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A spiking neural network model 
of 3D perception for event-based 
neuromorphic stereo vision 
systems
Marc Osswald1, Sio-Hoi Ieng2, Ryad Benosman2 & Giacomo Indiveri1

Stereo vision is an important feature that enables machine vision systems to perceive their environment 
in 3D. While machine vision has spawned a variety of software algorithms to solve the stereo-
correspondence problem, their implementation and integration in small, fast, and efficient hardware 
vision systems remains a difficult challenge. Recent advances made in neuromorphic engineering 
offer a possible solution to this problem, with the use of a new class of event-based vision sensors and 
neural processing devices inspired by the organizing principles of the brain. Here we propose a radically 
novel model that solves the stereo-correspondence problem with a spiking neural network that can 
be directly implemented with massively parallel, compact, low-latency and low-power neuromorphic 
engineering devices. We validate the model with experimental results, highlighting features that are 
in agreement with both computational neuroscience stereo vision theories and experimental findings. 
We demonstrate its features with a prototype neuromorphic hardware system and provide testable 
predictions on the role of spike-based representations and temporal dynamics in biological stereo vision 
processing systems.

Depth perception is an extremely important feature for both natural and artificial visual processing systems. It 
is an essential requirement for many practical applications, ranging from fine object manipulation in robotics, 
to driving in autonomous vehicles. One of the most common techniques employed by both living beings and 
machines to achieve depth perception is based on stereo vision. However this process is subject to the well known 
stereo correspondence problem, which deals with the challenge of finding visual correspondences of the same 
features from two different views. Finding these correspondences in natural scenes is a complex and error prone 
process. Erroneous matches of visual features (false targets) lead to the perception of wrong depths. The correct 
depth of a visual scene can be successfully inferred only if the correspondence of true targets is established. While 
animals, including even insects1 solve this problem effortlessly and efficiently, current machine vision systems 
are struggling with the efficient implementation of their underlying complex algorithms. The strong demand of 
today’s machines to perceive their environment in 3D has recently driven the field of machine vision to become a 
very active area of research in stereo vision2,3. The solutions proposed however require significant computational 
resources, which have a strong effect on power consumption, latency, throughput and the system’s physical size, 
making it difficult to integrate them on compact devices.

Here we present a novel approach to the stereo correspondence problem, inspired by biological stereo vision 
systems, which is compatible with ultra low latency and low power neuromorphic hardware technologies4. In 
particular, we exploit advances made in both mixed signal analog/digital VLSI technology and computational 
neuroscience which enabled us to combine a new class of retina-like artificial vision sensors with brain-inspired 
spiking neural processing devices to build sophisticated real-time event-based visual processing systems5–7. 
Rather than capturing static frames and transmitting sequences of frames discretized in time, the neuromorphic 
vision sensors we use transmit continuous streams of spikes, or “address-events”8,9, which are produced by the 
individual pixels when the brightness contrast they sense changes by an amount greater than a set threshold. 
All of the pixels in the sensor are independent and send their address asynchronously, in continuous time, on a 
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digital bus, as soon as they generate a spike. Similarly, the neuromorphic processors we recently developed10,11 
use address-events to receive, process, and transmit spikes. Input address events represent spikes that are deliv-
ered to destination synapse circuits, and output address-events represent spikes produced by the source silicon 
neurons. These neuromorphic processors typically comprise large arrays of silicon neurons that can be arbitrarily 
configured to implement different types of neural networks, for processing real-time event-based data such as 
data produced by silicon retinas10.

The availability of these event-based neuromorphic sensors has led to an increased interest in studying and 
developing a new class of event-based vision algorithms12–17. However, most of these algorithms have been used 
in conjunction with standard computing architectures, rather than neuromorphic processors, and to a large 
extent are still biased by the frame-based approach typically adopted in classical machine vision. In this work we 
follow a drastically different approach that moves away from the classical computer science mindset: we propose 
an event-based model of stereo vision that unifies the domains of perceptual neuroscience and machine vision, 
and that can be implemented end-to-end using spike-based neuromorphic technologies. The model consists 
of a spiking neural network capable of computing stereo correspondence from the visual stream of neuromor-
phic vision sensors. The network has been designed using computational primitives that are available in existing 
neuromorphic VLSI processors. Given the dynamic properties of the neural networks implemented by these 
processors, their co-localization of memory and computation, and their extremely compact sizes4, they represent 
a possible solution to the von Neumann bottleneck problem18 which enables stereo vision systems built in this 
way to be integrated in compact low-power systems. Furthermore, as our model is well connected to established 
models of stereopsis, its implementation based on neurons and synapses that exhibit biologically realistic time 
constants suggests a potentially important role for precise temporal dynamics in biological stereo vision systems.

