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Introduction
Human parathyroid hormone (PTH) is an 
84-amino acid polypeptide secreted from the 
parathyroid gland. Acting predominantly on 
the skeletal system and renal tubules, the  
hormone modulates serum calcium and  
phosphate.1-3 Teriparatide (PTH 1-34) is the 
N-terminal fragment of the intact hormone 
and is approved for use in the treatment of 
osteoporosis in both the United States and 
Europe.4 During normal homeostatic condi-
tions bone resorption is equal to bone forma-
tion,5,6 yet PTH, when administered in both a 
continuous and intermittent (iPTH) fashion, 
alters this balance leading to increased bone 
turnover. Moreover, when administered inter-
mittently, there is an early stimulation in bone 
formation without an increase in bone resorp-
tion, termed the ‘anabolic window’.7,8 Both 
animal and human studies have supported 
these findings in young and old subjects. 
Studies, including those conducted on post-
menopausal women, demonstrate a profound 
anabolic effect of PTH in areas of increased 
bone turnover such as at fracture sites and at 
the acute bone-implant interface.9-12

Both PTH 1-34 and PTH 1-84 are used in 
the treatment of osteoporosis in postmeno-
pausal women, with both having been 
shown to reduce the risk of new vertebral 
fractures.13-16 In addition to these agents, 
parathyroid hormone-related protein (PTHrP) 
has gained more attention in the last dec-
ade. This factor is isolated from tumours 
associated with the paraneoplastic syn-
drome of humoral hypercalcaemia of malig-
nancy, and shares homology with PTH 
1-34.17 Shown to be integral to bone forma-
tion, PTHrP acts via both PTH-Receptor1 
(PTHR1) and an unrelated PTHrP-specific 
osteoblast surface receptor.17,18 PTHrP medi-
ates osteoblast differentiation and prolifera-
tion via a number of pathways shared with 
PTH (extracellular signal related kinases, cyc-
lin dependent kinase inhibitor (ERK,P27) 
ERK, P27) and receptor activator of nuclear 
kappa B ligand/osteoprotegerin (RANKL/
OPG); though unlike teriparatide, its use 
remains off-label. Nonetheless, the clinical 
applications of PTHrP may be further reach-
ing than those of teriparatide alone, with 
rodent and canine studies outlining the 
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the use of parathyroid hormone in bone formation

Intermittently administered parathyroid hormone (PTH 1-34) has been shown to promote 
bone formation in both human and animal studies. The hormone and its analogues stimu-
late both bone formation and resorption, and as such at low doses are now in clinical use 
for the treatment of severe osteoporosis. By varying the duration of exposure, parathyroid 
hormone can modulate genes leading to increased bone formation within a so-called ‘ana-
bolic window’. The osteogenic mechanisms involved are multiple, affecting the stimulation 
of osteoprogenitor cells, osteoblasts, osteocytes and the stem cell niche, and ultimately 
leading to increased osteoblast activation, reduced osteoblast apoptosis, upregulation of 
Wnt/β-catenin signalling, increased stem cell mobilisation, and mediation of the RANKL/
OPG pathway. Ongoing investigation into their effect on bone formation through ‘coupled’ 
and ‘uncoupled’ mechanisms further underlines the impact of intermittent PTH on both 
cortical and cancellous bone. Given the principally catabolic actions of continuous PTH, this 
article reviews the skeletal actions of intermittent PTH 1-34 and the mechanisms underlying 
its effect.
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regulatory role of PTHrP on cartilaginous proliferation at 
the growth plate.19-20

The so-called ‘anabolic window’ synonymous with 
intermittent PTH 1-34 is a result of multiple mechanisms, 
the net effect being a positive balance between formation 
and resorption within the bone remodelling unit (BMU). 
Intermittent dosing has been shown to have an effect  
on both remodelling- and modelling-based bone forma-
tion at cortical and cancellous surfaces.21-22 Although 
highlighting the differences between continuous and 
intermittent administration, this review focuses on the 
mechanisms of pulsatile PTH 1-34.

