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Ultrasound imaging is commonly used for breast cancer diagnosis, but accurate interpretation of breast ultrasound (BUS) images is
often challenging and operator-dependent. Computer-aided diagnosis (CAD) systems can be employed to provide the radiologists
with a second opinion to improve the diagnosis accuracy. In this study, a new CAD system is developed to enable accurate BUS image
classification. In particular, an improved texture analysis is introduced, in which the tumor is divided into a set of nonoverlapping
regions of interest (ROIs). Each ROI is analyzed using gray-level cooccurrence matrix features and a support vector machine
classifier to estimate its tumor class indicator. The tumor class indicators of all ROIs are combined using a voting mechanism
to estimate the tumor class. In addition, morphological analysis is employed to classify the tumor. A probabilistic approach is used
to fuse the classification results of the multiple-ROI texture analysis and morphological analysis. The proposed approach is applied
to classify 110 BUS images that include 64 benign and 46 malignant tumors. The accuracy, specificity, and sensitivity obtained
using the proposed approach are 98.2%, 98.4%, and 97.8%, respectively. These results demonstrate that the proposed approach can

effectively be used to differentiate benign and malignant tumors.

1. Introduction

Breast cancer is the most common cancer in women world-
wide and one of the major causes of death in females across
the globe [1]. The statistics of the World Health Organization
(WHO) indicate that, in 2012, 1.67 million new cases were
diagnosed with breast cancer and around 522,000 women
died of this disease [1]. Early diagnosis of breast cancer
is crucial for the successful treatment of the disease and
improving the survival rates of the patients [2].

Ultrasound imaging is one of the most widely used
imaging modalities for breast cancer diagnosis since it offers
the advantages of low-cost, portability, patient comfort, and
diagnosis accuracy [3, 4]. However, the interpretation of
breast ultrasound (BUS) images is operator-dependent and
varies based on the experience and skill of the radiologist [5].

To overcome this limitation, computer-aided diagnosis
(CAD) systems have been introduced to analyze BUS images
and provide the radiologist with a second opinion to improve
the diagnosis accuracy and reduce the effect of operator
dependency [5, 6].

Many studies, such as [7-15], have employed BUS image
analysis for classifying breast tumors. In particular, mor-
phological features [13, 16, 17] and texture features [8, 12]
are demonstrated to be useful for differentiating benign and
malignant tumors. Moreover, combining both feature groups
has been suggested to improve the tumor classification accu-
racy [13, 18]. Morphological features quantify the geometrical
characteristics of the tumor, such as area, shape, orientation,
regularity, and margins [6, 19]. Therefore, morphological
features are mainly affected by the accuracy of the tumor
outline. Commonly used morphological feature descriptors
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FIGURE 1: (a)-(b) BUS images of (a) benign and (b) malignant tumors with manually drawn outlines (yellow line). (c)-(d) A single ROI is
drawn around each tumor in (a) and (b), such that the ROI corresponds to the minimum bounding rectangle that contains the tumor. Such
ROI is often used in conventional texture analysis. (e)-(f) Each tumor in (a) and (b) is divided into a set of nonoverlapping ROIs. These
multiple ROIs are used in the proposed approach to extract the texture features.

include the aspect ratio [13, 17], the best-fit ellipse of the
tumor, the normalized radial length (NRL) [18, 20], and the
undulation characteristics [21].

Texture features quantify the pixel gray-level statistics in
terms of intensity and spatial distribution [6]. Generally, the
texture patterns of benign tumors are different from those of
malignant tumors [10]. Therefore, several texture descriptors
have been employed for classifying BUS images [22-26].
Among these descriptors, the gray-level cooccurrence matrix
(GLCM) [27] is one of the most widely used texture analysis
techniques for BUS image classification [12]. Conventional
texture analysis often uses a single region of interest (ROI)
to extract global texture features that quantify the texture
characteristics of the entire tumor. One of the most common
ROI selection procedures is to find the minimum bounding
rectangle that encloses the tumor [9, 12, 22]. Another ROI
selection approach is to find the maximum rectangle that fits
inside the tumor [28]. Such ROIs can be drawn manually
by a radiologist or detected automatically using a computer
algorithm.

In many BUS images, the local texture patterns within the
tumor vary from one region to another. Hence, the use of
a single ROI, which enables the extraction of global texture
features that quantify the entire tumor, might not support
effective quantification of the local texture variations within
the tumor. Moreover, the mismatch between the predefined
structure of the ROI and the actual shape of the tumor
might reduce the tumor classification accuracy. For example,
consider the benign and malignant tumors shown in Figures

1(a) and 1(b), respectively. The texture patterns inside each
tumor demonstrate local variations. For both tumors, the
ROIs corresponding to the minimum bounding rectangle
that encloses the tumor are presented in Figures 1(c) and
1(d). Both ROIs might not provide efficient extraction of
texture features that can effectively quantify the local texture
variations within the tumor. In addition, the ROI of each
tumor extends beyond the tumor boundary, and hence the
texture features extracted from such ROI are expected to
quantify both the tumor and the surrounding healthy tissue.
These limitations might lead to imprecise texture analysis of
the tumor, which in turn can reduce the tumor classification
accuracy.

