reproducibly than malignant nodule volumes. Imaging procedures to be studied need to be 

specified by imaging modality and usually additional details including device manufacturer, 

class or generation of device, and image acquisition settings.

A specific metric should be selected on the basis of how well it captures the performance 

characteristic of interest and with some consideration of how likely it is that it will be 

available directly from retrievable studies or can be calculated from information available 

from those studies. The clinical context should also be considered in the selection of the 

metric. For instance, the repeatability coefficient (RC) not only is appropriate for meta-

analyses of test–retest repeatability, but also may be particularly suitable if the clinical 

context is to determine a threshold below which changes can be attributed to noise. RC is a 

threshold below which absolute differences between two measurements of a particular QIB 

obtained under identical imaging protocols will fall with 95% probability.21,22 Thus, 

changes in FDG uptake greater than the RC may indicate treatment response.

In specifying the research question, one must be realistic about what types of studies are 

feasible to conduct. Carrying out a performance assessment in the exact intended clinical use 

setting or assessing performance under true repeatability or reproducibility conditions will 

not always be possible. It may be ethically inappropriate to conduct repeatability studies of 

an imaging procedure that delivers an additional or repeated radiation dose to the subject or 

relies on use of an injected imaging agent for repeat imaging within a short time span. 

Besides radiation dose, use of imaging agents also requires consideration of washout periods 

before repeat scans can be conducted. Biological conditions might have changed during this 

time frame and affect measures of repeatability. True assessment of reproducibility and 

influence of site operators, different equipment models for one manufacturer or scanners 
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from different manufacturers require subjects travelling to different sites to undergo repeat 

scans, which is rarely feasible. Assessment of bias may not be possible in studies involving 

human subjects due to difficulties in establishing ground truth. Extrapolations from studies 

using carefully crafted phantoms or from animal studies may be the only options. The 

degree of heterogeneity observed among these imperfect attempts to replicate a clinical 

setting may in itself be informative regarding the degree of confidence one can place in these 

extrapolations. Best efforts should be made to focus meta-analyses on studies conducted in 

settings that are believed to yield performance metrics that would most closely approximate 

values of those metrics in the intended clinical use setting.

There are trade-offs between a narrowly focused question versus a broader question to be 

addressed in a meta-analysis. For the former, few studies might be available to include in the 

meta-analysis, whereas for the latter, more studies may be available but extreme 

heterogeneity could make the meta-analysis results difficult to interpret. If the meta-analysis 

is being conducted to support an investigational device exemption, or imaging device 

clearance or approval, early consultation with the Food and Drug Administration (FDA) 

regarding acceptable metrics and clinical settings for performance assessments is strongly 

advised.

2.2 Study selection process

After carefully specifying a research question and clinical context, one must clearly define 

search criteria for identification of studies to potentially include in the meta-analysis. For 

example, for a meta-analysis of test–retest repeatability of FDG uptake, the search criteria 

may include test–retest studies where patients underwent repeat scans with FDG-PET with 

or without CT, without any interventions between scans.

Once study selection criteria are specified, an intensive search should be conducted to 

identify studies meeting those criteria. The actual mechanics of the search can be carried out 

by a variety of means. Most published papers will be identifiable through searches of 

established online scientific literature databases. For example, with the search criteria de 

Langen et al. defined for their meta-analysis, they performed systematic literature searches 

on Medline and Embase using search terms “PET,” “FDG,” “repeatability,” and “test–

retest,” which yielded eight studies.10 The search should not be limited to the published 

literature, as the phenomenon of publication bias, namely the tendency to preferentially 

publish studies that show statistically significant or extreme and usually favorable results, is 

well known in biomedical research.

Some unpublished information may be retrievable through a variety of means. Information 

sources might include meeting abstracts and proceedings, study registries such as 

ClinicalTrials.gov,23 unpublished technical reports which might appear on websites 

maintained by academic departments, publicly disclosed regulatory summaries such as FDA 

510(K) summaries of clearance or summary of safety and effectiveness data in approval of 

devices and summary review of approval of drugs, device package inserts, device labels, or 

materials produced by professional societies. Internet search engines can be useful tools to 

acquire some of this information directly or to find references to its existence.
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Personal contact with professional societies or study investigators may help in identifying 

additional information. If an imaging device plays an integral role for outcome 

determination or treatment assignment in a large multicenter clinical trial, clinical site 

qualification and quality monitoring procedures may have been in place to ensure sites are 

performing imaging studies according to high standards. Data sets collected for particular 

studies might contain replicates that could be used to calculate repeatability or 

reproducibility metrics. Data from such evaluations are typically presented in internal study 

reports and are not publicly available, but they might be available from study investigators 

upon request.24 Any retrieved data sets will be loosely referred to here as “studies,” even 

though the data might not have been collected as part of a formal study that aimed to 

evaluate the technical performance of an imaging procedure as is the case with these data 

collected for ancillary qualification and quality monitoring purposes. Increasingly, high 

volume data such as genomic data generated by published and publicly funded studies are 

being deposited into publicly accessible databases. Examples of imaging data repositories 

include the Reference Image Database to Evaluate Response, the imaging database of the 

Rembrandt Project,25 The Cancer Imaging Archive,26 and the image and clinical data 

repository of the National Institute of Biomedical Imaging and Bioengineering (NIBIB).27 

The more thoroughly the search is conducted, the greater the chance one can identify high 

quality studies of the performance metrics of interest with relatively small potential for 

important bias.

Unpublished studies present particular challenges with regard to whether to include them in 

a meta-analysis. While there is a strong desire to gather all available information relevant to 

the meta-analysis question, there is a greater risk that the quality of unpublished studies 

could be poor because they have not been vetted by peer review. Data from these 

unpublished studies may not be permanently accessible, but also access might be highly 

selective since not all evaluations provide information relevant to the meta-analysis. These 

factors may result in a potential bias toward certain findings in studies for which access is 

granted. These points emphasize the need for complete and transparent reporting of health 

research studies to maximize the value and interpretability of research results.28

The search criteria allow one to retrieve a collection of studies that can be further vetted 

using more specific inclusion and exclusion criteria to determine if they are appropriate for 

the meta-analysis. Some inclusion and exclusion criteria might not be verifiable until the 

study publications or data sets are first retrieved using broader search criteria, at which point 

they can then be examined in more detail. Additional criteria might include study sample 

size, language in which material is presented, setting or sponsor of the research study (e.g. 

academic center, industry-sponsored, government-sponsored, community-based), quality of 

the study design, statistical analysis, and study conduct, and period during which the study 

was conducted. Such criteria may be imposed, for example, to control for biases due to 

differences in expertise in conducting imaging studies, differences in practice patterns, 

potential biases due to commercial or proprietary interests, and the potential for publication 

bias (e.g. small studies with favorable outcome are more likely to be made public than small 

studies with unfavorable outcomes). Any given set of study selection rules may potentially 

introduce some degree of bias in the meta-analysis summary results, but clear 

prespecification of the search criteria at least offers transparency. As an example, in their 
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meta-analysis of the test–retest repeatability of FDG uptake, de Langen et al. used four 

inclusion/exclusion criteria: (a) repeatability of 18F-FDG uptake in malignant tumors; (b) 

standardized uptake values (SUVs) used; (c) uniform acquisition and reconstruction 

protocols; (d) same scanner used for test and retest scan for each patient. This further 

removed three of the eight studies identified through the original search.10

Incorporation of study quality evaluations in the selection criteria is also important. If a 

particular study has obvious flaws in its design or in the statistical analysis methods used to 

produce the performance metric(s) of interest, then one should exclude the study from the 

meta-analysis. An exception might be when the statistical analysis is faulty but is correctable 

using available data; inclusion of the corrected study results in the meta-analysis may be 

possible. Examples of design flaws include a lack of blinding of readers to evaluations of 

other readers in a reader reproducibility study and confounding of important experimental 

factors with ancillary factors such as order of image acquisition or reading or assignment of 

readers to images. Statistical analysis flaws might include use of methods for which 

statistical assumptions required by the method like independence of observations or constant 

variance are violated. Additionally, data from different studies may overlap, so care should 

be taken to screen for, and remove, these redundancies as part of assembling the final set of 

studies. There may be some studies for which quality cannot be judged. This might occur, 

for example, if study reporting is poor and important aspects of the study design and 

analysis cannot be determined. These indeterminate situations might best be addressed at the 

analysis stage, as discussed briefly in Section 9.