Results
The main results presented in this Section originate from numerical simulations of the stereo network performed 
on a standard desktop computer. The spike-based visual data used as input to the network was either obtained 
through real recordings made with neuromorphic silicon retinas or was synthesized in artificially, depending on 
the type of experiment performed. This section however also demonstrates the validation of the numerical simu-
lations performed using a full custom neuromorphic VLSI device, for a proof of concept demonstration.

The spiking stereo neural network.  The spiking neural network we propose is inspired by the well estab-
lished cooperative network of Marr and Poggio19, but is characterized by two major differences: first, the input 
to the network does not consist of static images but of dynamic spatio-temporal visual information in the form 
of spike trains which are directly obtained from event-based neuromorphic vision sensors (see the Methods 
section); second, the network is composed of Integrate-and-Fire spiking neurons operating in a massively par-
allel fashion, which are self-timed and express temporal dynamics analogous to those of their real biological 
counterparts. The retinal cells are represented by two populations of ON and OFF neurons which serve as the 
input to the network. These cells project with excitatory connections to a second population of neurons that act 
as “coincidence detectors”. A third population of neurons, termed the “disparity detectors”, pools responses from 
the coincidence detector neurons using both excitatory and inhibitory connections. To improve the detection of 
correct correspondences while suppressing disparity responses to false targets, the disparity neurons implement 
a winner-takes-all mechanism via recurrent inhibitory connections. A detailed view of a horizontal layer of the 
network is illustrated in Fig. 1. Each spike from a retinal cell represents a change in illumination at a specific 

Figure 1.  The spiking stereo network. Detailed view of a horizontal layer of the network. An object is sensed 
by two eyes and accordingly projected onto their retinal cells. The spiking output of these cells is spatio-
temporally correlated (coincidence detectors) and integrated (disparity detectors). The final output encodes a 
representation of the original scene in disparity space (x, y, d). For the sake of visibility, only a horizontal line of 
retinal cells, at fixed vertical cyclopean position y, is considered. The corresponding coincidence and disparity 
detector units, hence, lie within a horizontal plane (spanned by x and d). Only a few units are shown here 
whereas in the complete network, the units are uniformly distributed over the entire plane. The shaded planes 
indicate how the network expands vertically over y. More details on how the neurons are connected among each 
other is provided in the Methods section.
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spatial position at a particular time. For each pair of corresponding horizontal lines of retinal cells, a horizontal 
layer of coincidence neurons signals temporally coinciding spikes. These cells are arranged such that each one has 
a unique spatial representation in disparity space (x, y, d) (only x and d are shown) such that each spike provides 
evidence for a potential target at the corresponding real-world disparity position. Disparity space represents a 
relative map of the three-dimensional world with the disparity coordinate d =​ xr −​ xL and the cyclopean horizonal 
and vertical coordinates x =​ xR +​ xL and y =​ yL =​ yR respectively (a detailed explanation of the coordinate system 
and the map can be found in the Methods section). The population of coincidence detectors therefore encodes all 
potential targets (including true and false disparities). The disparity detectors implement a binocular correlation 
mechanism, which is realized by integrating the responses from coincidence detectors within the plane of con-
stant disparity Ed, which is spanned by (x, y) and the plane of constant cyclopean position Ex, which is spanned by 
(d, y). Activity in Ed constitutes supporting evidence for true correspondences (excitation of disparity detector), 
whereas activity in Ex denotes countervailing evidence (inhibition of disparity detector). Finally, a uniqueness 
constraint is enforced by mutual inhibition of disparity detectors that represent spatial locations in the same line 
of sight.

How the stereo network solves the correspondence problem.  The disparity detector neurons com-
pute an approximation of the covariance of the interocular visual input (see Supplementary Material). Although 
these detectors show selectivity to true targets, they also respond to false targets when similar features are present. 
The inhibitory interactions among disparity neurons reduce this effect, but do not completely resolve ambiguities 
because the relatively large receptive fields of the disparity detectors smooth-out the disparity response. To resolve 
these ambiguities we consider the spikes generated by both the coincidence and the disparity detectors: the net-
work produces a “disparity event” only when the event produced by a disparity neuron is coincident (i.e. happens 
within a few milliseconds) with a spike produced by a coincidence detection neuron at an equal (or nearby)  
representation in disparity space (see Supplementary Material for details).