To improve the tumor classification capability of ultra-
sound texture analysis, this study investigates the use of
multiple ROIs to analyze the local pixel gray-level statistics
inside the tumor. In particular, the tumor is divided into
a set of nonoverlapping ROIs as illustrated in Figures 1(e)
and 1(f). Each ROI is analyzed individually to extract local
texture features. The texture features employed in this study
are computed using the GLCM matrix. A local tumor class
indicator is estimated for each individual ROI by classifying
the texture features of that ROI using a well-trained classifier.
The class of the tumor can be determine based on the
multiple-ROI texture analysis by employing a majority voting
mechanism to integrate the local tumor class indicators of all
ROIs inside the tumor. The proposed multiple-ROI texture
analysis approach enables effective quantification of the local
texture patterns inside the tumor without incorporating
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texture patterns of the healthy tissue that surrounds the
tumor.

One challenge of applying the proposed multiple-ROI
texture analysis approach is to enable effective combination
between the local texture features, which are extracted for
each one of the multiple ROIs inside the tumor, with the
morphological features that are computed for the entire
tumor. Therefore, a novel probabilistic approach is proposed
to fuse the tumor classification indicators obtained using the
multiple-ROI texture analysis with the tumor classification
indicator computed using morphological analysis of the
entire tumor. The morphological analysis employed in this
paper is based on set of morphological features introduced
in previous studies [13,17, 18, 20, 21, 29] to quantify the shape
and contour of the tumor.

To evaluate the performance of the proposed BUS
image classification approach, both the multiple-ROI texture
analysis and the fusion-based combination between the
multiple-ROI texture analysis and morphological analysis are
employed to classify a BUS image database that includes 64
benign tumors and 46 malignant tumors. These BUS images
were acquired during ultrasound breast cancer screening
procedures. The tumor classifications results of the proposed
approach are compared with conventional texture (single
ROI), morphological, and combined texture and morpholog-
ical analyses.

The remainder of the paper is organized as follows. The
data acquisition of the BUS image database is summarized in
Section 2. Moreover, Section 2 describes the conventional tex-
ture and morphological analysis of BUS images, the proposed
tumor classification approach, and the performance metrics
employed to compare the conventional and proposed BUS
image classification approaches. The experimental results and
discussion are provided in Section 3. Finally, the conclusion
is presented in Section 4.

2. Materials and Methods

2.1. Data Acquisition. The collected image database consists
of 110 BUS images of pathologically proven benign and
malignant tumors (64 benign tumors and 46 malignant
tumors). Detailed description of the types of benign and
malignant tumors involved in this study is provided in Table 1.
Each BUS image was acquired from one patient (ie., the
number of patients which participated in the study is 110).
All participated patients were females. Moreover, each image
included exactly one breast tumor. The age of the patients
ranged from 25 to 77 years. The mean and standard deviation
of the maximum diameters of the tumors are 14.7 mm and
6.0 mm, respectively. The BUS images were acquired during
routine ultrasound breast cancer screening procedures at
the Jordan University Hospital, Amman, Jordan, during the
period between May 2012 and February 2016. Ultrasound
imaging was performed using an Acuson S2000 ultrasound
system (Siemens AG, Munich, Germany) and a 14L5 linear
transducer with frequency bandwidth from 5 to 14 MHz.
During imaging, the radiologist was free to adjust the
configurations of the imaging system, including the focal

TABLE 1: Description of the benign and malignant breast tumors
involved in the study.

Tumor class Description Number of patients

Fibroadenoma 35
Complex fibroadenoma 1

—
w

Fibrocystic change
Chronic inflammation
Lymphocytic lobulitis
Fibrosis
Benign Sclerosing adenosis
Atypical ductal hyperplasia
Atypical lobular hyperplasia
Adenosis
Chronic mastitis
Tubular adenoma

e S S I

Fat necrosis

Invasive ductal carcinoma

=

Malignant Ductal carcinoma in situ

Invasive lobular carcinoma

length, depth, and gain to obtain the best view. For each BUS
image, the tumor was manually outlined by a radiologist with
more than 13 years of experience. The tumor outlines were
also verified by another independent experienced radiologist.
All images were resampled to the same resolution of 0.1 mm
x 0.lmm per pixel. The study protocol was approved by
the ethics committee at the Jordan University Hospital.
Moreover, informed consent to the protocol was obtained
from each patient.