For meta-analyses of repeatability and reproducibility metrics, it is particularly important to 

carefully examine the sources of variability encompassed by the metric computed for each 

retrieved study. Repeatability metrics from multiple reads from each of several acquired 

images will reflect a smaller amount of variation than the variation expected when the full 

image acquisition and interpretation process is repeated. Many different factors, such as 

clinical site, imaging device, imaging acquisition process, image processing software, or 

radiologist or imaging technician, can vary in reproducibility assessments. Selection criteria 

should explicitly state the sources of variation that are intended to be captured for the 

repeatability and reproducibility metrics of interest. Compliance testing for all these factors 

with regards to the Quantitative Imaging Biomarkers Alliance (QIBA) profile claim is 

included in the respective profile compliance sections. Specific tests for factors such as 

software quality using standardized phantom data and/or digital reference objects are 

developed and described in the QIBA profile.29

If a meta-analysis entails assessment of multiple aspects of performance such as bias and 

repeatability, one must decide whether to include only studies providing information relevant 

to both aspects or to consider different subsets of studies for each aspect. Similar 

considerations apply when combining different performance metrics across studies, such as 

combining a bias estimate from one study with a variance estimate from a different study to 

obtain a mean square error estimate. Because specific imaging devices may be optimized for 

different performance aspects, such joint or combined analyses should be interpreted 

cautiously.30
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2.3 Organizing and summarizing the retrieved study data

Studies or data retrieved in a search are best evaluated by at least two knowledgeable 

reviewers working independently of one another. Reviewers should apply the inclusion/

exclusion criteria to every retrieved study or data set to confirm its eligibility for the meta-

analysis, note any potential quality deficiencies, and remove redundancies due to use of the 

same data in more than one study. Key descriptors of the individual primary studies, 

including aspects such as imaging device manufacturers, scan protocols, software versions, 

and characteristics of the patient population should be collected to allow for examination of 

heterogeneity in the data through approaches such as meta-regression or to examine for 

potential biases. The performance metric of interest from each primary source should be 

recorded or calculated from the available data if applicable, along with an appropriate 

measure of uncertainty such as a standard error or confidence interval associated with the 

performance estimate and sample size on which the estimates are based. It is helpful to 

display all of the estimates to be combined in the meta-analysis in a table along with their 

measures of uncertainty and important study descriptors, as what is done in Table 1, which 

shows estimates of the RC of FDG-PET mean SUV associated with each study in the meta-

analysis of de Langen et al.,10 with standard errors and study descriptors such as median 

tumor volume and proportion of patients with thoracic versus abdominal lesions.

A popular graphical display is a forest plot in which point estimates and confidence intervals 

for the quantity of interest, in our case the performance metric, from multiple sources are 

vertically stacked. As an example, Figure 2 is a forest plot of the RC of the FDG-PET mean 

SUV associated with each study from de Langen et al.10 Such figures and tables might also 

include annotations with extracted study descriptors. The goal is to provide a concise 

summary display of the information from the included studies that is pertinent to the 

research question.

3 Statistical methodology for meta-analyses

Suppose that, through the systematic review procedures described in Section 2, K suitable 

studies are identified. Also suppose that in the hth study, the investigators obtained ph 

measurements using the imaging procedure for each of nh patients, with ph > 1. The jth 

measurement for the ith patient in the hth study is denoted asYhij. It is assumed that repeat 

measurementsYhi1, …, Yhiph for the ith patient in the hth study are distributed normally with 

mean ξhi and variance , where ξhi is the actual value of the underlying quantity of interest 

for this patient.

This section and the following one describe methodology for when patient-level 

measurements Yhij are not accessible, but technical performance metric estimates T1, …, TK 

for each study are available. Let θh denote the expected value of the technical performance 

metric associated with the hth study, with Th being an estimator for θh with E[Th] = θh and 

. Commonly used statistical approaches of meta-analysis include fixed-effects 

and random-effect models, described in Sections 3.2 and 3.3, respectively.31 The word 

“effect” as used in standard meta-analysis terminology should be understood here to refer to 

the technical performance metric of interest. One assumption in fixed-effects models is 
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homogeneity, which in the present context is defined as the actual technical performance 

being equal across all studies, namely θ1 = ⋯ = θK = θ.32 This assumption is rarely realistic 

for imaging technical performance studies where a variety of factors including differences 

between imaging devices, acquisition protocols, image processing, or operator effects can 

introduce differences in performance. Tests of the null hypothesis of homogeneity, described 

in Section 3.1, will indicate whether the data provide strong evidence against the validity of 

a fixed-effects model. However, if the test of homogeneity has low power, for example due 

to a small number of studies included in the meta-analysis, then failure to reject the 

hypothesis does not allow one to confidently conclude that no heterogeneity exists. If the 

null hypothesis of homogeneity is rejected, then it is recommended to assume a random-

effects model for T1, …, TK, in which case θ1, …, θK are viewed as random variates that are 

identically and independently distributed according to some nondegenerate distribution with 

mean or median θ. In either case, the ultimate goal of the meta-analysis of the technical 

performance of an imaging algorithm is inference for θ. This will entail construction of a 

confidence interval for θ and examining whether θ lies in some predefined acceptable range.

Standard fixed-effects and random-effects meta-analysis techniques rely on the approximate 

normality of the study-specific technical performance metric estimates. Many common 

technical performance metrics, including the intra-class correlation (ICC), mean squared 

deviation (MSD), and the RC will indeed become approximately normally distributed when 

the sample sizes of each of these studies, denoted n1, …, nK, are sufficiently large. For 

example, if  is the RC associated with the hth study, in which case, 

, with

(1)

then  is proportional to a random variable following a  distribution under the 

assumption of normality of the repeat measurements for the ith patient in the hth study Yhi1, 

…, Yhiph given the true value of the quantity of interest ξhi. It can be shown that the exact 

distribution of  is a gamma distribution with shape parameter nh(ph − 1)/2 and scale 

parameter , which itself converges to a normal distribution as the sample 

sizes become large. A lower limit for the study size that would make the normal 

approximation valid varies between different technical performance metrics. For RC, a quick 

assessment of normality of the metric estimates using data from simulation studies in 

Section 5.1 indicates that Th is approximately normal if the hth study contains 80 or more 

subjects.

The performances of standard meta-analysis techniques will suffer when some of the studies 

are small because of the resulting nonnormality of the technical performance metric 

estimates. Kontopantelis and Reeves33 present simulation studies indicating that when study-

specific test statistics in a meta-analysis are nonnormal and each of the studies is small, the 

coverage probabilities of confidence intervals from standard meta-analysis techniques are 
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less than the nominal level; simulation studies, presented in Section 5.1, confirm these 

findings. One possible modification would be to use the exact distribution of the metric 

estimates, if it is analytically tractable, in place of the normal approximation, similar to what 

van Houwelingen et al. suggest.34 For a few of these metrics, the exact distribution is 

analytically tractable; for example, as mentioned before, the squared RC has a gamma 

distribution. Such modified techniques are described in subsequent sections.

For the remainder of this section, it is assumed that study descriptors that can explain 

variability in the study-specific technical performance metrics are unavailable. Methodology 

for meta-analysis in the presence of study descriptors, or meta-regression, is described in 

Section 4. Figure 3 depicts the statistical methodology approach for meta-analysis of a 

technical performance metric in the absence of study descriptors.

3.1 Tests for homogeneity

A test for homogeneity is represented by a test of the null hypothesis H0 : θ1 = ⋯ = θK = θ. 