To assess the overall performance of the stereo network, we recorded a dynamic scene with two neuromorphic 
vision sensors and sent the address-events generated by the sensors as inputs to the subsequent populations of 
neurons. Figure 2 shows how the network successfully solves the stereo correspondence problem, even in the 
case of a complex scene such as two people walking past each other at different depths. The output spikes of the 
stereo network were binned into 30 ms frames with x and y representing the pixel coordinates, and d, the pixel 
value. The data was then quantitatively evaluated with ground-truth recordings (see Supplementary Materials). 
The quantitative results are also shown in Fig. 2. The demonstration that the stereo network performs very well 
is evidenced by the small local average disparity error εd <​ 1 pixels throughout the entire duration of the scene. 
The disparity error remains largely constant, even at the point when the two people cross each other. At this 
point, the scene is dominated by large disparity gradients, which is a typical scenario where classical frame-based 
cooperative networks fail. Conversely, the network presented here can resolve these disambiguities by integrating 
not only spatial but also temporal information. This highlights how the network naturally exploits also motion 
cues (persons moving into different directions) to resolve the stereo correspondence problem. The consistently 

Figure 2.  Successful resolution of the stereo correspondence problem by the spiking neural network. The 
recorded scene consists of two people that move in opposite directions at different depths. Here, the two depth 
maps were generated by binning the output spikes of the network into 30 ms bins at times t1 and t2 respectively. 
The corresponding 3D reconstructions (red and green dots) are overlayed with the ground-truth data obtained 
from a Kinect sensor (gray). The color encodes the polarity, which is obtained from the event-based sensor.
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low disparity error also suggests that the network is very robust. Over the entire scene, a total amount of 765, 
575 3D events were recorded. Using the performance metric proposed for this evaluation method, our network 
reached a PCM (percentage of correct matches) of 96%. A thorough analysis of different scenes is provided in the 
Supplementary Material.

Figure 3 shows a comparison of the activity of coincidence and disparity neurons for a scene in which two 
subjects, A and B, move at constant depths. The data shows how the responses from coincidence detectors are 
spread over the entire range of disparities, as would be expected when spikes are falsely matched. Conversely, the 
disparity detectors data shows only activity in two narrow regions, corresponding to the depths of the two sub-
jects A and B, whereas all other disparities (which correspond to false targets) are suppressed.

Response to dynamic random dot stereograms.  Dynamic random dot stereograms (dRDS) are com-
monly used in psycho-physical experiments to study the response of disparity-tuned cells in the visual system 
or to measure stereo acuity. We used dRDS to test the response properties of our stereo network: we generated 
a dRDS from a sequence of RDS, updated at 100 Hz. The initial RDS image was computed based on a dispar-
ity image of a wireframe cube (Fig. 4B) and a random noise pattern, both of which had equal dimensions of 
250 ×​ 250 pixels. Regions containing the same disparities in the disparity image were shifted in the random noise 
pattern accordingly. In the case of images containing varying disparities, this procedure inevitably leads to areas 
with undefined disparities, which are observable in the form of shadows in Fig. 4C. Subsequent RDS images were 
generated from the previous one in such a way that there was a 20% chance that each pixel would change polarity. 
Examples of three subsequent RDS are shown in Fig. 4A. The complexity of the matching problem depends on the 
frequency at which the RDS images are updated and the probability of a pixel changing polarity. If only a few pix-
els change their polarity in each consecutive image of a sequence, this could result in a trivial matching problem. 
This is true even if the update rate is high, assuming that coincidence detectors are tuned for very short temporal 
delays (such that they only respond to coincidence within a single RDS and not in-between consecutive RDS 
images). Here, the matching problem was guaranteed to be complex given the parameters and could not be solved 
trivially from the temporal information provided by the stimulus: as correspondences are only possible on lines 
of equal y coordinates (epipolar lines), the average number of potential matches between two subsequent RDS 
images is 0.2 · 250/2 =​ 25 (the division by two relates to the fact that there are individual coincidence detectors 
for each polarity). The final response of the network is illustrated in the form of an accumulated disparity map in 
Fig. 4C. Based on a qualitative comparison between the disparity map and the ground-truth data, the proposed 
network solves the stereo correspondence problem, even for a relatively complex dRDS containing highly varying 
disparity gradients.

Neuromorphic hardware implementation.  Neuromorphic hardware systems typically comprise hybrid 
analog/digital electronic circuits operated in the sub-threshold domain that implement faithful models of neu-
rons and synapses4. Due to their low power sub-threshold operating region, their sparse activity and signal rep-
resentation, and asynchronous “data-driven” nature of signal transmission they are extremely low power neural 
processing systems (e.g., using a few pico-Joules per spike4,10,11,20).