2.2. Quantitative Features. Both texture and morphological
features are used to classify the benign and malignant breast
tumors. The following two sections describe both feature
groups.

2.2.1. Texture Features. The texture features employed in this
study were computed using the GLCM matrix [27], which
measures the correlations between adjacent pixels within a
ROL The computation of the GLCM matrix was performed
using four distances (d = 1, 2, 3, and 4 pixels) and four
different orientations (6 = 0°, 45°, 90°, and 135°). Therefore,
sixteen GLCM matrices were computed for each ROI. Each
GLCM matrix was analyzed, as described in [12], to extract
twenty texture features (TF1-TF20) that are commonly used
for ultrasound texture analysis [12, 32]. These texture features
are provided in Table 2. Thus, a total of 320 texture features
were extracted from each ROL

2.2.2. Morphological Features. In this study, eighteen mor-
phological features are extracted from each tumor. Among
these features, ten features can be extracted directly from the
tumor (MF1-MF10). Six morphological features are extracted
from the best-fit ellipse that approximates the size and posi-
tion of the tumor (MF11-MF16). The last two morphological
features are the entropy (MF17) and variance (MF18) of the
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TaBLE 2: The morphological and texture features employed for tumor classification.
Category Feature Code Description
Autocorrelation [30] TF1
Contrast [12] TE2
Correlation [30] TF3
Cluster prominence [30] TF4
Cluster shade [30] TF5
Dissimilarity [30] TF6
Energy [30] TF7
Entropy [30] TF8 . ; (TFLTF20)
. wenty texture features - are
Texture Maxﬁ?ﬂig:;:?;i[jg (30] iilgo ex.traczfed frqm GLCM matrices con'lputed
using four distances (d = 1, 2, 3,4 pixels) and
Sum of squares [27] TF11 four orientations (8 = 0°, 45°, 90°, 135°)
Sum average [27] TF12
Sum entropy [27] TF13
Sum variance [27] TF14
Difference variance [27] TF15
Difference entropy [27] TF16
Information measure of correlation I [27] TF17
Information measure of correlation II [27] TF18
Inverse difference normalized [31] TF19
Inverse difference moment normalized [31] TF20
Tumor area [20] MF1
Perimeter [20] MF2
Form factor [13, 17] MF3
Roundness (13, 17] MF4
Morphological Aspect ratio [13, 17] MF5 Ten morphf)logical features (MF1-MF10) are
Convexity [13,17] MF6 extracted directly from the tumor
Solidity [13,17] ME7
Extent [13,17] MF8
Undulation characteristics [21] MF9
Compactness [20, 29] MFI10
Length of the ellipse major axis [20] MF11
Length of the ellipse minor axis [20] MEL2 Six morphological features (MF11-MF16) are
Morphological Ratio between the ellipse major and minor axes [20] MF13 extracted from the best-fit ellipse that
Ratio of the ellipse perimeter and the tumor perimeter [20] MF14 approximates the size and position of the tumor
Overlap between the ellipse and the tumor [20] MEFI15
Angle of the ellipse major axis [20] MF16
T— SR enopy 1, 21 NED T bl s (7 M o

normalized radial length (NRL) of the tumor [18, 20]. The
NRL is defined as the distance between the tumor center
and the pixels located on the tumor boundary normalized to
the maximum radial length of the tumor [18]. The eighteen
morphological features are summarized in Table 2.

2.3. Conventional Tumor Classification. The 110 BUS images
are analyzed using conventional tumor classification analysis,

as illustrated in Figure 2. In particular, the GLCM texture
features, described in Section 2.2.1, are extracted from a single
ROI. As mentioned in the Introduction, this ROI corresponds
to the minimum bounding rectangle that encloses the tumor.
The morphological features, summarized in Section 2.2.2, are
extracted from the outlined tumor.

Feature selection, which eliminates the irrelevant and
redundant features, is applied to determine the best subsets
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FIGURE 2: Overview of conventional tumor classification in which
texture features are extracted from a single ROI that encloses the
tumor and morphological features are computed based on the tumor
outline. Both groups of features are processed using feature selection
and classification to differentiate benign and malignant tumors.

of texture, morphological, and combined texture and mor-
phological features that reduce the misclassification error
between malignant and benign tumors. In fact, exhaustive
search for the optimal feature combination requires extensive
computational resources and long processing times, particu-
larly when the number of features is large. For example, the
total number of all potential combinations of n features into m
subsets is equal to (1/m!) Y (=1)"" (") i" [33]. Therefore,
a two-phase heuristic approach, which is based on the feature
selection procedures described in [12, 34], is employed to
carry out feature selection. In the first phase, the features
are ranked according to the minimal-redundancy-maximal-
relevance (mRMR) criterion [34], which is based on mutual
information. The top [-ranked features are incrementally
grouped and their classification performance is evaluated, for
alll = {1,2,..., L}, where L is the total number of features.
The smallest feature group that can achieve the minimum
classification error is taken as the candidate feature subset. In
the second phase, the backward selection algorithm is applied
to the candidate feature subset. In this algorithm, features are
sequentially eliminated until the removal of further features
leads to degrading the classification accuracy. This two-phase
algorithm enables the selection of a compact feature subset
that can achieve effective tumor classification.