The standard setup assumes T1, …, TK are normally distributed, which, as mentioned 

before, is a reasonable assumption for most technical performance metrics, provided that the 

sample sizes of all studies n1, …, nK are sufficiently large. Then under H0

(2)

where  is an estimate of , the variance of Th and

(3)

is the maximum likelihood estimator of θ under these distributional assumptions.35

However, if the normality assumption for T1, …, TK is invalid due to small sample sizes, 

then one option if the exact distribution of Th is analytically tractable is the parametric 

bootstrap test from Sinha et al.36 This procedure involves simulating the null distribution of 

the test statistic Q through parametric bootstrap sampling, against which the observed value 

of Q given the original data are compared. Specifically, after computing Q for the original 

data, the following steps are repeated B times:

1. Generate observations  from the parametric 

bootstrap null distribution of T1, …, TK. For RC, this 

means simulating  from a gamma distribution with 

shape nh(ph − 1)/2 and scale 2θ̂2/[nh(ph − 1)], where θ̂ is 

the maximum likelihood estimate of θ as given in equation 

(9).
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2. Compute the test statistic Q* based on 

according to equation (2).

B simulations  from the null distribution of Q are obtained in this fashion. The 

null hypothesis is rejected if Q > c, where c is the 95th percentile of .

A rejection of the null hypothesis of homogeneity should indicate that the fixed-effects 

meta-analysis techniques should not be used. However, failure to reject the hypothesis 

merely indicates that there is insufficient evidence to refute the assumption that the fixed-

effects model is correct. Due to the heterogeneity inherent in QIB studies, it is recommended 

to always use random-effects models such as those described in Section 3.3 for QIB 

applications, even though fixed-effects models are computationally simpler and are more 

efficient than random-effects approaches when the fixed-effects assumption is truly satisfied.

A limitation of a test for the existence of heterogeneity is that it does not quantify the impact 

of heterogeneity on a meta-analysis. Higgins and Thompson37 and Higgins et al.38 give two 

measures of heterogeneity, H and I2, and suggest that the two measures should be presented 

in published meta-analysis in preference to the test for heterogeneity. H is the square root of 

the heterogeneity statistic Q divided by its degrees of freedom. That is, . 

Under a random-effects model, the second measure, I2, describes the proportion of total 

variation in study estimates that is due to heterogeneity; specifically, I2 = η̂2/(η̂2 + S2), 

where

(4)

It can be shown that I2 = (H2 − 1)/H2.

3.2 Inference for fixed-effects models

For standard meta-analysis under the fixed-effects model, where θ1 = ⋯ = θK = θ and Th is 

approximately normal with mean θ and variance , the maximum likelihood estimator for θ 
is

(5)

The standard error of θ̂ is

(6)
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Inferences for θ are based on the asymptotic normality of θ̂. An approximate 100(1 − α)% 

confidence interval for θ is θ̂ ± zα/2se[θ̂], where zα/2 is the 100(1 − α) percentile of the 

standard normal distribution.

A Bayesian approach can also be applied to estimate θ. A prior distribution for θ could be a 

normal distribution, specifically θ ~ N(0, ϕ2). The posterior distribution of θ is

(7)

In practice,  is typically fixed at the estimate of the variance of Th, . The estimator of θ 
is the posterior mean

(8)

If ϕ2 is large, the Bayesian estimator coincides with the maximum likelihood estimator.

However, if the metric estimates T1, …, TK are not approximately normally distributed, as 

will be the case for many technical performance metrics when individual study sizes are 

small, the coverage of the normal confidence interval will be below the nominal level, as 

shown in simulation studies in Section 5.1. One possible option, as proposed in van 

Houwelingen et al.34 and Arends et al.,39 is to use the exact likelihoods of T1, …, TK in 

place of a normal approximation, if an analytically tractable form for the former exists. For 

example, if θh are study-specific RCs, then as mentioned before, the squared RC estimate 

 follows a gamma distribution with shape nh(ph − 1)/2 and scale 

. The maximum likelihood estimator for θ in this case is

(9)

Since it can be shown that θ̂2 has a gamma distribution with shape  and 

scale , the lower and upper 95% confidence interval limits for θ 
could then be the square roots of the 2.5th and 97.5th quantiles of this gamma distribution, 

respectively. For Bayesian inference under these assumptions, one can select the conjugate 

prior for θ2, an inverse-gamma distribution with shape α and scale β. If there is little prior 

knowledge about the RC or the study-specific RC variances, then an approximately 

noninformative prior can be specified by having α and β go to zero. Simulation studies in 

Section 5.1 show that the confidence intervals based on the exact likelihoods of the Th do 

have the nominal coverage.
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3.3 Inference for random-effects models

Under the random-effects model, it is assumed that the study-specific actual technical 

performance metrics θ1, …, θK are themselves distributed independently and identically 

with mean θ. Under the standard random-effects meta-analysis setup, the underlying 

distribution of θ1, …, θK is a normal distribution with mean θ and variance η2.

The estimator for θ under these conditions is

(10)

The standard error of θ̂ is

(11)

An approximate 100(1 − α)% confidence interval for θ is θ̂ ± zα/2se[θ̂], where zα/2 is the 

100(1 − α) percentile of the standard normal distribution.

To obtain an estimate for η, one option is the method of moments estimator from 

DerSimonian and Laird40

(12)

where  as defined in equation (2) and θ̂ is as defined in equation (3). 

Another option is the restricted maximum likelihood (REML) estimate of η2. REML is a 

particular form of maximum likelihood method that uses a likelihood function calculated 

from a transformed set of data, so that the likelihood function is free of nuisance 

parameters.41 REML estimation of η2 involves beginning with an initial guess for η2 such as 

the method of moments estimator (12) and cycling through the following updates until 

convergence

(13)
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(14)

(15)

Estimation and inference for the study-specific effects θh can also be achieved by the 

empirical Bayesian approach as described in Normand.31

Bayesian techniques can be used under the random-effects model. Prior distributions of θ 
and η2 are specified and their joint posterior distribution is simulated with Markov chain 

Monte Carlo. The joint posterior distribution for is

(16)

where  is the likelihood function, p(θh|θ, η2) is the underlying distribution of 

the true study-specific technical performance values θh, and p(θ) and p(η2) are priors on θ 
and η2. Under the assumption that the likelihoods and the distribution of the θh are normal, 

possible choices for the priors on θ and η2 include θ ~ N(0, ϕ2) and η2 ~ IG(α, β). Again, in 

practice, the variance of Th, , is fixed equal to . Gibbs sampling42 can be used to 

generate Monte Carlo samples of the unknown parameters from the posterior distribution. 

The Gibbs sampler in this context involves iteratively sampling the full conditional 

distributions for each unknown parameter given the other parameters and the data. 

Inferences are conducted using summaries of the posterior distributions.

If study sizes preclude the normality approximation to the likelihoods, then exact likelihoods 

can be used in place of their normal approximations in these Bayesian techniques similarly 

as for fixed-effects meta-analysis if the form of the distributions of T1, …, TK is analytically 

tractable. For instance, recalling that the squared RC estimate  has a 

gamma distribution, possible options for the distribution of θh, p(θh|θ, η2), include a log-

normal (log-N) distribution with location parameter log θ and scale parameter ρ2, which has 

median θ and maintains the positivity of θh. Conjugate prior distributions for θ and ρ2, θ ~ 

log − N(0, ω2) and ρ2 ~ IG(κ, λ), are an option. Gibbs sampling42 can be used to simulate 

the posterior distribution of θ, using the Metropolis–Hastings algorithm43,44 within the 

Gibbs sampler to simulate from any conditional posterior distributions with unfamiliar 

forms.
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Alternatively, one can relax any assumptions of the distribution of θ1, …, θK other than that 

they are independently and identically distributed according to some density G, with the 

median of G being equal to θ. Here, the likelihood is given by

(17)

In this situation, van Houwelingen et al. propose approximating G by a step function with M 
< ∞ steps at μ1, …, μM, where the heights of each step are π1, …, πM, respectively, 

.34 This leads to the approximation of the density dG(θh) as a discrete 

distribution where θh equals μ1, …, μM with probabilities π1, …, πM, respectively. Note that 

μ1, …, μM and π1, …, πM are also unknown and must also be estimated.

