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Topological features of vector 
vortex beams perturbed with 
uniformly polarized light
Alessio D’Errico1, Maria Maffei1,†, Bruno Piccirillo1, Corrado de Lisio1,2, Filippo Cardano1 & 
Lorenzo Marrucci1,3

Optical singularities manifesting at the center of vector vortex beams are unstable, since their 
topological charge is higher than the lowest value permitted by Maxwell’s equations. Inspired by 
conceptually similar phenomena occurring in the polarization pattern characterizing the skylight, 
we show how perturbations that break the symmetry of radially symmetric vector beams lead to 
the formation of a pair of fundamental and stable singularities, i.e. points of circular polarization. 
We prepare a superposition of a radial (or azimuthal) vector beam and a uniformly linearly polarized 
Gaussian beam; by varying the amplitudes of the two fields, we control the formation of pairs of these 
singular points and their spatial separation. We complete this study by applying the same analysis 
to vector vortex beams with higher topological charges, and by investigating the features that arise 
when increasing the intensity of the Gaussian term. Our results can find application in the context of 
singularimetry, where weak fields are measured by considering them as perturbations of unstable 
optical beams.

Light beams showing an inhomogeneous polarization distribution, commonly referred to as vector beams (VBs), 
represent a precious resource in an increasing number of photonic applications1: astronomy2, microscopy3,4, 
optomechanics5,6, materials structuring7, nanophotonics8,9 and quantum sciences10–13 are some remarkable exam-
ples. Uniformly polarized beams can be easily converted into such spatially structured fields by coupling the 
vectorial and the spatial degrees of freedom of light1,14, as recently demonstrated in a variety of photonic architec-
tures15–24. The fine structure of VBs polarization may show several typologies of singular points25–29, in close 
analogy to other inhomogeneous systems (fingerprint, tidal heights across the oceans, etc.). Here we consider 
those spatial regions where there is no preferred direction for the oscillations of the electric field25,26,29, with the 
most relevant case being represented by the so called C-points, that is points where the polarization is circular. 
Their formation and dynamical evolution have been investigated in the complex polarization pattern character-
izing several structured fields, such as for instance speckle fields30, random superposition of vector waves26, light 
passing through inhomogeneous anisotropic media18,31, photonic crystals32,33. Independently of the specific sys-
tem, the electric field around a polarization singularity is oriented according to the value of the associated topo-
logical charge η; this is an integer or semi-integer number, defined as the angle described by the major axis of the 
local polarization ellipse (divided by 2π) when following a closed path around the C-point. Besides its connection 
with the surrounding polarization distribution34, the value of this charge is particularly important in determining 
the singularity robustness, since only the lowest order C-points with η =​ ±​1/2 are stable with respect to small 
deformations of the optical system25,33,35–37. This is analogous to the case of high-order optical vortices in scalar 
fields, which have been observed to split into elementary vortices as soon as a tiny perturbation is introduced38–43. 
The instability of higher-order polarization singularities, with the role of C-points played by points of unpolarized 
light, can be beautifully observed in the skylight polarization pattern, where, differently from the case of C-points, 
such singularities are loci where the light is fully unpolarized; in the sky, the original two singular points (for 
which η =​ 1), positioned at the Sun and the anti-Sun loci, split into four slightly displaced lowest-order 
singularities (with η =​ 1/2) because of the contribution from multiple Rayleigh scattering of sunlight in the 
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atmosphere44. Inspired by these phenomena, but in the context of fully polarized laser light, here we investigate 
the formation of lowest order C-points at the center of vector vortex beams (VVBs)45,46 in presence of a weak 
perturbing field. VVBs are a particular class of vector beams (radially and azimuthally polarized beams are 
remarkable examples) for which a polarization singularity and an optical vortex (phase singularity) are superim-
posed at the center of the beam. This happens because the spatial mode associated with each of the two opposite 
circular polarizations is that of a light helical mode. These peculiar optical spatial modes, described in terms of an 
integer number m, show a helical wavefront and carry a definite amount of orbital angular momentum (OAM)47, 
equal to m  per photon. The field amplitude vanishes at the center of these beams, where the associated phase is 
not defined and an optical vortex with topological charge m appears. Since left and right circular components are 
both helical modes, in VVBs the total field is vanishing along the beam axis and its orientation is undefined. This 
peculiar polarization singularity is typically referred to as V-point36; unlike the case of a C-point, here the instan-
taneous oscillation direction of the electric field is undefined (at any time). The lowest topological charge admit-
ted for V-points is ±​1, since these are singularities of a field of vectors (the instantaneous electric field), whereas 
C-points refer to a field of ellipses (the trajectory described by the vector in a temporal cycle). Here we show that 
a small perturbation changes the nature of the vector field characterizing pure VVBs, whose local polarization 
states acquire a tiny ellipticity. Since in such a field Maxwell’s equations allows for polarization singularities with 
a lower charge (C-points), even the lowest order V-point becomes unstable and unfolds into a pair of equally 
charged C-points36. We investigate experimentally this mechanism by perturbing a radial and azimuthal VVB 
(η =​ 1) with a uniformly polarized beam, and complete the analysis with an example of higher order VVB (η =​ 2). 
This kind of perturbation acts as a coherent background, whose role has been investigated in the decay of optical 
vortices at the center of beams carrying OAM42. Recently a similar study of V-point unfolding was proposed 
theoretically in ref. 48, although the analysis is focused on V-point and C-point dynamics during the beam prop-
agation, rather than the instability of V-points. By controlling the amplitude of the two fields, we report the pro-
gressive formation of C-points (that originate from the central V-point), whose separation increases as the 
Gaussian term gets higher. Importantly, the polarization pattern modification is always accompanied by a defor-
mation of the original intensity pattern. Interesting features arise when increasing the intensity of the perturbing 
term, in particular when this becomes equal or higher than the original VVB and the polarization pattern may 
lose its non-trivial topological features (at least in the region where almost all the field energy is enclosed).