The selected features are classified using a binary SVM
classifier [35] that is implemented using the LIBSVM library
[36]. In binary SVM, the input features are mapped into a
high dimensional feature space by applying a kernel func-
tion. This mapping enables the computation of a nonlinear
decision function that can separate the feature space into
two regions, one for each class. Specifically, given a training
set T = {(xp 1) X Vi) -+ -5 (X, )}, where x; €
R represents the kth feature vector and y, € {-1,+1}
is the corresponding tumor class. The goal of SVM is to
determine a decision boundary in the form of hyperplane
that can separate the feature space into two regions through

maximizing the margin between the samples of different
classes. The resultant decision function is defined as follows:

f(x)=sgn <Zyk(xkfp (%0, %) + b) ; (1)
k=1

where x € R" is a new feature vector to be classified into
benign or malignant, ¢(x;, x) is a kernel function that maps
the input vectors into high dimensional space, a is the kth
Lagrange multiplier, and b is the bias term of the decision
hyperplane. Several kernel functions can be used with SVM.
However, the Gaussian radial basis function (RBF) is by far
the most commonly used kernel function for classification
tasks [37]. In this work, the RBF kernel is employed. The RBF
kernel function can be defined as follows:

2
¢ (x,x) = exp (——”Xk —x] ) , (2)

202

where o > 0 is the RBF kernel parameter.

The performance of the SVM classifier with RBF kernel
depends on two parameters: o, the RBF kernel parameter,
and C > 0, the regularization parameter. The tuning of the
two parameters is carried out using a grid-based search of
the two-dimensional parameter space 1 < o < 100 and
1 < C < 100. The search is performed with a step length
of 1. The best SVM model is selected such that its parameters
maximize the average tumor classification accuracy.

The performance evaluation of the conventional tumor
classification is performed using the single ROI GLCM
texture features, the morphological features, and the com-
bined single ROI texture features and morphological features.
Similar to the work of Wu et al. [13], the evaluation is
carried out using a fivefold cross-validation procedure. In this
procedure, 80% of the tumors are selected for training and the
remaining 20% is used for testing. This process is repeated five
times so that each of the 110 BUS images is included once in
the testing.

2.4. The Proposed Tumor Classification Approach. The archi-
tecture of the proposed tumor classification approach is
illustrated in Figure 3. In this architecture, the multiple-ROI
texture analysis is carried out by dividing the tumor into
small, nonoverlapping ROIs and extracting local texture fea-
tures from each individual ROI. Moreover, the tumor is ana-
lyzed to extract morphological features. To combine the local
texture features of the individual ROIs and the global mor-
phological features, two independent posterior tumor class
likelihoods are obtained separately from the multiple-ROI
texture analysis and the morphological analysis. Moreover,
decision fusion is applied to fuse both tumor class likelihoods
and determine the class of the tumor.

To perform the multiple-ROI texture analysis, the tumor
is divided into a set of uniform, nonoverlapping ROIs,
as shown in Figures 1(e) and 1(f). The size of the ROIs
is estimated by considering three factors: preserving the
capability of differentiating various texture patterns, reducing
the possibility of including different local textures within the
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Morphological feature extraction

Morphological feature selection

Texture feature extraction using
multiple ROIs

1

Texture feature selection

)

Morphological classification and
posterior tumor class likelihood
estimation

Texture classification and
posterior tumor class likelihood
estimation of the individual ROIs

1

Combine the posterior tumor
class likelihoods of the
individual ROIs

|

Decision fusion

FIGURE 3: The architecture of the proposed tumor classification approach. Texture analysis is performed by dividing the tumor into a group of
nonoverlapping ROIs and extracting texture features from each ROIL A selected set of texture features are used to classify each individual ROI
and compute its posterior tumor class likelihood. The posterior tumor class likelihoods of the individual ROIs are combined. Morphological
analysis is performed by extracting morphological features from the outlined tumor and employing a selected set of the features to predict
the posterior tumor class likelihood. Decision fusion is then used to combine the posterior tumor class likelihoods obtained using the texture

and morphological analyses and determine the tumor class.