For inferences on θ under this setup, van Houwelingen et al. propose the Expectation-

Maximization (EM) algorithm described in Laird.45 The algorithm begins with initial 

guesses for μ1, …, μM and π1, …, πM. Under the standard assumption that 

, the algorithm proceeds by cycling through the following updates until 

convergence

(18)

(19)

(20)

How to select the number of steps M is a topic that requires future research, but simulation 

studies in Section 5.1 indicate setting M = K/3 works sufficiently well.

Adapting this procedure to accommodate nonnormally distributed study-specific technical 

performance metric estimates T1, …, TK requires different forms of the updates (18) and 

(19) to P(θh = μm|Th) and μm. For example, if Th is the RC associated with the hth study, 

then since  has a gamma distribution with shape nh(ph − 1)/2 and scale , 

these updates become
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(21)

(22)

The estimator of the median of G is then θ̂ = μ(m*) where μ(1), …, μ(M) are order statistics of 

μ1, …, μM and m* is the index such that  but .

To obtain confidence intervals for θ based on this method, the nonparametric bootstrap can 

be used. The study-specific technical performance estimates T1, …, TK are sampled K times 

with replacement to obtain bootstrap data . This method is applied to 

to obtain θ̂(1), a bootstrap estimate of θ. This process is repeated B times to obtain bootstrap 

estimates θ̂(1), …, θ̂(B). A 95% confidence interval for θ is formed by the 2.5th and 97.5th 

percentiles of θ̂(1), …, θ̂(B).

Analogous semiparametric Bayesian techniques can be used for inferences on G. Ohlssen et 

al. describe Dirichlet processes46 that are applicable both for when the Th are normally 

distributed and when they are nonnormally distributed but have a known, familiar parametric 

form.47

4 Meta-regression: Meta-analysis in the presence of study descriptors

In some cases, study descriptors may explain a significant portion of the variation among the 

study-specific actual performance metrics θ1, …, θK. For example, slice thickness, training 

of image analysts, and choice of software selection are characteristics of individual studies 

that are associated with the variability of tumor size measurements from volumetric CT.48,49 

Meta-regression, which allows explanation of between-study variability in θ1, …, θK 

through study descriptors reported in the studies, can be performed instead of random-

effects meta-analysis in situations where such study descriptors are available. Fixed-effects 

meta-regression, described in Section 4.1, involves the analysis of θ1, …, θK as a function of 

the predefined study descriptors. If between-study variability in θ1, …, θK beyond that 

captured by the study descriptors exists, then random-effects meta-regression, described in 

Section 4.2, can be used. Figure 4 is a flowchart of the statistical methodology for meta-

regression.

4.1 Fixed-effects meta-regression

Fixed-effects meta-regression extends fixed-effects meta-analysis by replacing the mean, θh, 

with a linear predictor. For the standard univariate meta-regression technique, 

, where θh = β0 + β1xh, or equivalently, Th = β0 + β1xh + εh, with 
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. Here, xh is the value of the covariate associated with the hth study, β0 is an 

intercept term, and β1 is a slope parameter. For simplicity, the analysis in the fixed-effects 

meta-regression is presented with only one study descriptor. The fixed-effects meta-

regression with multiple study descriptors can be readily extended from the single covariate 

case. Keeping the number of study covariates small is recommended to avoid overfitting, due 

to the limited number of studies in most meta-analyses.

Inferences here involve weighted least squares estimation of the coefficients β0 and β1 in the 

context of a linear regression of T1, …, TK upon the study covariates x1, …, xK.50 The 

weighted least-square estimators of β0 and β1 are

(23)

(24)

with

(25)

The standard errors of the estimators, ^β0 and ^β1, are

(26)

(27)

The commonly used 100(1 − α)% confidence intervals for β0 and β1 are then given by ^β0 ± 

zα/2se[^β0] and ^β1 ± zα/2se[^β1], where zα/2 is the 100(1 − α/2) percentile of the standard 

normal distribution.

However, this approach assumes that the study-specific technical performance estimates Th 

are approximately normally distributed, which is reasonable if each study contains a 
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sufficiently large number of patients; recall that in Section 3 it was suggested that if the 

technical performance metric is RC, the normal approximation is satisfactory if all studies 

contain 80 or more patients. Knapp and Hartung introduced a novel variance estimator of the 

effect estimates and an associated t-test procedure in random-effects meta-regression (see 

Section 4.2).51 The test showed improvement compared to the standard normal-based test 

and can be applied to fixed-effects meta-regression by setting the variance of random effects 

to zero.

If the exact distribution of Th is analytically tractable, then the relationship between Th and 

xh may be represented by a generalized linear model. For example, if Th is a RC, then given 

the gamma distribution of , maximum likelihood estimation for generalized linear models 

with the link function  can be used.52

4.2 Random-effects meta-regression

Fixed-effects meta-regression models utilizing the available study-level covariates as 

described in Section 4.1 are sometimes inadequate for explaining the observed between-

study heterogeneity. Random-effects meta-regression can address this excess heterogeneity 

analogously to the way that random-effects meta-analysis (Sections 3.2 and 3.3) can be used 

as an alternative to fixed-effects meta-analysis.

Standard random-effects meta-regression assumes that the true effects are normally 

distributed with mean equal to the linear predictor

(28)

(29)

or equivalently, Th = β0 + β1xh + uh + εh, with uh ~ N(0, η2) and . Random-

effects meta-regression can be viewed as either an extension to random-effects meta-analysis 

that includes study-level covariates or an extension to fixed-effects meta-regression that 

allows for residual heterogeneity. Meta-regression methodology is described for the case of 

one covariate, but the concepts extend to multiple covariates.

An iterative weighted least squares method can be applied to estimate the model 

parameters.53 Under the proposed model, the variance of Th is . Note that estimation 

of η2 depends on the values of β0 and β1, yet the estimation of these coefficients depends on 

η2. This dependency motivates an iterative algorithm which begins with initial estimates of 

β0 and β1, for example as may be obtained through fixed-effects meta-regression, and then 

cycles through the following steps until convergence:

1. Conditional on these current estimates of β0 and β1, 

estimate η2 through REML.
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2. Estimate the weights .

3. Use the estimated weights to update the estimates for β0 

and β1 conditional on  and the current estimates of η2.

In STATA,54 this algorithm can be accessed with the command metareg.55 In R,56 the 

metafor package57 has a function called rma that can fit random-effects meta-regression 

models. Note that for the case of one covariate, for step 3, the estimates of β0 and β1 given 

η2 and  can be set to the weighted least-squares estimators (23) and (24) of β0 and β1, 

except here

(30)

Unbiased and nonnegative estimators of the standard errors of the weighted least-square 

estimators ^β0 and ^β1 are

(31)

(32)

with

(33)

(34)

The confidence intervals for ^β0 and ^β1 are ^β0 ± tK−2,1−α/2se[^β0] and ^β1 ± 

tK−2,1−α/2se[^β1], where tK−2,1−α/2 denotes the 1 − α/2 percentile of the t-distribution with K 
− 2 degrees of freedom.

Because standard random-effects meta-regression inference techniques rely on approximate 

normality of the study-specific performance metric estimates T1, …, TK given the study 

descriptors x1, …, xK and normality of the random-effect terms u1, …, uK, (i.e. true study-
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specific effects are normally distributed around a common mean), problems due to small to 

moderate sample sizes often found in meta-analyses of technical performance similar to 

those found in meta-analysis and fixed-effects meta-regression are also encountered. The 

requirement for large numbers of sufficient size primary studies is an obstacle in the use of 

these standard methods not only due to difficulties in amassing a sufficiently large collection 

of primary studies, but also due to the need to have collected a common set of covariates 

across all of those studies.