To validate the model proposed with a neuromorphic hardware platform we used the Reconfigurable On-Line 
Learning Spiking (ROLLS) neuromorphic processor device described in ref. 10. This device comprises an array 
of 256 analog Integrate-and-Fire neuron circuits, and 512 ×​ 256 dynamic synapses. When an address-event is 
delivered to one of these synapses, the incoming voltage pulse is converted into an exponentially decaying cur-
rent which is conveyed to the destination neuron and eventually summed to other currents produced by other 
synapses. The height of this current waveform can be set by changing the synaptic weight parameter, and the 
time-constant of the decaying exponential can be set by a corresponding time-constant parameter. Programmable 
digital circuits embedded in the arrays control the network connectivity properties, for example to implement 
recurrent or multi-layer networks. In particular, we used the ROLLS neuromorphic processor to implement the 
critical part of the model that carries out coincidence evidence integration and disparity detection by using silicon 
neurons which receive input address events from the coincidence detector units. To implement in neuromorphic 

Figure 3.  Inhibition of ambiguity in the stereo network. Spiking activity of coincidence (blue) and disparity 
(brown) detectors at varying disparities accumulated over the full duration of the walking scene. The inset 
shows a disparity map generated from a short section of the scene. The two people are labeled (A) and (B) 
accordingly.
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hardware the part of the model that is composed of coincidence detection units it would be necessary to use 
devices with larger numbers of neurons, which are now becoming accessible11,21,22. As we did not have any such 
devices at our disposition at the time of our experiments, we implemented the coincidence detector neurons 
using a Field Programmable Gate Array (FPGA) device.

The experimental setup is illustrated in Fig. 5A. An RDS stimulus was printed on a chart and moved across 
multiple depths in a fronto-parallel plane to the rectified stereo setup comprising the two Dynamic Vision Sensors 
(DVS)23. The pixels of the two vision sensors were grouped to form 30 binocular 21 ×​ 21 receptive fields and 
spread along their central epipolar lines. These inputs were projected in parallel to the FPGA coincidence detector 
units. The output of these units were then sent to the silicon neurons on the neuromorphic processor in a way to 
encode 30 disparities equally distributed along a line of constant cyclopean position. Mutual inhibition among 
disparity neurons was implemented using on-chip recurrent inhibitory connections.

The response of this stereo vision systems is shown in the form of a spike raster plot in Fig. 5B. The stimulus 
was presented at equally spaced disparities ranging from −​10 to +​10. The spikes from the neuron encoding the 
true disparity are colored red, while all the others are colored blue. The network successfully detects the correct 
disparity of the stimulus in the entire range, as indicated by the red spike trains. While a certain disparity detector 
is active, the others are strongly suppressed by the recurrent inhibitory connections.

For comparison, a classical stereo vision system involving local stereo matching based on the sum-of-absolute- 
differences (SAD) could be implemented on a conventional micro-controller. In this case, the computational cost 
would be heavily dominated by the calculation of the SAD. An operational primitive of the SAD algorithm is the 

Figure 4.  The stereo network’s response to a dynamic random dot stereogram (dRDS). (A) Schematic of 
the dRDS stimulus for the left and right eye. (B) Ground-truth disparity image. Disparity is encoded by color 
ranging from near (red) to far (blue). (C) Disparity map generated from accumulated responses of the network 
while the dRDS stimulus was presented for 1 second.

Figure 5.  Emulation of the stereo network on a neuromorphic processor. (A) A RDS stimulus (printed on 
a chart) was moved at specified depths in front of a pair of dynamic vision sensors. The depth of the stimulus 
was detected by 30 disparity neurons covering an equally spaced disparity range from −​10 to +​10. Disparity 
detectors were emulated by a neuromorphic processor. (B) Spike event output of the disparity neurons during 
stimulus presentation. The spikes from the neuron encoding the true disparity are colored red, while all the 
others are colored blue. The histogram shown on the right represents the distribution of disparity spikes for the 
time where the stimulus was at a fixed disparity d =​ 6 (indicated by the grey shaded region).



www.nature.com/scientificreports/

6Scientific Reports | 7:40703 | DOI: 10.1038/srep40703

calculation of the absolute difference of two intensities followed by a sum operation. The number of such opera-
tions grows with the input data rate (i.e., the camera frame-rates), irrespective of the scene contents. In the stereo 
network we propose, the equivalent operational primitive is a coincidence detection followed by a spike integra-
tion operation (only when there are coincidences). The number of these operations depends on the response of 
the DVS to the contents of the scene. These considerations allowed us to estimate the difference between numbers 
of operations made with the two different implementations (see the Methods section for details), and to derive an 
estimate of the power budget based on energy measurements of these primitive operations. In Table 1, we present 
these comparison estimates, showing how a micro-controller implementation of a SAD stereo vision algorithm 
run at a temporal resolution that is comparable to the one used by our method (i.e., at 151 Hz) would consume 
approximately an order of magnitude more power than an spiking stereo neural network (SSNN) implementation 
done using the ROLLS neuromorphic technology. As the ROLLS chip was fabricated using an old technology, the 
SSNN energy cost per operation is significantly higher than that used by a state-of-the-art micro-controller. In 
this case, the SSNN advantage in total power consumption is solely due to the data-driven event-based processing 
nature of the visual signal. Analogous neuromorphic processors fabricated in a state-of-the-art 28 nm VLSI pro-
cess technology would have even smaller energy cost per primitive operation11.