same ROI, and ensuring that the entire tumor is adequately
covered by the ROIs. The study by Valckx and Thijssen [38]
suggested that the use of very small ROIs might degrade the
capability of differentiating various texture patterns. On the
other hand, the use of large ROIs increases the possibility
of including different local texture patterns within a single
ROI. Moreover, the use of large ROIs might lead to big
gaps: that is, areas that are not covered by the ROIs, at the
tumor boundary. For example, consider Figures 4(a), 4(c),
and 4(e) that show the benign tumor in Figure 1(a) divided
into uniform ROIs of size 0.5 x 0.5mm?, 1 x 1 mm?, and 2
x 2 mm?, respectively. Moreover, consider Figures 4(b), 4(d),
and 4(f) that show the malignant tumor in Figure 1(b) divided
into ROTs of sizes 0.5 x 0.5 mm?, 1 x I mm?, and 2 x 2 mm?,
respectively. The use of the 0.5 x 0.5 mm? ROIs minimizes the
possibility of including different local textures within a single
ROI and reduces the gaps at the tumor boundary. However,
the small size of the ROIs, which corresponds to 5 x 5 pixels,
might limit the ability of the texture analysis to differentiate
various texture patters. On the other hand, the use of the 2
x 2mm?* ROTs, which correspond to 20 x 20 pixels, enables
better texture classification but increases the possibilities of
including different local textures within the same ROI and

producing large gaps at the tumor boundary. The 1 x 1 mm?
ROIs, which correspond to 10 x 10 pixels, provide a reasonable
balance between the need to use ROIs of reasonable size
to enable effective texture analysis and the requirements of
reducing the possibility of crossing different local textures
within a single ROI and achieving adequate coverage of the
entire tumor. Hence, the size of the ROIs employed in this
study is set to 1 x I mm?.

Each ROl is processed individually to extract the GLCM
texture features described in Section 2.2.1. The two-phase fea-
ture selection algorithm described in Section 2.3 is employed
to determine the subset of texture features that enables the
best tumor classification accuracy based on the multiple-ROI
texture analysis. A binary SVM classifier with RBF kernel is
used to classify each ROI as benign or malignant using the
selected subset of texture features. The tuning of the SVM
parameters is achieved using the grid-based search described
in Section 2.3. The posterior tumor class likelihood of each
ROl is estimated from the SVM output using Platt’s approach
[39]. Then, a majority voting mechanism is used to determine
the class of the tumor based on the classification indictors of
the individual ROIs. In particular, if more than 50% of the
ROIs in the tumor are classified as malignant, then the tumor
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FIGURE 4: The benign and malignant tumors shown in Figures 1(a) and 1(b), respectively, are divided into a set of nonoverlapping ROIs with

a size of (a)-(b) 0.5 x 0.5 mm?, (c)-(d) 1 x 1 mm?, and (e)-(f) 2 x 2 mm?.

is considered malignant. Otherwise, the tumor is considered
benign. The computation of the posterior likelihood of the
tumor is performed by averaging the posterior tumor class
likelihoods of the ROIs that agree with the class of tumor
estimated using the multiple-ROI texture analysis.

To perform the morphological analysis, the extraction
and selection of the morphological features as well as the
tuning of the SVM classifier match those of the conventional
morphological-based classification that was described in
Section 2.3. Moreover, the tuned SVM is used to classify
the tumor based on the selected morphological features and
Platt’s approach is applied to compute the posterior tumor
class likelihood of the entire tumor.

For a given BUS image, the posterior tumor class like-
lihood obtained using the multiple-ROI texture analysis is
mutually independent from the posterior tumor class likeli-
hood estimated using the morphological analysis. Therefore,
the fusion of the tumor class decisions obtained using these
two independent analyses can be performed using a Gaussian
Naive-Bayes approach [40].

To apply the Gaussian Naive-Bayes approach, consider
a vector of continuous decisions D = [d,,...,d;]" obtained
from L different classifiers for a specific BUS image. The
probability that the BUS image belongs to class y given
decisions of the L different classifiers can be written as

_ P(y)P(dy,....d; | y)

N 3
P, d,) )

P(yldy,....dy)

where for binary classification, which is considered in this
study, y € {-1, 1} and L = 2. Using the mutual independence

assumption between the two classifiers, (3) can be rewritten
as

P ()1, P (4,
P(yld,....d;) = (?(g;_-l-. (dL)l y) @

The term P(d,, ..., d}) is a normalization factor. Therefore, a
BUS image can be classified based on the combined decisions
from the L = 2 classifiers using the following decision rule:

y =arg max (P(y) UP (d; | y)), (5)

where P(d; | y) is assumed to be a multivariant normal
distribution with mean vector y; and covariance matrix C; €
R™E. The class prior probability P(y) and the parameters
(4;, C;) are estimated using maximum likelihood [41].