Some alternative random-effects meta-regression approaches have been suggested for the 

situation where normality assumptions are deemed inappropriate. Knapp and Hartung 

proposed an improved test by deriving the nonnegative invariant quadratic unbiased 

estimator of the variance of the overall treatment effect estimator.51 They showed this 

approach to yield more appropriate false-positive rates than approaches based on asymptotic 

normality. Higgins and Thompson confirmed these findings with more extensive 

simulations.58 Alternatively, if the exact distribution of Th is of a known and tractable form, 

one may be able to apply inference techniques for generalized linear mixed models making 

use of the fact that the model of Th for random-effects meta-analysis has the form of a linear 

mixed model.53,59 For example, if Th is the RC for the hth study, then given the gamma 

distribution of , inference techniques for generalized linear mixed models with the link 

function  may be used.

5 Application of statistical methodology to simulations and actual 

examples

Statistical meta-analysis techniques described in Section 3 were applied to simulated data to 

examine their performances for inference for the RC under a variety of settings in which 

factors such as numbers of studies in the meta-analysis, sizes of these studies, and 

distributional assumptions were varied. Coverage probabilities of 95% confidence intervals 

for RC produced using standard fixed-effects and random-effects meta-analysis were 

frequently less than 0.95 when some of the primary studies had a small number of patients. 

In comparison, 95% confidence intervals produced through techniques such as fixed-effects 

meta-analysis using the exact likelihood in place of the normal approximation or the EM 

algorithm approach for random-effects meta-analysis had improved coverage, often near 

0.95, even in situations where some of the primary studies were small. All of the random-

effects meta-analysis techniques described in Section 3.2 produced 95% confidence intervals 

with coverage probabilities less than 0.95 when the number of studies was very small. 

Further details of the simulation studies are presented in Section 5.1.

Statistical meta-analysis techniques described in Sections 3 and 4 were also applied to the 

FDG-PET uptake test–retest data from de Langen et al.10 for purposes of illustration. Those 

results are presented in Section 5.2.

5.1 Simulation studies

Data were simulated for each of K studies, where the data in the hth study consisted of ph 

repeat QIB measurements, all of which were assumed to have been acquired through 
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identical image acquisition protocols, for each of nh subjects. The performance metric of 

interest was θ = RC.

Fixed-effects meta-analysis techniques were examined first under the ideal scenario of a 

large number of studies, all of which had a large number of subjects. For each of K = 45 

studies, the number of subjects in each study n1, …, nh ranged from 99 to 149. In 27 of these 

studies, the subjects underwent ph = 2 repeat scans, whereas in 15 of these studies, they 

underwent ph = 3, and in the remaining three studies, they underwent ph = 4. For each of the 

nh patients in the hth study, the ph repeat QIB measurements Yhi1, …, Yhiph were generated 

from a normal distribution with mean ξhi and variance τ2, where ξhi was the true value of 

the QIB for the ith patient from the hth study and τ2 was the within-patient QIB 

measurement error variance. For the purposes of assessing fixed-effects meta-analysis 

techniques, it was assumed τ2 = 0.3202 for all K studies. Given Yhi1, …, Yhiph, RC estimates 

T1, …, TK were computed and fixed-effects meta-analysis techniques as described in 

Section 3.1 were applied to construct confidence intervals for the common RC 

.

Simulation studies for K = 5, 15, 25, 35 and study size ranges 12 to 33, 28 to 57, 45 to 81, 

63 to 104, and 81 to 127 were also applied to assess the effect of a smaller number of studies 

and smaller sample sizes of primary studies on the performance of the fixed-effects meta-

analysis techniques. These simulation studies were repeated for a mixed sample size case, 

where approximately half of the studies were large, having between 83 and 127 subjects, and 

the remaining were small, having between 13 and 29 subjects. Similar to the K = 45 case, 

subjects underwent ph = 2 scans in approximately 60% of the studies, ph = 3 in 

approximately 35% of the studies, and ph = 4 in the remaining.

Table 2 presents the coverage probabilities of 95% confidence intervals for θ for different 

combinations of number of studies and study sizes, constructed using standard fixed-effects 

meta-analysis techniques and using techniques based on the exact likelihood in place of the 

normal approximation. Each simulation study was conducted with 1000 replications. 

Coverage probabilities of 95% confidence intervals for the RC using the normal 

approximation were below 0.95 when the number of studies was no more than 15, but began 

to approach 0.95 when all studies contained at least 63 patients and the meta-analysis 

contained only five studies. The coverage probabilities also decreased as the number of 

studies increased. While this phenomenon might at first seem surprising, it makes sense due 

to the nonnormality of the RC estimates when the individual studies are small, thus resulting 

in a misspecification of the standard meta-analysis model under these conditions, no matter 

how many primary studies were included in the meta-analysis. Increasing the number of 

studies did not eliminate bias in the estimates of θ resulting from incorrect assumptions 

about the likelihood, but still resulted in narrower confidence intervals around the biased 

estimate of θ and thus poor confidence interval coverage. Meanwhile, the coverage 

probabilities of 95% confidence intervals using the exact likelihoods were very close to 0.95 

for all combinations of study sizes and numbers of studies.

Similar simulation studies were performed to examine the random-effects meta-analysis 

techniques. The process to simulate the data here was identical to before, except that the 
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within-patient QIB measurement variance used to generate the repeat QIB measurements 

Yhi1, …, Yhiph among patients in the hth study was equal to , with θ1, …, 

θK coming from a nondegenerate distribution G with median . 

These simulation studies were first performed under conditions where θ1, …, θK were 

generated according to the distribution G equal to a normal distribution with mean θ and 

variance 0.0176. The next simulations were performed with a distribution that was highly 

nonnormal. Specifically, G was a mixture of two log-normal distributions; θh was distributed 

log-normally with log-scale parameter log θ + 0.042xh = −0.120 + 0.042xh, where xh = 1 

with probability 0.5 and −1 with probability 0.5, and shape parameter 0.016. Then using the 

RC estimates T1, …, TK that were computed from Yhi1, …, Yhiph, 95% confidence intervals 

for the median RC θ were constructed using the random-effects meta-analysis techniques in 

Section 3.2. Similar to the fixed-effects meta-analysis simulation studies, these random-

effects meta-analysis simulation studies were performed using various combinations of 

number of studies K = 5, 15, 25, 35, 45 with study size ranges 12 to 33, 28 to 57, 45 to 81, 

63 to 104, and 81 to 127, as well as with a mixed study size case where half of the studies 

had between 83 and 127 subjects and the remaining had between 13 and 29.

Tables 3 and 4 present the coverage probabilities of 95% confidence intervals for θ 
constructed using the standard DerSimonian and Laird method of moments and REML 

approaches and using the EM algorithm approach with the normal approximation to the 

likelihood and the EM algorithm approach with the exact likelihood, for various 

combinations of number of studies and study sizes and for both normally and nonnormally 

distributed actual RCs θ1, …, θK. Each simulation study was conducted with 1000 

replications.

Regardless of the distribution of θ1, …, θK, coverage probabilities of the 95% confidence 

intervals were noticeably below 0.95 for all techniques when K = 5. The coverage 

probabilities of confidence intervals constructed using the DerSimonian and Laird technique 

or REML began to approach 0.95 when the meta-analysis contained at least 15 studies, all of 

the studies contained at least 63 patients, and the θ1, …, θK were normally distributed (Table 

3), although coverage was still slightly below 0.95 in these cases. Having nonnormally 

distributed θ1, …, θK reduced these coverage probabilities even further compared to the 

normally distributed setting; even when all studies contained at least 99 patients, coverage 

probabilities were still slightly below 0.95 (Table 4).

For both normally distributed (Table 3) and nonnormally distributed θ1, …, θK (Table 4), 

when the meta-analysis contained a mixture of small and large studies, the coverage 

probabilities of 95% confidence intervals from the DerSimonian and Laird approach or 

REML also were lower than 0.95 regardless of the number of studies. Furthermore, in the 

lower and mixed study size scenarios, these coverage probabilities decreased as the number 

of studies increased. Simply increasing the number of studies did not eliminate any bias in 

the estimates of θ resulting from incorrect distributional assumptions, but the increased 

number of studies narrowed the confidence intervals around a biased estimate.