Anabolic role of PTH
Osteoblast activation and stem cell differentiation.  Both 
continuous and intermittent administration of PTH 
lead to increased bone turnover at trabecular and cor-
tical sites.21-24 However, continuous dosing results in 
increased osteoclast activation and lifespan, and thus 
enhanced endosteal resorption. In contrast, intermittent 
dosing results in increased trabecular bone volume. A 
significant proportion of this anabolism is mediated by 
the intermittent PTH effect on the osteoblast. The primary 
receptor for PTH and PTHrP is the G-protein-coupled 
receptor PTH1R, known to be expressed on the surface 
of osteoblasts, osteocytes, stromal cells, T cells and mac-
rophages.25-27 At low concentrations, PTH binds pref-
erentially to PTH1R on cells of the osteoblastic lineage, 
thus driving osteoblastic bone formation.28,29 Moreover, 
rapid degradation of the hormone ensures that osteoclas-
tic bone resorption is not activated via this mechanism. 
Stimulation of PTH1R activates a multitude of G-proteins 
including the Gαs-mediated cascade, which leads to the 
conversion of adenylyl cyclase to cyclic-adenosine mono-
phosphate and the activation of protein kinase a (cAMP/
PKA pathway).30,31 The resultant subunits translocate 
into the cell nucleus, leading to transcription factor phos-
phorylation and the expression of messenger ribonucleic 
acid (mRNA) responsible for the anabolic effects.

The transient upregulation of mRNAs encoding for tran-
scription factors, cytokines and growth factors via cAMP/
PKA signalling mediates a variety of the anabolic actions of 
intermittent PTH. Upregulation has been demonstrated to 
occur within the first six to nine hours following adminis-
tration.32-33 As such, intermittent PTH may lead to repeated 
cycles of upregulation and thus to an overall net anabolic 
effect. Of these multiple transcription factors, both the 
Notch ligand jagged-1 and the proto-oncogene c-fos play 
substantial roles in the proliferation of osteoblasts as a 
result of PTH treatment.34-36 In vivo studies have shown 
that c-fos expression is greatest from osteoblasts follow-
ing the administration of intermittent PTH in the first  
90 minutes, after which gene production was a result only 
of the osteoclast population.35 Intermittent PTH has also 
been shown to induce the activation of runt related 

transcription factor 2 (RUNX2). This transcription factor 
not only drives the differentiation of stem cells down the 
osteoblastic lineage, but it also maintains osteoblast matu-
rity. However, continuous administration leads to rapid 
degradation of RUNX2 and thus reduced bone forma-
tion.37-38 These changes to RUNX2 levels are thought to be 
due to alterations of the genes’ stability through changes 
mediated by the cell cycle regulator cyclin D1.39-40

The role of insulin-like growth factors (IGF) on bone 
anabolism can also not be understated; these proteins 
have been shown to not only induce osteoblast differen-
tiation of stem cells, but also to increase the activity of 
mature osteoblasts.41 Intermittent PTH dosing increases 
the expression of IGF-1 in rodent experiments, with 
knockout IGF-1 animals, showing no change in bone for-
mation when treated with intermittent PTH,42 while 
human studies in postmenopausal women demonstrated 
similar effects with concurrent increases in IGF-2 and 
bone formation following short courses of intermittent 
PTH.43 Similar to RUNX2, IGF not only affects osteoblast 
differentiation and activity, but also plays a role in cell 
survival via an anti-apoptotic effect.44

Osteoblast apoptosis. A  large body of work has demon-
strated that increased osteoblast number is driven by 
an anti-apoptotic effect and thus, increased cell survival 
rates.36 Osteoporotic murine models are known to have 
increased osteoblast apoptosis in cancellous regions, yet 
this phenomenon is reversed following in vivo adminis-
tration of intermittent TH, leading to an overall increase 
in bone formation.36,45 Of note, the anti-apoptotic effect 
of PTH is mediated via actions on the PTHR1 at the earlier 
stages of osteoblast differentiation, with very little effect 
seen with mature cells, resulting in a net ‘clearance’ of 
older osteoblasts in preference for younger cells.45

In vitro work has demonstrated that the cAMP/PKA 
pathway is the underlying mode for this anti-apoptotic 
effect, leading to phosphorylation of the cellular tran-
scription factor cAMP response element binding protein 
(CREB), the transcription of anti-apoptotic genes Bcl-2 
and P21, and the inactivation of pro-apoptotic genes 
such as Bad and the apoptosis inducer Cell Cycle 
Apoptosis Regulator Protein (CARP-1).36,45-48 Conversely, 
continuous administration results in an inhibition of 
RUNX2 through proteasomal degradation by Smad, thus 
reducing osteoblast survival.45

