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Estrogens are the key hormones regulating the development 
and function of reproductive organs in all vertebrates. Recent 
evidence indicates that estrogens play important roles in the 
immune system, cancer development, and other critical 
biological processes related to human well-being. Obviously, 
the gonads (ovary and testis) are the primary sites of estrogen 
synthesis, but estrogens synthesized in extra- gonadal sites 
play an equally important role in controlling biological 
activities. Understanding non-gonadal sites of estrogen 
synthesis and function is crucial and will lead to therapeutic 
interventions targeting estrogen signaling in disease prevention 
and treatment. Developing a rationale targeting strategy 
remains challenging because knowledge of extra-gonadal 
biosynthesis of estrogens, and the mechanism by which 
estrogen activity is exerted, is very limited. In this review, we 
will summarize recent discoveries of extra-gonadal sites of 
estrogen biosynthesis and their local functions and discuss the 
significance of the most recent novel discovery of intestinal 
estrogen biosynthesis. [BMB Reports 2016; 49(9): 488-496]

INTRODUCTION

Estrogens are a class of steroid hormones that regulate the 
development and function of male and female reproductive 
organs. In the ovary, estrogen synthesis begins in theca cells 
with androgen synthesis and ends with conversion of 
androgens to estrogens in granulosa cells by the enzyme 
aromatase. In the male gonad, estrogens are synthesized in the 
Leydig cells, Sertoli cells, and mature spermatocytes (1). Like 
other steroid hormones, estrogens enter passively into the cells 
and bind to the estrogen receptors, which then regulate the 
transcription of downstream estrogen-responsive genes. Among 
the number of different forms of estrogens, 17-estradiol 

(estradiol) is the most common and potent form of estrogen in 
mammals. Estradiol is also produced in a number of extra- 
gonadal organs, including the adrenal glands, brain, adipose 
tissue, skin, pancreas (2-4), and other sites yet to be identified. 
The discoveries of extra-gonadal sites of estradiol synthesis 
greatly expands our knowledge of the novel roles of estrogens 
beyond the reproductive system. 

EXTRA-GONADAL SITES OF ESTROGEN SYNTHESIS 
AND ITS LOCAL ROLES

The first discovery of extra-gonadal estrogen synthesis was 
made in 1974 by Hemsell and his colleagues when they made 
an unexpected observation that androgens were converted to 
estrogens in adipose tissue (5). Since then, a number of other 
extra-gonadal sites of estrogen synthesis have been discovered. 
Adipose tissues are considered to be the major source of 
circulating estrogen after the gonads in both men and women, 
and the contribution made by the adipose tissues to the total 
circulating estrogens increases with advancing age (5). The 
chemical structure and biological activity of the estrogens 
synthesized in the extra-gonadal sites are not different from 
those that are produced by the gonads. However, there are 
unique features that make the extra-gonadal estrogen synthesis 
differ from the gonadal synthesis. A major difference is in the 
biochemical pathway of estrogen synthesis. The tissues and 
cells of the extra-gonadal sites of estrogen synthesis are unable 
to synthesize C19 steroids, the precursors of estrogen synthesis, 
but are able to convert C19 steroids to estrogens, a critical and 
rate-limiting step mediated by Cyp19 aromatase. Hence, 
extra-gonadal estrogen synthesis is dependent on an external 
source of C19 precursors (4) and the level of aromatase 
expression. Because C19 steroids can be supplied to a local 
tissue via circulation and are converted to estrogens in any 
tissue where aromatase is expressed, the presence of 
aromatase expression in a local tissue confirms extra-gonadal 
estrogen synthesis. Table 1 lists the peripheral tissues that 
express aromatase and are therefore able to convert C19 
precursors to estrogens. These extra-gonadally synthesized 
estrogens are thought to act and be metabolized locally, which 
limits their systemic effects (6). Another unique feature of 
extra-gonadal estrogen synthesis is that while the total amount 
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Sites
Evidence of 17-estradiol synthesis

References
Cyp19 mRNA Cyp19 protein 17-estradiol

Brain Astrocyte (rat, mouse, human), 
Hippocampus and hypothalamus 
(rat, mouse, monkey, human)

Astrocyte (mouse), GnRH (rat), 
Dentate gyrus/ pyramidal cell (rat, mouse, 
human, monkey), Interneurons (human), 
Granular cell (human, monkey), Purkinje 
cell (human, mouse), Ependymal 
andsubependymal cell (human).