The EM algorithm approach using the normal approximation to the likelihood produced 

95% confidence intervals whose coverage probabilities approached 0.95 when the meta-
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analysis contained at least 15 studies, all studies contained at least 45 patients, and θ1, …, 

θK were normally distributed. When the studies did not all contain 45 patients, these 

coverage probabilities were noticeably below 0.95, a result of the normal approximation 

being invalid due to the small study sizes. Nonnormally distributed θ1, …, θK also caused a 

substantial reduction in the coverage probabilities of the confidence intervals computed 

using the EM algorithm approach with normal approximation to the likelihood; in order for 

them to approach 0.95, the studies all needed to contain at least 81 patients. When some 

studies were small, for both normally and nonnormally distributed θ1, …, θK, the EM 

algorithm approach using exact likelihoods produced 95% confidence intervals whose 

coverage probabilities were slightly below 0.95, but was improved relative to those from the 

EM algorithm approach using the normal approximation. The coverage probabilities of these 

confidence intervals were near 0.95 when all studies contained at least 45 patients and the 

number of studies was at least 15.

5.2 FDG-PET SUV test–retest repeatability example

A systematic literature search on Medline and Embase was conducted by de Langen et al 

using search terms: “PET,” “FDG,” “repeatability,” and “test–retest” and excluded identified 

studies through four criteria, specifically (a) repeatability of 18F-FDG PET uptake in 

malignant tumors; (b) SUVs used; (c) uniform acquisition and reconstruction protocols; (d) 

same scanner used for test and retest scan for each patient. Their search retrieved K = 5 

studies for a meta-analysis.10

The authors of this manuscript reviewed available data and results from these studies and 

produced study-specific estimates for the RC of SUVmean, maximized over all lesions per 

patient for reasons of simplicity; this sidestepped the issue of clustered data as three of the 

studies involved patients with multiple lesions. Fixed-effects and random-effects meta-

analysis techniques from Sections 3.2 and 3.3 were performed, as well as univariate fixed-

effects meta-regression techniques from Section 4.1 using median SUVmean, median tumor 

volume, and proportion of patients with thoracic lesions versus abdominal as study-level 

covariates. Random-effects meta-regression was not performed due to limitations from the 

small number of studies.

Summary statistics and study descriptors from these studies are given in Table 1. RC 

estimates ranged from 0.516 to 2.033. Aside from Velasquez et al.,11 which contained 45 

patients, none of which had thoracic lesions, the studies enrolled between 10 and 21 patients, 

between 81 and 100% of which had thoracic lesions.10 Aside from Minn et al.,15 which 

stood out for its large tumors (median tumor volume of 40 cm3) and high uptakes (median 

SUVmean of 8.8), median tumor volumes and median SUVmean ranged from 4.9 to 6.4 cm3 

and 4.5 to 6.8 cm3, respectively.10

A summary of the results from applying the meta-analysis techniques from Section 3 to this 

FDG-PET test–retest data is provided in Table 5. Using the standard fixed-effects approach 

with an assumption of normality of the RC estimates, the underlying RC θ was estimated to 

be 0.79 with a 95% confidence interval of (0.67, 0.92). The corresponding forest plot (Figure 

2) indicates that results from Nahmias and Wahl12 were highly influential in the estimate of 

the underlying RC. This was likely due to its low RC estimate and sample size of 21, which 
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was larger than all but that of Velasquez et al.11 This resulted in a lower standard error and 

thus higher weighting. Using fixed-effects methods with the exact likelihood of the RC 

estimates produced a noticeably different RC estimate of 1.53 and a 95% confidence interval 

of (1.32, 1.74). This difference in RC estimates may be because of violation of the normality 

assumption due to small sample sizes. The random-effects methods produced similar 

estimates of the underlying common RC θ to one another. The DerSimonian and Laird 

method, REML, and the EM algorithm using the normal approximation to the likelihood 

produced estimates of the underlying RC of 1.25, with 95% confidence intervals of (0.67, 

1.84), (0.68, 1.82), and (0.52, 2.03) respectively. The EM algorithm using the exact 

likelihood produced estimates of the underlying RC of 1.34 with a 95% confidence interval 

of (0.52, 1.97).

A summary of the results from applying the fixed-effects meta-regression techniques from 

Section 4.1 to this data is provided in Table 6. Anatomical location of lesions and baseline 

SUVmean may explain variability in the test–retest repeatability of FDG-PET SUVmean. 

Assuming the exact likelihood for the RC estimates and using generalized linear models 

inference techniques to estimate β1, higher median baseline SUVmean was associated with 

higher RC whereas a higher proportion of patients with thoracic primary tumors as opposed 

to abdominal ones was associated with lower RC. The data provided little evidence of a 

relationship between tumor volume and RC as the associated 95% confidence interval for β1 

contained zero. Assuming a normal approximation for the distribution of RC estimates, the 

estimate of β1 associated with median baseline SUVmean was also positive (^β1 = 0.52) and 

that associated with proportion of patients with thoracic malignancies was also negative (^β1 

= −1.34), but 95% confidence intervals for these parameters included zero. Differences in 

inferences may also have resulted from the violation of the normality assumption due to 

small sample sizes.

This analysis was presented to illustrate the application of the techniques from this 

manuscript to actual data rather than to provide new results about the repeatability of FDG 

uptake and how it varies as a function of study or patient characteristics. For a more 

comprehensive meta-analysis and discussion, the reader is referred to de Langen et al.10

6 Individual patient-level meta-analysis of technical performance

An alternative to the study-level meta-analysis techniques described in Sections 3 and 4 is 

individual patient-level meta-analyses, where patients, rather than studies, are the unit of 

analysis. One approach is to use the patient-level data to compute the study-specific 

technical performance metrics T1, …, TK and then proceed with the techniques in Sections 3 

and §4. Another approach is to model the data through a hierarchical linear model as 

described in Higgins et al.60 The hierarchical linear model would assume that for any 

individual patient in the hth study, the repeat measurements Yhi1, …, Yhiph are distributed 

normally with mean ξhi and variance  while the patient-specific mean measurements ξhi 

themselves have some distribution F with mean μ + νh and variance , with νh being study-

specific random effects with mean zero and variance ρ2, and the variances  have some 

distribution G with median τ2. Higgins et al. describe how Bayesian techniques can then be 
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used for inferences on the parameters.60 Alternatively, Olkin and Sampson propose ANOVA 

approaches for inferences for the parameters,61 whereas Higgins et al. also describe REML 

techniques.60 The Bayesian techniques can also extend to meta-regression of technical 

performance.

Various simulation studies and meta-analyses of actual data indicate that using individual 

patient-level approaches often does not result in appreciable gains in efficiency.62,63 

However, patient-level data allow direct computation of summary statistics that study 

investigators may not have considered in their analyses. This bypasses the need to extract the 

technical performance metric of interest from existing summary statistics or to exclude 

studies entirely if this metric was not calculable from the reported summary statistics.

Using patient-level data provides advantages in meta-regression when the technical 

performance is a function of characteristics that may vary at the patient level rather than the 

study level such as contrast of tumor with surrounding tissue, complexity of lesion shape, 

baseline size of tumor itself, baseline mean uptake, and physiological factors such as breath 

hold and patient motion.10,64–67 In this case, performing study-level meta-regression with 

summary statistics of these patient-level characteristics such as median baseline tumor size 

or median baseline mean SUV as the covariates will result in substantially reduced power in 

testing the null hypothesis that β = 0, namely detecting an association between the 

characteristic and technical performance.68,69

7 Extension to other metrics and aspects of technical performance

The general process to formulate the research question, identify appropriate studies for the 

meta-analysis, and to organize the relevant data presented in Section 2 for a variety of 

technical performance metrics is similar to that described for repeatability. The exposition of 

the methodology and examples in Sections 3 through 6 has been in the context of RC, and 

these aspects will differ for other technical performance metrics. RC was selected for 

purposes of simplicity because not only does the study-specific RC estimate become 

approximately normally distributed as the size of the study gets large, but the exact 

distribution of the squared RC is analytically tractable. In principle, the methods presented 

in Sections 3 through 6 could be modified to conduct meta-analyses of other repeatability 

metrics as well as reproducibility, bias, linearity, and agreement metrics, even though the 

meta-analysis itself may be noticeably more computationally and analytically difficult.