Wnt signalling. O ne of the major effects of intermittent 
PTH is via activation of the canonical Wnt pathway and, 
in turn, Wnt/β-catenin signalling in osteoblasts. Essential 
for normal bone formation and cartilage repair, the path-
way not only mediates the differentiation of stem cells 
to osteoblasts but it also regulates the maturation, prolif-
eration and anti-apoptosis of osteoblast precursors.44,49-50 
Canonical Wnt is imperative in PTH anabolism, whereby 
Wnt ligands activate frizzled receptors (Fzd) and low-
density receptor proteins 5 and 6 (LRP5, LRP6). This 
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dimeric receptor complex reduces the proteolysis of 
β-catenin, resulting in its increased stability and accumu-
lation within the nucleus. Intermittent PTH is a pathway 
agonist, thus, the accumulated β-catenin binds to T-cell-
specific transcription factor (TCF) and lymphoid enhanc-
ing factor (LEF), displacing the Groucho repressor gene, 
and thereby allowing the transcription of Wnt-specific 
osteoblast differentiation genes.51

Sclerostin is a glycoprotein primarily secreted from 
osteocytes, and acts to antagonise the canonical Wnt 
pathway.52-53 Mutations in the SOST gene and thus 
reductions in sclerostin levels lead to Van Buchem disease 
and sclerosteosis, phenotypically characterised by bone 
overgrowth and skeletal sclerosis. Sclerostin can occupy 
the Wnt ligand binding sites on LRP5 and LRP6, and 
therefore reduce Wnt signalling, leading to reduced bone 
formation. Intermittent PTH reduces SOST mRNA levels 
and increases bone mineral density in vivo via the cAMP/
PKA signalling pathway downstream to PTHR1.54,55 
Moreover, transgenic mice overexpressing PTHR1 have 
shown reduced SOST levels and concurrently increased 
bone mass.54 As such, in a mouse model with osteocytes 
ablated of PTH1R, intermittent PTH failed to suppress 
SOST expression, with an undetectable effect on bone 
formation.56 Similarly, serum sclerostin levels in healthy 
women are inversely correlated to PTH serum levels, 
while postmenopausal women treated with teriparatide 
also demonstrate reduced serum sclerostin levels. In 
addition to the effects of PTH on sclerostin levels, a large 
body of work has investigated the role of PTH on canoni-
cal Wnt antagonists Dickkopf-1 (Dkk1). Unlike sclerostin, 
Dkk1 is expressed in cells of the osteoblast lineage, 
though similarly acts on LRP5/6 to inhibit Wnt signal-
ling.57 Intermittent PTH has been found to reduce Dkk1 
mRNA levels, leading to the functional activation of the 
canonical Wnt pathway.58,59 These in vitro findings were 
supported by in vivo work on transgenic mice overex-
pressing Dkk1, which, when dosed with intermittent 
PTH, demonstrated a blunting of the anabolic effect. 
There remains some controversy on the importance of 
Dkk1 specifically, as opposing studies have demonstrated 
no effect of increased Dkk1 levels on Wnt signalling, with 
variable results on the actions of PTH.60,61

A growing body of work has investigated the effect of 
PTH on LRP5 and LRP6. Inactivation of LRP5 has been 
shown to result in osteoporosis-pseudoglioma syn-
drome62 associated with premature generalised osteopo-
rosis, while LRP6 mutation leads to early coronary disease 
in addition to severe osteoporosis.63 Significantly, inter-
mittent PTH still exerts a bone-forming effect in LRP5-
deficient mice, yet, as the PTHR1/LRP6 complex leads to 
the upregulation of β-catenin signalling, and thus TCF/
LEF-mediated stimulation of bone formation,64,65 LRP6 is 
specifically required for differentiation and survival of 
osteoblasts during bone remodelling.65 Resultantly, the 

anabolic effects of intermittent PTH are significantly 
blunted in LRP6 knockout mice.63-66

The activation of Wnt signalling is dependent on a 
multitude of factors, one of which is osteoimmunity and 
the role of T cells. In the absence of T cells, it has been 
demonstrated in vivo that intermittent PTH does not 
induce increased proliferation or differentiation of osteo-
blasts, nor does it reduce apoptosis. Both CD4 and CD8 T 
cells are thought to be particularly vital, with in vivo 
studies outlining the ability of CD8 T cells to potentiate 
intermittent PTH anabolism through its provision of  
Wnt-10b.67,68 Similarly, human studies have demon-
strated that in the context of teriparatide treatment, 
again, CD8 T cells were the main source of increased lev-
els of Wnt-10b; this finding was not replicated in patients 
with primary hyperparathyroidism.68