The performance evaluation of the proposed tumor
classification approach is carried out using two different
configurations. In the first configuration, the tumor is clas-
sified using the multiple-ROI texture analysis only. In the
second configuration, tumor classification is carried out by
fusing the posterior tumor class likelihoods of the multiple-
ROI texture analysis and the morphological analysis. In
both configurations, the fivefold cross-validation procedure
described in Section 2.3 is employed. It is worth noting
that the selection of the ROIs during the fivefold SVM
training and testing of the multiple-ROI texture analysis was
tumor-specific. In other words, in each fold of the cross-
validation procedure, the training was performed using ROIs
that belong to 80% of the tumors, while the testing was carried
out with the ROIs of the remaining 20% of the tumors.
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TaBLE 3: Classification results of the 110 BUS images obtained using the proposed approach.

BUS image classification

Multiple-ROI texture analysis

Fusion of the multiple-ROI texture analysis and
the morphological analysis

Benign” Malignant” Benign” Malignant®
Benign 60 TN 1FN 63 TN 1EN
Malignant 4 FP 45 TP 1FP 45 TP
Total 64 46 64 46
*Histological finding.

2.5. Performance Evaluation. Six objective metrics, namely,
the accuracy, specificity, sensitivity, negative predictive value
(NPV), positive predictive value (PPV), and Matthew’s cor-
relation coefficient (MCC) [6], are used to evaluate the
performance of the conventional tumor classification as
well as the proposed tumor classification. These metrics are
defined as follows:

TP + TN
TP + TN + FP + FN’

TN
Speciﬁcity = ﬁ,
+

Accuracy =

TP
TP + FN’

T (6)
TP + FP

1IN

TN +FN’

Sensitivity =
PPV =

NPV

MCC

B TP x TN — FP x FN
/(TP + FP) (TP + FN) (IN + FP) (IN + EN)

where TP is the number of true positive cases, TN is the
number of true negative cases, FP is the number of false
positive cases, and FN is the number of false negative cases.

The relationships between specificity and sensitivity,
achieved using the conventional and proposed classification
approaches, are analyzed by drawing the receiver operator
characteristic (ROC) curves. Moreover, the area under the
ROC curve (AUC), which quantifies the overall perfor-
mance of a CAD system, is computed for each classification
approach.

To confirm the effectiveness of the proposed fusion-
based approach, paired ¢ tests were carried out on average
classification accuracies to compare the fused multiple-ROI
texture and morphological analyses with the other four
classification approaches.

The execution times of the conventional texture, morpho-
logical, and combined texture and morphological analyses
are compared with the proposed multiple-ROI texture anal-
ysis and the fused multiple-ROI texture and morphological
analyses. The compression was performed by implementing
the five approaches using MATLAB (MathWorks Inc., Natick,
Massachusetts, USA) and executing them on a computer

workstation that has a 3.5GHz processor and 16 GB of
memory and runs Ubuntu Linux operating system. For
each one of the five classification approaches, the total time
required to extract the features and classify the BUS image
was recorded for twenty trials.

3. Results and Discussion

The tuned values of the SVM parameters (o,C) that are
used to carry out tumor classification using the conventional
texture features, morphological features, and combined tex-
ture and morphological features are equal to (3,56), (3,50),
and (2,50), respectively. Moreover, the tuned values of (g, C)
that are employed to perform tumor classification using the
proposed multiple-ROI texture analysis are equal to (4,55).
To carry out the fusion-based tumor classification, both the
multiple-ROI texture analysis and the morphological analysis
are performed using their optimized SVM parameters (i.e.,
the parameters (4,55) are used for the multiple-ROI texture
analysis and (3,50) are employed for the morphological
analysis).

The features selected to perform the proposed multiple-
ROI texture analysis are TF1, g5, TF2; g5 TF4, 9¢» TF6, 945
TF8, 90> TF9, 90> TF10560, TF115 45, TF12; 40, TF135 350,
TF14, 45, TF15, oo, TF16, oo, TF17, 9o, and TF18, o, where
the first subscript is the distance, d, and the second is the
orientation angle, 6. The proposed fusion-based tumor clas-
sification was performed using the aforementioned multiple-
ROI texture features as well as the selected subset of mor-
phological features. These morphological features are MFl,
MEF2, MF3, MF4, MF5, MF6, MF7, ME8, MF13, MF14, and
MF18.

The results achieved by the proposed tumor classification
approach using the multiple-ROI texture analysis as well as
the fused multiple-ROI texture and morphological analyses
are shown in Table 3 with respect to the pathological findings.
Both configurations of the proposed approach achieved
effective classification of benign and malignant breast tumors.
However, the fusion of the multiple-ROI texture analysis and
morphological analysis enabled higher classification perfor-
mance than that obtained using the multiple-ROI texture
analysis alone.