This comparison was made using the moving random dot charts, similar to those shown in Fig. 4A, with very 
high spatial contrast. In real-world applications the data rate produced by the DVS would be significantly lower, 
leading to even lower power consumption figures.

Discussion
In this paper we proposed a spiking neural network model that solves the stereo correspondence problem effi-
ciently by exploiting an event-based representation, and that is amenable to neuromorphic hardware implemen-
tations. The network expects in input visual data in the form of asynchronous events produced by neuromorphic 
vision sensors and processes these address-events in a data-driven manner using computational operators 
that can be implemented with synapse and neuron models. Although heavily inspired by neuroscience of the 
early visual pathway and work on stereopsis, this network it nonetheless an abstract simplification of biologi-
cal stereo-vision systems. One fundamental difference is that the network proposed operates using exclusively 
precisely-timed temporal contrast events, as measured directly from the neuromorphic vision sensors, which 
model only the transient responses of retinal cells (i.e., of the Y-ganglion cells), without including the sustained 
ones. As these transient responses produce single events, their precise timing plays a crucial role in the stereo 
correspondence process. In contrast, the vast majority of computational neuroscience models of stereopsis are 
based on mean firing rates, and do not rely on the precise timing of spikes. In these models the behavior of V1 
neurons are described by tuning functions that predict the neuron’s firing rate in response to a given stimulus in 
its receptive field. Such tuning functions were found to be well predicted by Gabor filters, which can explain char-
acteristics of V1 cells such as orientation and spatial frequency tuning. Accordingly, stereopsis models are based 
on binocular energy neurons that combine monocular Gabor filters and predict the responses of disparity-tuned 
binocular cells in V124. The mechanism of phase and position disparity are direct consequences of the way in 
which receptive fields and tuning functions are described. While these models explain many aspects of the phys-
iology of stereopsis, they do not make explicit use of important features of neural systems such as their temporal 
dynamics or the precise spike-timing of the neurons. By contrast, the model we presented does not incorporate 
orientation, frequency tuning, or phase and position disparity mechanisms. These characteristics are based on 
the perception of spatial contrast, whereas the proposed model solely responds to temporal contrast. Different 
interpretations of the model we presented are possible, based on architectural and functional considerations: For 
example, this spike-timing model could be functionally combined with the rate-based energy model: higher order 
disparity detectors could integrate transient responses of energy neurons rather than events from neuromorphic 
vision sensors. In this case, an address-event would not represent a spike of a retinal ganglion cell, but the output 
of a cortical simple cell, and the model could combine the best features of both approaches. Alternatively, our 
network could indeed represent an independent module operating exclusively on the fast transient pathway, to 
implement a fast and coarse stereopsis system which would coexist in parallel with a more precise and substantial 
stereopsis process, as described by the disparity energy models. Such a coarse stereo process could be involved for 
example in vergence eye movement as part of the magnocellular system.

Correlation models of stereo correspondence are prevalent in neuroscience25,26. Disparity detectors at early 
stages are believed to be tuned to small patches of uniform fronto-parallel disparities. When combined, they 
could be used to perceive more complex disparity structures in higher areas27. This proposition conforms with the 
first observation made by Marr and Poggio19. After describing the prevalence of smoothly distributed disparities 
in natural scenes, the authors propose a rule of excitation among cells of equal disparities in their cooperative 
network. In the method described here, this mechanism was adapted and supplemented with an inhibiting mech-
anism, suggesting that the proposed neurons perform an approximation of local covariance of spatiotemporal 

Update rate Operations/s Energy per operation Est. power consumption

SAD 30 Hz 397 K 0.99 nJ 393 μW

SAD 151 Hz 2.00 M 0.99 nJ 1.99 mW

SSNN (180 nm) 151 Hz 147 K 1.243 nJ 182 μW

SSNN (28 nm) 151 Hz 147 K 0.197 nJ 29 μW

Table 1.   Estimated power consumption of classical hardware implementation versus neuromorphic 
hardware implementation.
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visual information (see Supplementary Material for details). Spatiotemporal information strengthens the corre-
lation even in the case of non-fronto-parallel disparities (when the motion is fronto-parallel). In other words, the 
stereo network naturally exploits motion cues to overcome the limits of stereo matching based on spatial corre-
lation alone. This is achieved simply by using a different concept to encode visual information. In neuroscience, 
it is well known that motion cues can play a crucial role in solving the correspondence problem. However, it is 
not clear how and where they are integrated in the brain. Experimental studies in macaque monkeys and humans 
suggest that the primate brain needs to integrate several cues ranging from low to high cortical levels in order to 
solve the correspondence problem28,29. Among these cues, motion (that is integrated in mid-level visual areas) is 
one of the most important.