Astrocyte (rat, monkey). (7-16)

Fat Stromal cell (human), 
Adipocyte (human)

Stromal cell (human), Adipocyte, 
mesenchymal cell (human)

(13-16)

Bone Osteoblast (human) Osteoblast (human) Osteoblast (human) (17-19)
Liver HepG2 hepatoma 

andhepatocellular carcinoma 
(human), Hepatocyte (porcine).

HepG2 hepatoma and hepatocellular 
carcinoma (human)

HepG2 hepatoma and 
hepatocellular carcinoma 
(human)

(20-22)

Adrenal gland Adrenocortical cell 
(human, porcine, rat)

Adrenocortical cell (human) Adrenocortical cell (rat) (22-24)

Intestine Parietal cell (rat) Parietal cell (rat) Parietal cell (rat) (25)
Skin Fibroblast (human).

Keratinocyte (human).
Fibroblast (chicken, human), 

Keratinocyte (human)
Fibroblast (chicken) (26-28)

Blood vessel Smooth muscle cell 
(human, rat, bovine)

Smooth muscle cell (human, rat, bovine) (29-31)

Spleen T cell (mouse) T cell (mouse) (32)

Table 1. Extra-gonadal sites of estrogen synthesis

Sites
Receptor subtypes

References
ER ER Other receptors

Brain Cholinergic neuron (rat), GABAergic 
neuron (rat), Pro-opiomelanocortin 
neuron (mouse).

GnRH neurons (mouse), Subiculum 
neuron (monkey), Ammon's horn 
neuron (monkey)

GPER1 (glial cell, rat), 
GPER1 (GABAergic neuron, 
rat).

(33-37)

Fat Adipocyte (human) Adipocyte (human) GPER (adipocyte, mouse) (38-40)
Bone Osteoblast (mouse), Osteocyte (mouse). Osteoblast (human), Osteocyte 

(human), Osteoclast (rat, human).
(41-46)

Liver Hepatocyte (rat) (25)
Blood vessel Smooth muscle cell (human), Vascular 

endothelial cell (human)
Endothelial cell (human) GPR30 (endothelial cell, rat) (47-50)

Intestine Epithelial cell (rat), Parietal cell (rat), 
Myenteric neuron (rat)

Epithelial cell (rat), Parietal cell (rat) GPER (colonic epithelia, 
human)

(51, 52)

Skin Keratinocyte (human), Mast cell 
(human) Sebocyte (human)

Keratinocyte (human), 
Mast cell (human)

(53-55)

Adrenal gland Adrenal cortex (rat) Adrenal cortex (rat) GPER1 (rat) (56)
Muscle Satellite cell (rat) Satellite cell (rat) (57)
Kidney Mesangial cells (human, mouse) Mesangial cells (human, mouse) (58)
Pancreas -cell (mouse) -cell (mouse) (59, 60)

Table 2. Extra-gonadal sites of estrogen receptor expression

of estrogen synthesized in each tissue may be small, the local 
tissue concentrations of estrogens could be high enough to 
exert biological impact locally. The functional roles of 
estrogens are mediated mostly by estrogen receptors that are 

nuclear receptor transcription factors. Therefore, a tissue that 
expresses one or more estrogen receptors is considered to be a 
target of estrogenic regulation. Table 2 lists key organs and 
tissues that express estrogen receptors. 
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Adipose tissues
Adipose tissues, where estradiol stimulates the production of 
high density lipoprotein cholesterol (HDL) and triglycerides 
while decreasing LDL production and and fat deposition (61, 
62), are the most extensively studied sites of extra-gonadal 
estrogen synthesis. Both male and female aromatase-deficient 
(Cyp19KO) mice exhibit obesity and dyslipidemia (61, 62), 
proving that estradiol plays a beneficial role in the lipogenesis. 
However, an adverse effect of adipose tissue-driven estradiol is 
also indicated in the pathogenesis of breast cancer. For instance, 
in a breast with a tumor, adipose tissues proximal to the tumor 
exhibit higher aromatase activity than those distal to the tumor 
(63).