The six objective performance metrics obtained for the
proposed classification approach and conventional classifi-
cation approach are presented in Table 4. The conventional
classification approach achieved better performance by com-
bining the texture and morphological features than that
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TABLE 4: Objective performance metrics obtained using the (a)
conventional classification approach using texture features, (b)
conventional classification approach using morphological features,
(c) conventional classification approach using both texture and
morphological features, (d) proposed classification approach using
multiple-ROI texture analysis, and (e) proposed classification
approach using the fused multiple-ROI texture analysis and mor-
phological analysis.

(a) (b) (©) (d) (e)

Accuracy 85.5% 87.3% 90.9% 95.5% 98.2%
Specificity ~ 84.4% 89.1% 90.6% 93.8% 98.4%
Sensitivity ~ 87.0% 84.8% 91.3% 97.8% 97.8%
PPV 80.0% 84.8% 87.5% 91.8% 97.8%
NPV 90.0% 89.1% 93.6% 98.4% 98.4%
MCC 70.7% 73.9% 81.5% 90.9% 96.3%

obtained by only using the texture features or the morpho-
logical features. This finding agrees with the results reported
in previous studies [13, 14]. Moreover, the classification results
demonstrate that the proposed approach using the multiple-
ROI texture analysis outperforms the conventional classifica-
tion using the texture, morphological, and combined texture
and morphological features. In particular, the multiple-ROI
texture analysis achieved classification accuracy of 95.5%,
specificity of 93.8%, sensitivity of 97.8%, PPV of 91.8%, NPV
of 98.4%, and MCC of 90.9%. The optimal classification
performance was achieved by the proposed approach using
the fused multiple-ROI texture analysis and morphological
analysis. Specifically, the fusion of the multiple-ROI texture
and morphological analyses enabled classification accuracy
of 98.2%, specificity of 98.4%, sensitivity of 97.8%, PPV of
97.8%, NPV of 98.4%, and MCC of 96.3%.

The ROC curves of the conventional classification
approach and the proposed classification approach are shown
in Figures 5 and 6, respectively. The AUC values obtained
for the conventional classification using the texture fea-
tures, morphological features, and combined texture and
morphological features are equal to 0.902, 0.912, and 0.948,
respectively. The proposed classification approach achieved
AUC values of 0.963 using the multiple-ROI texture analysis
and 0.975 using the fused multiple-ROI texture and morpho-
logical analyses. These results confirm the superior perfor-
mance of the proposed classification approach compared to
conventional BUS image classification.

The p values obtained using the paired t tests to compare
the proposed fused multiple-ROI texture and morphological
analyses with the other four classification approaches at confi-
dence level of 0.05 are shown in Table 5. The results reported
in Table 5 demonstrate that the fusion-based approach out-
performs significantly the conventional classification using
the texture features, morphological features, and combined
texture and morphological features as well as the multiple-
ROI texture analysis.

According to these results, our proposed tumor classifi-
cation approach achieved high sensitivity of 97.8% using both
the multiple-ROI texture analysis and the fused multiple-ROI

Sensitivity

0 01 02 03 04 05 06 07 08 09 1
1 — specificity

—+— Combined
- - Single-ROI texture

—— Morphological

FIGURE 5: The ROC curves of the conventional classification
approach using texture features, morphological features, and the
combined texture and morphological features.

1~
0.9 1
0.8 1
0.7 5
0.6 |
0.5F
04 H
0.3 1
0.2 H
0.1¥

0
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Sensitivity
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1 — specificity

—— Fusion
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FIGURE 6: The ROC curves of the proposed classification approach
using the multiple-ROI texture analysis, the morphological analysis,
and the fused multiple-ROI texture analysis and morphological
analysis.

TaBLE 5: Comparisons of the p values computed using paired t-
tests on average accuracies between the fused multiple-ROI texture
and morphological analyses and the (a) conventional classification
approach using texture features, (b) conventional classification
approach using morphological features, (c) conventional classifica-
tion approach using both texture and morphological features, and
(d) multiple-ROI texture analysis.

(@) (b) (©) (d)
0.007 0.011 0.041 0.046

p value

texture and morphological analyses. Such finding suggests
that the proposed approach enables high probability of
diagnosing malignant tumors. Moreover, the near-perfect
values of PPV and NPV obtained by fusing the multiple-
ROI texture analysis and morphological analysis indicate
that the number of unnecessary biopsies carried out for
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benign tumors can be minimized. These results also suggest
that the proposed approach has the potential to provide the
radiologists with a second opinion that effectively reduces the
rate of misdiagnosis.

The mean + standard deviation execution times of the
multiple-ROI texture analysis and the fused multiple-ROI
texture and morphological analyses are 72.20 + 2.14s and
73.66 s £ 2.19 s, respectively. In comparison, the mean + stan-
dard deviation execution times of the conventional texture,
morphological, and combined texture and morphological
analyses are 0.16 + 0.03s, 1.47 + 0.18s, and 1.63 + 0.19s,
respectively. Although the multiple-ROI texture analysis and
the fused multiple-ROI texture and morphological analyses
are slower than the conventional classification analyses,
both proposed classification approaches require around one
minute to classify the BUS image. Such execution times
do not limit the application of the proposed classification
approaches in CAD systems that aim to provide an accurate
second opinion to the radiologist.