Standard meta-analysis techniques in the literature rely largely on the approximate normality 

of the study-specific estimated technical performance metrics Th. The simulation studies 

shown in Section 5.1 demonstrated how this assumption can adversely affect the 

performance of these methods for many technical performance metrics for which the exact 

distribution of Th is nonnormal. Even though many of them, including ICC for repeatability, 

reproducibility coefficient for reproducibility, and MSD and 95% total deviation index (TDI) 

for agreement, do indeed converge to normality as the study size increases,70–73 studies 

assessing technical performance often are small.
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An alternative approach when the normal approximation is not satisfactory is to use the 

exact likelihood in place of the normal approximation in standard meta-analysis techniques 

as described in Sections 3 and 4. For RC, for which study-specific estimates have a gamma 

distribution, this modification led to an improvement in coverage probabilities of the 95% 

confidence intervals when the sample sizes were small or when the meta-analysis contained 

small studies in addition to larger ones. Unfortunately, estimates for most other technical 

performance metrics will not have such an analytically tractable distribution, making this 

option often infeasible. However, estimates for some metrics may converge rapidly to 

normality; for example, Lin showed that a normal approximation to the distribution of the 

95% TDI was valid for sample sizes as small as 10.73 If this is the case, standard meta-

analysis techniques should be appropriate even when some studies are small.

If the exact likelihood is intractable and the convergence to normality is slow, then fully 

nonparametric meta-analysis techniques may be the only option. Nonparametric meta-

analysis techniques have received very little attention in the literature thus far.

8 Reporting the results of a meta-analysis

Meta-analyses should be reported in a complete and transparent fashion in order to ensure 

proper interpretation and dissemination of the results. High quality reporting allows 

evaluation of the context in which the conclusions of the meta-analysis apply and to assess 

for potential biases. Reporting guidelines have been proposed for other types of health 

research meta-analyses, including Quality of Reporting of Meta-Analyses (QUOROM) for 

randomized trials74 and its update, Preferred Reporting Items for Systematic Reviews and 

Meta-Analyses (PRISMA),75,76 which applies to a broader range of studies, but particularly 

to studies involving some type of intervention, and Meta-Analysis of Observational Studies 

in Epidemiology (MOOSE)77 for observational epidemiologic studies. Key reporting 

elements are assembled into checklists, which can serve several functions. They can aid 

journal editors and referees who review submitted papers reporting on meta-analyses. 

Investigators can consult the checklist when they are planning a meta-analysis to be 

reminded of all of the study design and analysis issues that should be considered because 

they can have an impact on the quality and interpretability of findings. In addition, meta-

analysis reporting guidelines can provide a framework for organization of information that is 

useful to regulatory authorities, funding agencies, and third party payers who need to 

evaluate a body of evidence for performance of a particular QIB.

Development of reporting guidelines for a particular class of health research studies has 

traditionally been a multiyear process involving a team of experts. Evidence for the need for 

improved reporting of systematic reviews and meta-analyses in radiology was provided by a 

recent study that demonstrated an association of study quality with completeness of 

reporting of such studies in major radiology journals.78 The analysis also demonstrated that 

there remains substantial room for improvement in study reporting in radiology.79 Reporting 

guidelines specific to imaging procedure technical performance studies have not been 

proposed to date.
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Here the intent is to provide a list of fairly broad topics that should be addressed in reports of 

meta-analyses of technical performance assessments. The expectation is that the list 

provided in Table 7 will serve as a starting point for reporting guidelines that will be further 

developed. Following the structure of other reporting guidelines, it is suggested that the 

elements of the reporting checklist be arranged according to the usual subsections of a 

journal article reporting a meta-analysis: Title, Abstract, Introduction, Methods, Results, and 

Discussion. Readers are encouraged to use Table 7 as an adjunct to more general reporting 

guidelines such as PRISMA when reporting QIB technical performance meta-analyses. It is 

hoped that there will be continued efforts to refine and disseminate these reporting 

guidelines.

9 Discussion

Meta-analysis methods for summarizing results of studies of an imaging procedure’s 

technical performance were presented in this paper. Such technical performance assessments 

are important early steps toward establishing clinical utility of a QIB. Conclusions drawn 

from multiple technical performance studies will generally be more convincing than those 

drawn from a single study, as a collection of multiple studies overcomes limitations of small 

sample sizes of individual studies evaluating the technical performance of an imaging 

procedure and provides the opportunity to examine the robustness of the imaging 

procedure’s technical performance across varied clinical settings and patient populations.

One challenge in the meta-analysis of the technical performance of an imaging procedure is 

that completed studies that specifically evaluate technical performance of an imaging 

procedure are limited in number, although one may still be able to extract estimates of some 

performance metrics from data and results of a study in which assessing technical 

performance was not the primary objective, provided the study design and image analysis 

procedure allow it. Another challenge is extreme heterogeneity that is possible due to studies 

being performed under widely differing conditions. Another is that normality assumptions 

underlying many standard meta-analysis techniques are often violated due to the typically 

small sample sizes, together with the mathematical form of many performance metric 

estimates.

Modifications to the standard meta-analysis approaches in the context of nonnormally 

distributed performance metrics were described in the context of the RC. Application of 

statistical techniques for meta-analysis presented in this paper to simulation studies indicated 

that these modified techniques outperformed standard techniques when the study sizes were 

small. However, even with such modifications, the performances of random-effects meta-

analysis techniques suffered when the number of studies was small; this was not surprising 

since a large number of studies would be necessary for inferences on between-study 

variation in technical performance. Theoretical results and additional simulation studies to 

further examine the characteristics of these modifications are an area of future research.

It is important to recognize that, in any meta-analysis, the quality of the primary studies will 

have an impact on the reliability of the meta-analysis results. Inclusion of fundamentally 

flawed data into a meta-analysis will only diminish the reliability of the overall result. More 
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often there will be studies of questionable quality and there will be uncertainty about 

whether to include them in the meta-analysis. Sensible approaches in this situation might 

include evaluating the impact of including the questionable studies in the meta-analysis 

through sensitivity analyses or statistically down-weighting their influence in the analysis. A 

full discussion of these approaches is beyond the scope of this paper.

Many of the concepts, approaches, and challenges discussed extend to other technical 

performance characteristics besides repeatability, though in practice, meta-analyses of these 

characteristics may be substantially more difficult. Study selection for meta-analyses of 

reproducibility and agreement is more complicated as studies in the literature assessing the 

reproducibility of an imaging procedure or its agreement with standard methods of 

measuring the quantity of interest are more heterogeneous than those assessing repeatability. 

For reproducibility studies, sources of variation between repeat scans for each patient such 

as imaging device, image acquisition protocol, and time point at which each scan takes place 

may differ. The reference standard or alternative method against which the agreement of the 

imaging procedure is assessed also often varies among studies, potentially making 

accumulation of a reasonably homogeneous set for meta-analyses of agreement difficult. 

Furthermore, exact distributions of most reproducibility and agreement metrics, and many 

repeatability metrics for that matter, are not analytically tractable, which makes approaches 

such as fixed-effects meta-analysis using the exact likelihood or the EM algorithm 

approaches in random-effects meta-analysis infeasible. Modifications of meta-analysis 

techniques for this scenario are an area of future research.