Bone
Aromatase expression in human bone has been demonstrated 
in osteoblasts, chondrocytes, and fibroblasts (Table 1), where 
they convert circulating androgens into estrogens (64). In the 
bone of prepubertal children, the locally synthesized estradiol 
stimulates epiphyseal maturation during the growth phase (65). 
However, in both males and females, the massive pubertal 
increase of estradiol leads to increased apoptosis of chondrocytes 
in the epiphyseal plate, causing chondrocyte depletion and 
hence, ossification and growth slow-down (66). In adults, 
estradiol increases bone formation and mineralization and 
reduces bone resorption, thus reducing the risk of osteoporosis 
(64). Therefore, it is not surprising that the incidence of 
osteoporosis increases in postmenopausal women as their 
ovaries lose estradiol synthetic capacity. 

Skin
Aromatase expression in the skin occurs mainly in hair follicles 
and sebaceous glands (67). Glucocorticoids, cAMP analogs, 
growth factors, and cytokines modulate aromatase expression 
in these cells and therefore, local estrogene synthesis (68). 
Estradiol enhances collagen synthesis, increases skin thickness, 
and stimulates blood flow in the skin. Therefore, in situ 
estrogen synthesis in the skin is vital for maintaining healthy 
skin (69). Estradiol also prolongs the anagen phase of the hair 
cycle and therefore enhances hair growth by increasing the 
synthesis of essential growth factors stimulating the proli-
feration of hair follicle cells (70).

Liver
In the liver, estradiol regulates protein synthesis, including 
lipoprotein and proteins responsible for blood clotting (factors 
II, VII, IX, X, plasminogen) (71). Estrogen signaling is also 
essential in regulating glucose homeostasis, thus improving 
glucose tolerance and insulin sensitivity (72). Recent research 
has explored the possibility that postmenopausal women with 
nonalcoholic fatty liver disease and with long durations of 
estrogen deficiency could have a higher risk of having severe 
fibrosis than premenopausal women (73). Estrogen receptor 
beta (ER) is implicated in mediating the protective role that 

estradiol plays under pathogenic condition in the liver as it 
shows potent anti-proliferative and anti-inflammatory properties. 
As such, chronic disease is linked to elevated ER expression 
in the liver (74). ER is also known to mediate the anti-tumor 
action of estrogens in intrahepatic cholangiocarcinoma (75).

Brain
High levels of estrogen receptors are expressed during brain 
development. During this period, sex hormones determine 
apoptosis, neuronal migration, neurogenesis, axonal guidance, 
and synaptogenesis. Estradiol induces sexual differentiation in 
the developing brain. Aromatase mRNA expression in the 
hypothalamus of males peaks before and after birth, inducing 
sexual differentiation of the brain (76). In the brains of both 
males and females, estradiol provides a neuroprotective effect. 
Estradiol’s prevention of neurodegeneration in brain tissues is 
proven in both the Cyp19KO mouse model and the aromatase 
inhibitor-treated mouse (8). Inhibition or null mutation of 
aromatase, a key enzyme for estradiol synthesis, results in 
accelerated neurodegeneration (8). Estradiol effects in the 
brain also include regulating mood, pain sensitivity, motor 
control, and cognitive behavior (13-16). Estradiol regulates 
neuronal metabolism by modulating the expression of metabolic 
enzymes such as GLUT (glucose-transporter), glycolytic enzyme 
hexokinase, pyruvate dehydrogenase (PDH), aconitase, and 
ATP synthase (77).

Adrenal gland
Estrogens stimulate adrenal cortex growth during development 
by promoting cell proliferation and enhancing steroidogenic 
activity by increasing StAR and SF-1 expression in the adrenal 
gland (30). In the fetal adrenal gland, estradiol and ACTH form 
as a positive regulatory loop in which estradiol increases 
ACTH secretion from adrenal cortex while ACTH increase 
estradiol in the ovary (78). 

Pancreas
Estradiol increases insulin gene expression and insulin content 
in -cells (59, 79), increases -cell proliferation during pancreatic 
development and recovery from injury (80), and prevents 
apoptosis of -cells upon inflammatory insult (59) via ER- and 
ER-mediated pathways.

Others
In the blood vessel, estradiol positively impacts vascular 
function by preventing the oxidation of LDL cholesterol, 
stimulating nitric oxide synthesis and release, and inhibiting 
fibroblast transition to myofibroblast, preventing cardiac 
fibrosis (81-83) and atherosclerosis development. In the muscle, 
estradiol increases muscle mass and strength, alleviating 
disuse-induced muscle atrophy and promoting regrowth after 
reloading. It also stimulates muscle repair by stimulating 
satellite cell proliferation (84, 85). Estradiol replacement on 
ovariectomized mice shows that estradiol can reduce stiffness 
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in muscle as well as stimulate muscle regeneration (39). In the 
kidney, estradiol has a role of protecting kidney functions 
during progressive glomerulosclerosis in the female rat 
remnant kidney model (86). In the intestine, to maintain the 
intestinal epithelium, estrogens are necessary. Estrogens 
improve epithelial barriers and reduce intestinal permeability 
(87), preventing chronic mucosal inflammation in animals and 
humans (88).