Recent studies support the idea that V1 neurons play a more important role in discriminating correct and false 
disparities and that the widely accepted disparity energy model needs to be revised. A computational study pro-
posed that by adding suppressive elements to the energy model, responses to false matches may be attenuated30. 
This has been confirmed with experimental results from the V1 neurons of monkeys31. Interestingly, the work in 
hand draws the same conclusion from an entirely computational approach, without any prior knowledge of the 
physiological findings. The additional use of inhibiting elements in the proposed disparity neuron model means 
that in effect, the neurons compute a form of correlation that behaves similarly to the covariance of interocular 
spatiotemporal information. Thus, the neurons clearly show attenuated responses to false targets. In the model 
presented here, the elements of inhibition are coincidence neurons from the plane of constant cyclopean position 
Ex. These coincidence detectors receive input from retinal cells that are positioned relatively similarly in the two 
retinas to those that provide the input to two biological cells: phase-detectors in anti-phase and position-detectors 
with different preferred disparity. In stereopsis research, exactly these type of detectors have been proposed to 
represent the suppressive mechanism in V1 neurons that helps to solve the correspondence problem30–32.

A few psychophysical illusions exist that are related to the process of stereopsis such as the Pulfrich effect and 
the double-nail illusion. The double-nail illusion occurs when two identical objects (for example two nails) are 
viewed straight ahead at reading distance at the same position, but are separated in depth by a few centimeters. 
The two objects are perceived as if aligned side-by-side (false targets) instead of one being behind the other (true 
targets). This illusion can be explained by any model based on correlation measures, such as the one we propose 
or the original Marr and Poggio model. However, unlike other models, our model is also compatible with human 
perception when the two objects are moving: if the two objects move sideways at constant depth, they are typi-
cally perceived at the correct positions (true targets), even at disparity gradients that exceed the limit of human 
stereopsis. As the model we propose naturally exploits motion cues, it would correctly detect the true targets as 
well. As a logical consequence, if the two objects were separated in terms of horizontal position but aligned at the 
same reading distance and moved alternately back and forth, our model would predict that the false targets, which 
would be moving sideways at different depths, would be perceived. This would be an interesting psychophysical 
illusion that could be easily tested on humans.

One of the most important features of the nervous system is its ability to implement plasticity. This ena-
bles biological neural processing system with adaptive and learning abilities that are used to change and tune 
its parameters. The stereo network that we implemented in this work does not have these abilities. Indeed, the 
network topology, and its weights have been determined with a synthesis procedure and a calibration method 
that allowed us to assume that the coincidence detectors received inputs from pairs of retinal cells which would 
correspond to a true physical location in space (i.e., assuming stereo rectification of the inputs). Indeed, plasticity 
would be extremely useful in such a delicate calibration process, in order to automatically rectify the inputs. In 
previous work33 we have shown how these plasticity mechanisms could exploit the interocular temporal coin-
cidence to learn in an unsupervised way the epipolar geometry of the scene (rectification). Such unsupervised 
learning could be directly incorporated into our model, at the level of the synaptic connections that link the reti-
nal cells and the coincidence detector units.

Although tightly linked to neuroscience, we expect the most significant impact of our model to be in the 
field of machine vision. Today’s machine vision processing systems face severe limitations imposed both by the 
conventional sensor front-ends (which produce very large amounts of data, as sequences of frames, but with 
fixed sampled frame-rates), and the classical von Neumann computing architectures (which are affected by the 
memory bottleneck18,34 and require high power and high bandwidths to process continuous streams of images). 
The emerging field of neuromorphic engineering has produced efficient event-based sensors, that produce 
low-bandwidth data in continuous time, and powerful parallel computing architectures, that have co-localized 
memory and computation and can carry out low-latency event-based processing. This technology promises to 
solve many of the problems associated with conventional technologies in the field of machine vision. However, 
so far the progress has been chiefly technological, whereas related development of event-based models and signal 
processing algorithms has been comparatively lacking (with a few notable exceptions). This work elaborates an 
innovative model that can fully exploit the features of event-based visual sensors. In addtion, the model can be 
directly mapped onto existing neuromorphic processing architectures. The results show that the full potential is 
leveraged when single neurons from the stereo network are individually emulated in parallel. In order to emulate 
the full-scale stereo network, however, efficient neuromorphic hardware device capable of emulating large-scale 
neural networks are required. Although a few promising approaches already exist11,21,22, large-scale, but compact, 
re-configurable, and low-power systems remain a challenge in neuromorphic engineering.