Stromal cell activation and mobilisation.  Studies have 
identified the pivotal action of intermittent PTH on the 
reactivation of quiescent periosteal lining cells into active 
osteoblasts, subsequently leading to an increase in over-
all osteoblast number and net bone formation.69-71 In vivo 
lineage tracing has demonstrated increased osteoblast 
number on the periosteal surface of animals treated with 
intermittent PTH. This is in the context of reduced bone 
lining cell fraction, reactivated traced lining cells and the 
absence of increased osteoblast proliferation overall,70,71 
all of which led to significant increases in osteoblast 
proliferation.

The effect of intermittent PTH on the bone marrow stro-
mal cell niche has also been elucidated, identifying actions 
on perivascular niches created in part by mesenchymal 
stromal cells and often located near trabecular bone. Calvi 
et al72 outlined the pivotal role of intermittent PTH on the 
stem cell niche microenvironment, demonstrating the reg-
ulatory role of osteoblasts on the haematopoietic stem cell 
niche using transgenic mice with activated PTH/PTHrP 
receptors (PPRs). The receptor-specific osteoblasts were 
found to produce increased levels of the Notch ligand 
Jagged 1, resulting in an increased volume of haematopoi-
etic stem cells with Notch ligand activation. Their further 
work assessed this effect in vivo, whereby intermittent PTH 
was administered to mice undergoing myeloablative bone 
marrow transplantation.73 Results showed a 73% improve-
ment in animal survival after 28 days, with an expansion of 
bone marrow cellularity and reduced adipocytes when 
treated with PTH.

The ability of intermittent PTH to mobilise or increase 
the migration of cells from the haematopoietic niche is 
particularly significant in the context of sites of increased 
bone turnover (fractures and peri-implant). Cells are ini-
tially ‘mobilised’ from their niche into the circulation, 
migrate across the tissue endothelium and mature into 
active cell types, eventually ‘modulating’ the local envi-
ronment. The SDF-1/CXCR4 axis has been found to be an 
important regulator of stem cell migration.74-77 Stromal 



17 Parathyroid hormone 1-34 and skeletal anabolic action

BONE & JOINT RESEARCH

derived factor-1/CXCL12 (SDF-1) is produced by a multi-
tude of tissue types including fracture endosteum, and in 
its active form is bound to the chemokine receptor type 4 
(CXCR4) r found on mesenchymal stem cells. Granero-
Moltó et al78 demonstrated that dynamic stem cell migra-
tion to the fracture site in a stabilised tibial osteotomy 
model was CXCR4-dependent. The clinical significance 
of the SDF-1/CXCR4 axis has further been alluded to, 
whereby the overexpression of CXCR4 on mesenchymal 
stem cells leads to significant increases in bone mineral 
density, thus having implications in the treatment of 
osteoporosis.78 In addition to a body of work from hae-
matology and cardiologists,79-81 Kitaori et al82 demon-
strated increased osteoblast expression of SDF-1 following 
intermittent PTH administration and thus upregulation of 
the stem cell homing axis SDF-1/CXCR4, with significant 
implications for endochondral repair and increased bone 
volume fraction.82

Catabolic role of PTH. A s discussed, many of the effects of 
intermittent PTH are mediated via actions on the PTHR1 
receptor, affecting both aspects of skeletal remodelling, 
with net anabolic or catabolic effects dependent upon 
duration of exposure and dosage. In vivo and in vitro 
studies have demonstrated that these resorptive effects 
are a result of direct and indirect osteoclast activation, 
and of cascades mediated by both osteoblast and osteo-
cyte actions.