Inflammation
Estrogens play an important role in the inflammatory response 
by regulating development, proliferation, migration, and 
apoptosis of immune cells (89). Lymphocytes have been 
shown to express estrogen receptors (ER and ERbut the 
expression levels of both receptors vary among cell types. 
CD4＋ T-lymphocytes express ER whereas B-lymphocytes 
express ER (90). In contrast, CD8＋ T-lymphocytes express 
both receptors at low but equivalent levels (90). Regardless of 
subcellular differences, estrogens appear to exert a suppressive 
effect on both B- and T-lymphopoiesis. In support, B-lymphocyte 
formation is selectively reduced with estradiol treatment (91), 
and ovariectomy results in increased B-lymphopoiesis (92, 93). 
In addition to the inhibitory effect on lymphopoiesis, estradiol 
has been shown to influence T helper (Th) responses; inhibit 
the production of Th1 cytokines such as IL-12, TNF-, and 
IFN-; and stimulate Th2 anti-inflammatory cytokine production 
such as IL-10, IL-4, and TGF- (94). Estradiol has also been 
shown to modulate the main activities (maturation, differen-
tiation, and migration) of myeloid cells, including monocytes, 
macrophages, and dendritic cells (95-98). Thus, estradiol has 
an important impact on immune cells and affects both the 
innate and the adaptive immune systems, which may account 
for its contribution in diseases associated with immune 
disorder. 

ESTROGEN AND ESTROGEN RECEPTORS IN THE GUT 

In an effort to identify extra-gonadal sites of de novo estradiol 
synthesis, we generated a double transgenic mouse line in 
which a transgenic aromatase (cyp19) promoter induces the 
expression of a red fluorescent protein (RFP) (un-published). In 
this animal, RFP signal is strongly expressed in the Peyer's 
patch (Pp), a secondary lymphoid organ in the intestine. Pp 
have an organizational structure similar to lymph nodes 
consisting of multiple follicles and interfollicular areas. A 
follicle is made of a germinal center that is filled with 
proliferating B-lymphocytes, follicular dendritic cells, and 
macrophages; the interfollicular area is populated with 
T-lymphocytes as well as B-lymphocytes, macrophages, and 
dendritic cells. As part of the gut-associated lymphoid tissue, 
Pp are known as inductive sites of intestinal immune 
responses (99). The induction process in the Pp starts with 
sensing antigens or microbes in the gut lumen by M-cells 
located in a monolayer of specialized intestinal epithelial cells 

known as the follicle-associated epithelium. M-cells transport 
antigens to antigen-presenting cells, specifically dendritic cells 
(DCs), within the underlying sub-epithelial dome through 
transcytosis. Dendritic cells then further present antigens to 
T-and B-lymphocytes, triggering priming and proliferation of 
lymphocytes to complete the immune response. A well-known 
effect of the Pp’s induction function is generating antigen- 
specific intestinal IgA responses, which is critical for 
maintaining host-microbiota interaction, generating immune 
tolerance, and preventing infection (100-102). Interestingly, 
estrogens plays a significant role in the gastrointestinal tract. In 
this section, we will describe some of the lesser known roles 
for estrogen in the gastrointestinal system. 

Napoleon Bonaparte was not aware of the true importance 
of his words when he said “An army marches on its stomach.” 
Technically, an army marches on its intestines. The gastrointes-
tinal tract (GIT) is a unique environment colonized by a 
remarkable variety of bacteria as well as other organisms 
including fungi and viruses. This superorganism, the micro-
biome, is not a simple spectator in biological processes but is 
an active component of the biochemical and metabolic health 
of the host (103). The microbiome is capable of digesting large 
molecules into simpler ones that can be efficiently reabsorbed 
by the host. The importance of a healthy microbiome has been 
well published (104-108), and multiple pathologies have been 
correlated with poor diversity of the microbiome, including 
irritable bowel (IBS) (109), osteoporosis (110, 111), and gluten 
intolerance (112). Therefore, controlling the microbiome is 
paramount to maintaining an optimally functioning GIT. The 
mucosal epithelium is perfectly adapted to monitor both 
microbial and nutrient composition. The release of antimicrobial 
peptides (113) or anti-inflammatory molecules maintains the 
optimal microbial ecology depending on the current GIT 
contents.