The methodology described focused on the meta-analysis of a single QIB, but it is worth 

noting that the same clinical image is often used for multiple tasks, such as detection of a 

tumor, localization of a tumor, and measurement and characterization of a tumor, each of 

which involves a different QIB. While each such QIB could be analyzed on its own using the 

methods described in Sections 3, 4, and 6, a joint analysis would require a multivariate 

approach to take correlations between QIBs into account. Although such an approach will be 

methodologically more complex, it may potentially yield more accurate estimators of the 

technical performance of each individual QIB.80

The challenges identified throughout this discussion of meta-analysis methods for imaging 

procedure technical performance suggest several recommendations. First, investigators 

should be encouraged to conduct and publish imaging procedure performance studies so that 

more information will be available, from which reliable conclusions could be drawn. These 

studies must also be reported in complete and transparent fashion so that they are 

appropriately interpreted. In addition, greater coordination among investigators and perhaps 

recommendations from relevant professional societies regarding the types of studies that 

should be performed would help to promote greater comparability among studies and 

facilitate combination of results across studies. Finally, these discussions have identified 

fertile ground for interesting statistical problems, and statistical researchers are encouraged 

to pursue further work in this area.
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Figure 1. 
Flowchart of the general meta-analysis process.

*The term “studies” includes publications and unpublished data sets.
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Figure 2. 
Forest plot of the repeatability coefficient (RC) of FDG-PET mean SUV associated with 

each study in the meta-analysis of de Langen et al.10 Points indicate RC estimates whereas 

the lines flanking the points indicate 95% confidence intervals.
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Figure 3. 
Meta-flowchart for statistical meta-analysis methodology in the absence of study 

descriptors. Boxes with dashed borders indicate areas where future development of 

statistical methodology is necessary.
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Figure 4. 
Meta-flowchart for statistical meta-regression methodology in the presence of study 

descriptors. Boxes with dashed borders indicate areas where future development of 

statistical methodology is necessary.
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Table 5

Estimates of the median or common RC θ, with 95% confidence intervals, for the FDG-PET test–retest data 

from de Langen et al.,10 using various meta-analysis techniques.

Method θ̂ (95% CI for θ)

Fixed-effects with normal approximation 0.79 (0.67, 0.92)

Fixed-effects with exact likelihood 1.53 (1.32, 1.74)

Random-effects: DerSimonian and Laird 1.25 (0.67, 1.84)

Random-effects: REML 1.25 (0.68, 1.82)

Random-effects: EM algorithm, normal approximation 1.25 (0.52, 2.03)

Random-effects: EM algorithm, exact likelihood 1.34 (0.52, 1.97)
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Table 6

Estimates of the slope and intercept parameters for fixed-effects meta-regression with 95% confidence 

intervals for the FDG-PET test–retest data from de Langen et al.,10 where meta-regressions were univariate 

upon median SUVmean, median tumor volume in cm3, and proportion of thoracic versus abdominal patients.

Likelihood Covariate β0̂ (95% CI for β0) β1̂ (95% CI for β1)

Normal Median SUVmean –1.93 (–4.80, 0.94) 0.52 (–0.02, 1.06)

Median tumor vol. (cm3) 0.55 (–0.30, 1.40) 0.04 (–0.07, 0.15)

Prop. thoracic vs abdominal 1.87 (0.63, 3.10) –1.34 (–2.79, 0.12)

Exact Median SUVmean –3.85 (–5.36, –2.33) 0.73 (0.48, 0.97)

Median tumor vol. (cm3) 0.62 (0.26, 0.98) 0.02 (–0.003, 0.05)

Prop. thoracic versus abdominal 1.24 (0.83, 1.65) –0.96 (–1.56, –0.36)
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Table 7

Checklist of items to report for meta-analyses of performance assessments of quantitative imaging biomarkers.

Section Descriptor

Title 1. Identify the study as a meta-analysis for evaluation of the technical performance of the imaging
  procedure to derive a quantitative imaging biomarker (QIB).

Abstract 2. Provide an abstract structured to include objectives; background and rationale for selected
  imaging modality, performance metrics, and clinical setting; data sources and retrieval
  methods; study inclusion and exclusion process; quantitative synthesis methods; results;
  limitations and implications of the findings.

Introduction 3. Describe

• Objectives and rationale for the study

• QIB and its associated imaging procedure

• Clinical or experimental setting (e.g. clinical, preclinical, or phantom study)

• Rationale for use of the QIB in the clinical setting

• Choice of technical performance metric

Methods Sources searched:

4. Report information sources searched (e.g. online literature databases, device labels, device
  regulatory approval summaries, quality evaluations conducted by professional societies, data
  from proficiency testing and accreditation programs, quality assurance data from clinical
  studies, unpublished data sets obtained directly from investigators).

Retrieval criteria:

5. State criteria for study retrieval (e.g. clinical population, imaging modality, performance
  metric).

Eligibility:

6. Describe specific inclusion and exclusion criteria such as

• Imaging device specifications (e.g. generation or manufacturer)

• Software specifications

• Setting where study was conducted (e.g. academic institution, community setting) 
and whether single or multisite

• Specialist performing imaging studies

• Minimum study sample size

• Availability of performance metrics of interest

7. Report approaches taken to ensure that data used in different studies were not overlapping.

Validity assessment:

8. Describe methods to assess primary study quality and potential for bias.

9. State whether validity assessments were made blinded to the source of the study, data, or
  publication (e.g. authors/investigators, sponsor, journal).

10. Indicate whether the validity assessment was performed by one or multiple reviewers.

Data abstraction:

11. Describe processes followed to extract data, including:

• Data abstraction by one or multiple individuals, with or without redundancy

• Training and expertise of abstractors

• Discrepancy resolution if redundant abstractions

Performance metrics:

12. Precisely describe performance metric calculations; for bias report how truth is determined;
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Section Descriptor

  for repeatability report time lag between replicates; for reproducibility describe all factors
  that were varied.

Heterogeneity assessment:

13. Explain how heterogeneity was assessed, including formal statistical tests of heterogeneity
  conducted.

Quantitative data synthesis:

14. Describe statistical methods used to produce summary estimates of performance and
  associated measures of uncertainty (e.g. confidence intervals).

15. Describe statistical methods used to evaluate associations between performance metrics
  and study descriptor variables (e.g. meta-regression analyses).

16. If missing data were encountered explain how they were handled in the analyses.

Results Study flow:

17. Describe the stages in the process followed to conduct the meta-analysis, including data
  retrieval, and quality review steps, and individuals responsible at each stage.

18. Report the number of studies or data sets assessed and included or excluded at each point
  (a flow diagram may be helpful). Tabulate the reasons for exclusions.

Study characteristics:

19. Present a table of descriptors for all primary studies (or data sets) included in the meta-
  analysis.

20. Present performance metrics along with measures of uncertainty (e.g. confidence intervals)
  for all primary studies, preferably along with a graphical display.

21. Present other key study characteristics such as sample size, year study conducted, type of
  imaging system used (e.g. imaging device, display, image processing algorithm, software), and
  training or experience of operators and readers.

22. Report any auxiliary variables required to define subgroup analyses or meta-regressions.

Synthesis of results:

23. Report the final number of primary studies screened versus accepted for inclusion in the
  meta-analysis.

24. If more than one reviewer evaluated each study for inclusion, report the concordance in
  assessments of eligibility, quality, and validity and how any disagreements were resolved.

25. Provide a final estimate of any summary performance metric that was calculated, along with a
  measure of uncertainty.

26. If sensitivity analyses were conducted, report the findings or alternative estimates obtained
  under differing assumptions.

Discussion 27. Briefly summarize the main findings and interpret the implications of the observed
  performance for the conduct of future clinical research or for use in clinical care in the
  context of other available evidence.

28. Discuss any potential biases either supported by a quantitative assessment or thought to be
  conceivable on scientific grounds even in the absence of direct evidence.

29. Indicate where any potential biases could have been introduced (e.g. in the study selection
  process, in the design of the primary studies).

30. Discuss limitations of the meta-analysis and directions for future research.
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