The RANKL/OPG axis
Unlike the multiple mediators of the anabolic actions of 
intermittent PTH, it is the Receptor activator of nuclear 
factor kappa-B ligand/osteoprotegerin ligand (RANKL/
OPG) pathway that predominantly regulates the effects 
on osteoclastogenesis of intermittent PTH. RANKL pro-
duced by osteoblasts binds to RANK on the surface of 
osteoclast precursors, leading to nuclear factor kappa-
light-chain-enhancer of activated B cells (NF-κB )activation, 
and ultimately maturation and terminal differentiation of 
these cells into mature osteoclasts.83-84 Conversely, OPG 
secreted by stromal cells is a soluble decoy receptor, 
binding to RANKL, inhibiting RANK activation and in turn 
reducing bone resorption.83-84 The varying balance 
between resorption and formation, as seen with continu-
ous and intermittent PTH, can in part be explained 
through the regulation of the RANKL/OPG pathway. The 
mRNA encoding for RANKL is increased and for OPG 
decreased in the presence of continuous PTH, leading to 
increased osteoclastogenesis and thus bone resorp-
tion.85,86 As such, human studies also confirm the effects 
of PTH exposure on serum RANKL levels, with these mark-
ers correlating with femoral bone loss and increased 
bone resorption markers87 in patients with primary 
hyperparathyroidism, demonstrating increased serum 
RANKL and the RANKL/OPG ratio.88 In addition, recent 
work has further highlighted the role of osteocytes 

whereby transgenic mice, either overexpressing or 
ablated of PPR/RANKL, demonstrated increased osteocyte 
production of RANKL following continuous PTH and  
subsequently had increased bone loss.89

Although not yet fully understood, there is physiologi-
cal coupling between osteoclasts and osteoblasts medi-
ated by systemic hormones.90 Intermittent PTH mimics 
this trend, coupling osteoclasts to osteoblasts and high-
lighting the pertinent role of active resorption. Evidence 
has demonstrated the direct resorptive effects of PTH, by 
activation of a PTHR1 receptor identified on osteoclasts, 
with a number of studies identifying upregulation of the 
receptor in pathological states.91,92 Such findings suggest 
a dual mechanism whereby PTH acts not only directly on 
osteoclasts but also indirectly via osteoblasts.

Similar to the pro-osteoclast activity of upregulating 
RANKL levels, PTH has also been shown to affect cell 
response and production of macrophage colony-stimu-
lating factor (M-CSF). M-CSF is a cytokine involved in 
the regulation of both cell proliferation and differentia-
tion from the bone marrow niche; in vivo stimulation by 
PTH leads to its release from osteoblasts and subsequent 
effects on osteoclasts.93 Indeed, murine studies have 
demonstrated that increased RANKL and M-CSF levels 
stimulated osteoclast formation and bone resorption 
following intermittent PTH treatment, though this effect 
was ameliorated after 14 days.94 The importance of 
increased osteoclast number, through increases in the 
RANKL/OPG ratio and M-CSF mediated by intermittent 
PTH, has an unclear role in the overall bone anabo-
lism.95,96 The relationship between osteoclast and  
osteoblast number may further underpin bone forma-
tion, and, as such, may be integral to coupled bone 
formation.88,89

Monocyte chemoattractant protein-1 (MCP- is one of 
the key chemokines that regulate migration and infiltra-
tion of monocytes or macrophages. MCP-1 is produced 
by many cell types, including osteoblasts, endothelial 
cells, fibroblasts, epithelial, smooth muscle cells, mesan-
gial cells, astrocytes, monocytes, and microglial cells. 
Chemokines selectively recruit monocytes, neutrophils, 
and lymphocytes, and induce chemotaxis through the 
activation of G-protein-coupled receptors. MCP-1 specifi-
cally plays an active role in PTH-induced bone resorption. 
Via the cAMP/PKA pathway, in vitro studies demonstrated 
increased expression of MCP-1 in rat osteoblasts follow-
ing exposure to both intermittent and continuous PTH, 
leading to bone resorption through chemoattraction of 
RANKL-activated osteoclastogenesis and pre-osteoclasts. 
Importantly, although sustained during continuous infu-
sion, intermittent PTH administration led to an initial 
spike followed by a rapid degradation in MCP-1 levels.97 
As would be expected, patients with primary hyperpar-
athyroidism demonstrated increased serum MCP-1 levels 
which, like RANKL, fell following parathyroidectomy.98
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Modelling versus remodelling.  The modalities discussed 
thus far pertain to a balance of bone formation and resorp-
tion; intermittent PTH is known to rapidly increase markers 
of formation prior to also having an effect on resorption. 
Yet within this window, as previously discussed, intermit-
tent PTH also activates quiescent lining cells on the mod-
elling surface to further induce bone formation (Fig. 1). 
This ‘modelling’ mode of formation was initially identified 
with the use of double tetracycline labelling in osteopo-
rotic women.99 Rodent data suggested that modelling 
accounted for only 20% of bone formation, with this figure 
further decreasing with age, while human studies indicate 
between 5% and 30% of formation occurs at modelling 
surfaces.42,100 Rhee et al100 further demonstrated the role 
of intermittent PTH on modelling-based bone formation, 
whereby RANK deficient mice were treated with intermit-
tent PTH, and thus remodelling was ablated in the absence 
of active osteoclasts. Resultantly, short-term high-dose 
PTH led to increases in serum osteocalcin, and trabecular 
and cortical bone mineral density. More recent evidence 
has suggested that the effect of intermittent PTH on mod-
elling is most significant in the early stages of treatment 
in human populations, whereby the proportion of mod-
elling-based bone formation reduces in the steady state 
situation following long-term intermittent PTH treatment 
in osteoporotic populations.101,102