Appetite
Researchers have noted a correlation between estradiol levels 
and appetite. Food intake is significantly decreased during the 
preovulatory period when estradiol levels are increasing (114). 
These actions are attributed to estradiol inhibiting appetite 
indirectly through cannabinoid receptors (115). Further, blocking 
estrogen receptors with ICI182,270 ablates any action of 
estradiol on appetite (115). What is more interesting is that 
appetite is influenced by the microbiome present in the GIT. 
Bacterial peptides signal hunger or satiation (113, 116); in 
essence, the bacteria control our desire to eat. Locally 
synthesized estrogen produced in response to microbiome 
composition in turn may influence immune responses, 
bringing us back to control of microbiome composition.

Immune function. Estrogenic compounds in the gut lumen 
suppress immune function through targeted apoptosis and 
inhibition of cell proliferation in the germinal centers of ileal 
Pp (117). The Pp are important in generating protective immune 
responses to pathogens through both innate and cell medicated 
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responses (117) and are also key in tolerizing the host to food 
antigens. The mucosal surfaces of the gut must maintain 
homeostasis, allowing sufficient function of Pp to prevent 
immune responses to food antigens yet not responding 
prolifically to commensal bacteria in the gut. Abnormal Pp 
function through estrogenic compounds is responsible for 
initializing autoimmune responses and impaired innate 
responses. Again, we see the constituents of the gut signaling 
control of the microbiome composition. This leads into the 
next topic of estrogens and cancer. 

Cancer
The small intestine is the main absorptive area of the 
gastrointestinal tract. To maximize absorption, the epithelial 
layer is covered with invaginations or crypts of Lieberkühn and 
exists as a sheet of single cells. These cells are prone to injury 
and are therefore replaced every 3-5 days (118). To facilitate 
this replacement, the base of the crypts is populated with stem 
cells that differentiate into the mature epithelium as they 
migrate towards the crest of the crypt. ER and ER are both 
expressed in the crypt cells. However, they are distributed 
such that ER is predominantly expressed in the cells at the 
base of crypts and ER is expressed in the cells towards the 
crest. ER signaling stimulates proliferation (119) and ER 
signaling opposes this action (120, 121), and the net signaling 
from the two receptors controls proliferation. To further 
support the role of estrogen receptors in tumor development, 
ER-deficient mice demonstrate a hyper-proliferation of the 
colonic epithelium with progression to colon carcinoma (87, 
122). More than 30 years ago, it was established that there is 
an associative risk between reduced estrogen levels and 
colorectal cancer in menopausal women (123) and that 
hormone (estrogen) replacement therapy reduces the incidence 
of colorectal cancer (124). Recent literature on estrogen and 
colorectal cancer confirms an anti-tumorigenic role for estrogen 
signaling in the gut due to preferential ER signaling (125).

However, estrogen in the gut is not always good. A recent 
review by Kwa et al. (103) associated the “estrobolome” (126), 
bacteria with the capacity to metabolize estrogens, with level 
of risk for breast cancer. A phylogenetic diverse microbiome 
favors metabolism of conjugated estrogens. Once metabolized, 
the free estrogens are more easily reabsorbed increasing 
systemic estrogen levels. Increased circulating estrogens levels 
increases relative risk for hormone dependent malignancies 
such as breast cancer. As described above, our recent 
unpublished work has demonstrated that not only are Pp able 
to respond to estrogens, but they are also a significant site of 
estradiol synthesis. Thus, Pp are able to monitor the bacterial 
diversity of the gut lumen and secrete estradiol. This estradiol 
then regulates immune responses locally and ultimately alters 
the diversity of the microbiome.

CONCLUSION

In conclusion, although estradiol is best recognized as sex 
hormone that regulates the development and function of 
reproductive hormone across the entire mammalian species, 
ever-growing evidence demonstrates its multi-faceted nature in 
exerting its role in non-reproductive organs and systems under 
normal as well as pathological conditions. It will be exciting to 
see what other functions estradiol may play in local tissues 
and from where the hormone is supplied to those sites. 
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