The results reported in this study indicate that the
proposed multiple-ROI texture analysis outperforms the
conventional texture analysis in which texture features are
extracted from a single ROI that includes the tumor. As men-
tioned in the Introduction, many breast tumors might have
complicated texture patterns that vary from one region to
another inside the tumor. Therefore, the multiple-ROI texture
analysis enables effective quantification of the different local
texture patterns inside the tumor. Another factor that might
contribute to the improved performance of the multiple-
ROI texture analysis is its ability to analyze the local texture
patterns of the tumor without incorporating texture patterns
of the surrounding healthy tissue.

The use of small ROIs for tissue characterization has been
employed by other ultrasound-based methods. For example,
in quantitative ultrasound imaging of cancer [42, 43], the
raw ultrasound radio-frequency (RF) signals are divided
into small ROIs, and each ROI is analyzed to extract spec-
tral features for tissue characterization. Moreover, a recent
study by Uniyal et al. [44] has compared the classification
performance of a combination of ultrasound-based texture,
spectral, and RF time series features that are extracted from
the entire breast tumor with the performance obtained by
dividing the tumor into 1 x 1mm?® ROIs and extracting
similar ultrasound-based features from each individual ROIL
This study demonstrates that the classification performance
obtained by classifying the individual 1 x 1 mm? ROIs out-
performs the classification results achieved by classifying the
entire tumor. This finding agrees with our proposed multiple-
ROI texture analysis approach.

The multiple-ROI texture analysis has been applied in the
current study to improve the classification performance of
GLCM texture features. Our future directions include extend-
ing the multiple-ROI texture analysis approach to incorporate
other statistical texture methods that use a ROI to extract
texture features. The proposed approach can also be extended
by performing multiresolution texture feature extraction, in
which ROIs of different sizes are employed to carry out

Computational and Mathematical Methods in Medicine

the multiple-ROI texture analysis. Moreover, the probabilis-
tic approach, which has been used in this study to fuse
the multiple-ROI texture analysis with the morphological
analysis, can be expanded to support the fusion of multiple
classification results obtained using various texture and
morphological methods with the goal of achieving higher
accuracy, specificity, and sensitivity.

One important factor that affects the tumor classification
performance is the ability to accurately outline the tumor. In
particular, imprecise outlining of the tumor might influence
the morphological features that quantify the shape and
contour of the tumor. Moreover, the texture features, which
are extracted from the outlined tumor region, might also be
affected by tumor segmentation errors. In this study, tumor
outlining was performed by a radiologist with more than
thirteen years of experience. Such manual outlining by an
experienced operator has been employed in several previous
studies, such as [10, 15]. In fact, the manual outlining of the
tumor is a time consuming task and its accuracy is subject to
the experience level of the radiologist. The future direction of
this work is to employ automatic tumor segmentation algo-
rithms, such as [45], that employ advanced image processing
techniques to achieve accurate and objective outlining of the
tumors.

The multiple-ROI texture analysis approach employed in
this study can be extended to reduce the effect of tumor
outlining errors. In particular, for each ROI inside the
computer-drawn outline, a well-trained classifier can be used
to estimate the probability of belonging to the tumor or the
surrounding healthy tissue. Such probability estimation can
be used to weight the tumor class indicators obtained from
the individual ROIs. A customized voting algorithm can be
developed to combine the weighted tumor class indicators

of the individual ROIs and estimate posterior tumor class
likelihood.

4. Conclusion

In this study, an effective approach for BUS image clas-
sification is proposed. Texture analysis is carried out by
dividing the tumor into a set of nonoverlapping ROIs and
processing each ROI individually to estimate its tumor class
indicator. The tumor class indicators of all ROIs inside the
tumor are combined using a majority voting mechanism to
estimate the posterior tumor class likelihood. In addition
to the multiple-ROI texture analysis, morphological analysis
is used to estimate the posterior tumor class likelihood.
A probabilistic approach is employed to fuse the posterior
tumor class likelihoods obtained using the texture and
morphological analyses. The proposed approach has been
employed to classify 110 BUS images. The classification results
indicate that the proposed approach achieved classification
performance that outperforms conventional texture and
morphological analyses. In particular, fusing the multiple-
ROI texture analysis and morphological analysis enabled
classification accuracy of 98.2%, specificity of 98.4%, and
sensitivity of 97.8%. These results suggest that the proposed
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approach has the potential to provide the radiologists with
an accurate second opinion to reduce the rate of expendable
biopsy and minimize BUS image misdiagnosis.
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