In both modelling- and remodelling-based bone  
formation, the actions of PTH receptor signalling on  
osteocytes are pivotal. DMP1–8kb-caPTHR1 transgenic 
mice express a constitutively active PTH osteocyte  
receptor and, in conjunction with anti-resorptive agents, 
have been used to investigate the role of modelling  
and remodelling within various bony compartments.100 
Subsequently, on the periosteal cortical surface, inhibit-
ing remodelling-based bone formation had no effect  
on overall bone formation or bone mineral density. 
Importantly, when SOST was overexpressed and thus 
the Wnt pathway blocked, this modelling-based bone 
formation at the periosteal surface was ablated.54 
Ultimately, in animal studies, bone formation induced  
by osteocytic PTH receptor signalling on the periosteal 
surface appears to be Wnt pathway-dependent and  
independent of bone resorption; as such, periosteal 
bone formation enhanced by intermittent PTH may be 
predominantly a result of modelling effects.

Recently, increased investigation into PTHR1 activa-
tion has led to the development of abaloparatide, a syn-
thetic analogue of PTHrP 1-34, which has demonstrated  
a lower catabolic profile than teriparatide, and thus  
clinically would have fewer hypercalcaemia-related side 
effects.99 Work has demonstrated that structurally distinct 
ligands can bind to differing receptor conformations; the 

Fig. 1

Illustration of the regulatory actions of intermittent PTH 1-34
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R0 receptor conformation is G-protein-independent and 
thus unaffected by analogues that act to dissociate G 
protein-receptor complexes. Consequently, when acti-
vated with long-acting ligands like long-acting -PTH, the 
net effect is an increase in catabolism and net resorption. 
Conversely, abaloparatide and short-acting ligands have 
been found to have an affinity for the G-protein-sensitive 
receptor conformation RG.103-105 Subsequently, activa-
tion of the receptor occurs only briefly due to rapid dis-
sociation of the ligand receptor complex upon G protein 
activation, thus inducing a net anabolic response in vivo. 
Phase 2 trials suggest that abaloparatide has a smaller 
stimulatory effect on remodelling than does teriparatide. 
As such, in clinical osteoporotic populations, this ana-
logue may lead to a reduction in non-vertebral fractures 
with a concurrent improvement in cortical porosity and 
bone strength. Importantly, PTH 1-34 and 1-84 both led 
to abnormal bone architecture in murine studies, with a 
reported incidence of osteosarcomas following lifetime 
treatment,106-108 though this has not been reported with 
the use of abaloparatide.

Parathyroid hormone has profound and complex 
effects on the skeleton; its elevation in the circulation can 
generate both catabolic and anabolic effects depending 
on the temporal profile of its increase, and, as such, is 
used clinically in short bursts (12- to 18-month cycles). At 
the cellular level, intermittent PTH directly stimulates 
bone formation via osteoblasts, increasing number and 
activity; concurrently, intermittent PTH stimulates bone 
resorption by also increasing the recruitment and activa-
tion of osteoclasts. In conclusion, crosstalk between 
modelling- and remodelling-based bone formation is 
driven by PTH receptor signalling in osteocytes, osteo-
clasts, osteoblasts and undifferentiated cells. Ultimately 
there is no ‘common’ intermittent PTH pathway; instead, 
the hormone acts via multiple mechanisms to exert its 
anabolic effect. By understanding both the anabolic and 
catabolic actions of PTH 1-34, one can hope to enhance 
its clinical utility as a mode of increasing bone formation 
in both the osteoporotic and fracture-healing contexts.
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