Methods
Neuromorphic silicon retina.  Unlike classical frame-based cameras, biological retinas encode visual infor-
mation more efficiently, in a less redundant manner. The underlying principle is an asynchronous sampling strat-
egy, implying that biological retinas acquire not only spatial contrast at discrete points in time but continuously 
sense spatial and temporal changes. The pixels of so called neuromorphic, event-based vision sensors only send 
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out information when they are exposed to a change in illumination generating a compressed informative output. 
Compared to classical cameras, this readout reduces redundancy allowing a fast acquisition with low latency 
and high temporal resolution. The experiments shown in this work were conducted with the DAVIS35 which is 
an extension of the DVS featuring a higher spatial resolution of 240 ×​ 180 pixels and an additional APS readout 
(not used in this work). The DVS output consists of events each of which reflecting a change in the log intensity at 
the given spatial position. The polarity of those events represents whether the intensity increased (ON event) or 
decreased (OFF event). As shown by Fig. 6B, an event is immediately generated when the change in log intensity 
exceeds a given threshold (typically 15% of contrast) being completely independent of a synchronous readout 
clock as it is used in conventional cameras. The timing of events can therefore be conveyed with a very accurate 
temporal resolution of approximately 10 μs, allowing an “effective frame rate” typically in the range of several kilo-
hertz. A further advantage of this sensor is that pixels are not bound to a global exposure time, allowing them to 
independently adapt to local scene illumination resulting in high dynamic range from 0.1 lux to over 100 klux. In 
order to process data on a computer, a dedicated FPGA acquires the events from the sensor and attaches a digital 
timestamp. The synchronized data is then transmitted over a USB connection to the host computer for process-
ing. Alternatively, events can also be send out in real-time via an asynchronous, digital bus in order to directly 
connect it to a neuromorphic processor for example.

Spiking stereo neural network model.  Each neuron in the network is uniquely assigned a horizontal and 
vertical cyclopean coordinate x and y, as well as a disparity coordinate d. With the definition of  being the 
one-dimensional disparity space, then the three coordinates represent a point in the 3D disparity space 3, which 
corresponds to the neuron’s cognitive representation of a location in 3D space. We can thus define the map  
which transforms retinal image coordinates to disparity space as

N D→

= + −x x y x y d x x y x x
:

( , , ) ( , , ) ( , , ) (1)L R R L R L

3 3

where x y( , )R R  and x y( , )L L  are rectified pixel coordinates of the retinal input neurons. In order to implement a 
neural coincidence detection mechanism, the proposed network uses neurons with leaky-integrate-and-fire (LIF) 
dynamics36. The membrane potential vc(t) of a LIF coincidence neuron is described by the following equation

τ θ

θ









= − + <

= ≥

v t v t I t v t

v t v t

d ( )
dt

( ) ( ), ( )

( ) 0, ( ) (2)

c
c

c c c c

c c c

where the time constant τc determines the neuron’s leak and θc the threshold at which the neuron fires. A coinci-
dence neuron receives input from a pair of epipolar retinal cells, which can be described as a sum of spikes

∑ ∑δ δ= − + − | =I t w t t w t t x x yc( ) ( ) ( ) ( , , )
(3)i

x i
j

x j L Rc L R


where the indices i and j indicate the spike times of the retinal cells x y( , )L  and x y( , )R  respectively. The proposed 
disparity detectors aggregate evidence from the responses of simple coincidence detectors. The disparity detectors 
are also modeled using LIF neuron dynamics, but with a distinct time constant τd and a firing threshold θd:

Figure 6.  The silicon retina. (A) DAVIS sensor. (B) Principle of ON and OFF spikes generation of DVS 
pixels, adapted from ref. 23. Top: the evolution of pixel’s voltage Vp proportional to the log intensity. Bottom: 
the corresponding generation of ON (voltage increases above change threshold) and OFF (voltage decreases) 
events, from which the evolution of Vp can be reconstructed.
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The input of the disparity detector at d =​ (xd, yd, dd) combines the outputs from coincidence detectors within 
bounded planar excitatory and inhibitory regions in disparity space ∈+C 2 and ∈−C 2 respectively and out-
puts from disparity detectors in the mutually inhibitory region ∈−D 2:

∑∑ ∑∑ ∑ ∑δ δ δ= − − − − −
∈ ∈ ∈+ − −



I t w t t w t t w t t( ) ( ) ( ) ( )
(5)

exc
C k

k inh
C k

k rec
D n

nd
c

c
c

c
d

d

where k represents the index of the spike times of coincidence neuron c, while wexc and winh are constant excitatory 
and inhibitory weights. The regions C+ and C− are squared windows in the plane of constant disparity Ed and the 
plane of constant horizontal cyclopean position Ex, which are defined relative to the disparity detector’s spatial 
representation d. The index n represents the spike times of disparity neuron d and wrec is a constant inhibitory 
weight (mutual inhibition of disparity detectors). The region D− is defined by the two lines of sight (one from each 
retina):

ω ω= ∈ | − | ≤ ∧ | − | ≤ ∧ =+C C x x y y d dc{ ( ) ( ) ( )} (6)c d c d c d

ω ω= ∈ = ∧ | − | ≤ ∧ | − | ≤−C C x x y y d dc{ ( ) ( ) ( )} (7)c d c d c d

= ∈ − = ∨ + =−
D D x d x x d xd{ ( 2 ) ( 2 )} (8)d d L d d R

The final output of the network is then obtained from a combination of coincidence and disparity responses 
such that a disparity spike is only considered valid when immediately preceded by a coincidence spike represent-
ing the same location in disparity space (see Supplementary Material for more details).

Network simulation.  For our simulations we used the output of 180 ×​ 180 pixels from each sensor. This led 
to a population of 2 ×​ 1803 coincidence detectors (polarities where treated with separate detectors). With another 
1803 disparity detectors, the total network initially incorporated more than 17 million neurons. However, for a 
natural scene within 5 m distance from the camera, the disparity is limited to the range (0, 40) so the total number 
of required neurons was reduced to less than 4 million. The simulation code was entirely written in C and in a 
completely event-based fashion, meaning that the membrane potential of a specific neuron was only updated 
when it received an input leading to a very efficient implementation. For each neuron the current membrane 
potential and the time of the last update needed to be stored in memory ending up in an occupancy of about 
30 megabytes. In the 4 seconds walking scene, roughly 1.2 million input events were processed with a total simu-
lation run time of about 30 seconds on a single core of an i7 CPU running at 3.40 GHz.

Comparing stereo correspondence performance of traditional and neuromorphic hardware.  
Conventional SAD algorithms for stereo matching typically involves many processing steps. However the 
step that dominates the algorithm complexity is the calculation of the sum of absolute differences. Typically, a 
three-dimensional map of disparity space is calculated, in which each entry contains the absolute difference of 
intensity of the corresponding image pixels at a given disparity. The sum can then be easily computed across con-
stant disparities. This three-dimensional map is then updated for each pair of images, with every new frame. As a 
consequence, the algorithm complexity is proportional to n2Dfs, where n2 is the dimension of the disparity image, 
D the depth resolution and fs the sampling rate. Typically, with this method, a subtraction, rectification and addi-
tion needs to be done at each step. For the sake of simplicity, we don’t consider in the comparison, the extra steps 
required to identify the highest SAD entry in the map. In our stereo-correspondence model the disparity map is 
represented by the population of coincidence neurons, which are updated only when the afferent pixels produce 
address-events. This update rate determines the network complexity and is proportional to n2d2Dr, where d can 
represents the edge density of the visual input and r is the rate by which the edges change. This is a highly simpli-
fied expression and assumes that intensity changes are caused by moving edges. It becomes immediately evident 
that for a rate of change r that matches the sampling rate fs, our stereo network requires a factor d2 less operations. 
In the context of the stereo network, the generation of a coincidence spike and its propagation to the disparity 
detectors is considered an operation. This is approximately equivalent to the SAD operation (subtraction, rectifi-
cation, addition) as concluded from our network simulations and detailed analysis.

For the estimation of the power consumption of the SAD algorithm we considered a state-of-the low power 
art micro-controller, such as the STM32F7 series, which has power consumption figures rated as low as 0.33 mW/
DMIPS. In this calculation we assumed that a SAD operation is implemented with 3 DMIPS (which is the bare 
minimum not considering any parallel processing). We scaled the number of operations to match the described 
scenario, considering a depth resolution of 30 levels, computed within a field of view of 21 ×​ 21 pixels.

In the spiking stereo neural network (SSNN) the number of operations corresponds to the amount of input 
coincidence spikes. This number was calculated from the input spikes produced by the DVS and estimated edge 
density of the visual scene. Using this estimate we could calculate the rate of change of edges (r =​ 151 Hz), which 
defines the temporal resolution at which the two approaches should be compared.
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For the estimation of the power consumption on neuromorphic hardware implementation, we considered 
the energy used for both generation and the routing of address-events. These figures were derived from measure-
ments taken from a more recent design of a neuromorphic processor comprising the same circuits of the ROLLS 
chip, and using the same 180 nm CMOS technology: the energy cost of a single spike generation is 883 pJ and the 
routing of a spike is 360 pJ resulting in a total of 1.243 nJ per primitive operation. Using more advanced technol-
ogy nodes, such as the 28 nm one used for recently proposed neuromorphic processors11, these figures would be 
even smaller. We are currently developing a neuromorphic processor chip that can support the network proposed 
in this paper, using a 28 nm process, and have estimated energy figures of 50 nJ for the spike generation, and 
147 nJ for routing the event to its destination20, resulting in a dramatically smaller total cost of 197 pJ per primitive 
operation. The results of Table 1 summarize this analysis.

In both SAD and SSNN calculations, we considered only the cost of the core operations, neglecting the costs 
of peripheral functionality such as I/O operations.
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