Results
V-point instability at the center of a vector vortex beam.  A VVB corresponds to the superposition of 
two (or more) different helical modes of light associated with orthogonal circular polarizations. Denoting as |L〉​ 
and |R〉​ states of left and right circular polarizations, respectively, a VVB can be written as

= +φ φ−VVB f r z c L e c R e( , )( ), (1)m L
im
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where cL ≠​ 0, cR ≠​ 0 are complex coefficients and the complex amplitude f(r, z)eimφ describes the field associated 
with a helical mode of order m, expressed in terms of the cylindrical coordinates (r, φ, z) with the z axis corre-
sponding to the optical axis of the beam. While the phase factor eimφ gives rise to the typical helical wavefront, the 
function f(r, z) describes the radial distribution of the field. Here we have considered the simple case of two helical 
modes with opposite m; similar results hold for all other VVBs. Except the case m =​ 0, helical modes vanish along 
the optical axis (r =​ 0) where they show an optical vortex with charge m43. Accordingly, in the case of an ideal 
VVB, a V-point with charge η =​ m is present at the center of the beam, at any plane transverse to the propagation 
direction. In order to show a possible mechanism that leads to the V-point transformation into lowest order sin-
gularities, let us consider the specific case m =​ 1 and cL =​ cR =​ 1, corresponding to a radially polarized beam. At a 
fixed transverse plane and very close to the beam center, that is at r much smaller than the typical beam dimen-
sions, Eq. 1 has a simpler expression:
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where A is a real constant defining the field intensity. We add to Eq. 2 a linearly polarized term with uniform 
amplitude  αei  ( and α are real constants), whose electric field is oriented at an angle θ with respect to the hori-
zontal direction. In the representation of circular polarizations, this perturbation can be written as 
 θ = +α θ θ−εe e L e R, ( )i i i ; when added to the original VVB, Eq. 2 becomes
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Left and right C-points are located at positions (rL, φL) and (rR, φR) where the right and left circular compo-
nents of the field are vanishing, respectively. It is straightforward to see that

ε φ θ α π φ θ α π= = = − − = + + .ε εr r A/ ; ; (4)L R R L

In general φL ≠​ φR and two C-points with opposite handedness but with equal charge η =​ 1/2 generate from 
the original V-point. Using the same approach it is possible to show that V-points of order m unfold into 2m 
C-points, with the sign of their charge being equal to that of the original singularity.

Generation and perturbation of a VVB using electrically tunable q-plates.  The results we dis-
cussed in the previous section can be easily simulated experimentally by exploiting the same approach reported 
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in ref. 19 for the generation of pure VVBs. The preparation and the controlled alteration of a VVB is obtained by 
tuning the spin-orbit interaction of a light beam in a q-plate49,50. This is an optical element made of a thin layer of 
liquid crystals, whose optic axes are arranged so as to form a singular inhomogeneous pattern. Besides the topo-
logical charge q, defining the rotation of the local liquid crystal axis around the singular point (divided by 2π), the 
action of this device is determined by its optical retardation δ. The value of the latter can be suitably adjusted by 
applying an external electric field, which allows for controlling the strength of the spin-orbit interaction mediated 
by the plate51. When passing through a q-plate placed at the beam waist (this is the standard configuration that 
we adopt throughout the manuscript), a TEM00 Gaussian beam with uniform left or right circular polarization is 
transformed as follows52:
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where α0 is the angle of the liquid crystals optic axis at φ =​ 0. The previous equation shows that left and right 
circular polarizations are partially converted into helical modes of order ±​2q, respectively, with the amount of 
converted light depending on the value of δ (δ =​ π corresponds to a full conversion). Helical modes generated 
by a q-plate are described by the so-called HyperGeometric-Gaussian modes (HyGGp,m, which in our notation 
corresponds to the radial amplitude profile only of the mode, as the azimuthal phase factor is written explicitly)53, 
corresponding to a specific class of light beams carrying OAM54, analogously to Laguerre-Gauss or Bessel beams. 
Two indices (p, m) specify the mode properties, where m is associated with the OAM content while p determines 
the radial distribution of the field. It is worth noting that the same helical modes with HyGG radial structure are 
also generated by any optical device (spiral phase plates, pitchfork holograms, etc.) that suddenly imprints an 
azimuthal phase factor on the input field, with such device placed in the focal region of the beam. Hence, besides 
our specific setup, our analysis applies to all configurations in which VVBs are generated relying on this approach. 
Eq. 5 clearly shows that, if δ =​ π, a linearly polarized Gaussian beam is fully converted into a VVB, showing a 
V-point with charge η =​ 2q at its center. In particular, azimuthally and radially polarized beams are obtained 
when the input polarization is vertical (V) and horizontal (H), respectively, the plate charge is q =​ 1/2 and α0 =​ 0 
(see Fig. 1):
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where kets |H〉​ and |V〉​ represent H and V polarizations states. When changing the value of the retardation to 
δ π= + 2 , with  ≪​ π, a fraction  of the input beam is added to the pure VVB:

Figure 1.  Instability of polarization singularities at the center of a VVB. The instability of a V-point with 
topological charge η =​ 1 is investigated experimentally by changing the q-plate retardation with respect to the 
optimal condition δ =​ π. In panels a,b we plot the quantity ψ = +S i Sarg( )1

2 1 2 , that represents the orientation 
of polarization ellipses, for a radial (panel a) and an azimuthal (panel b) VVB. Colors associated with different 
values of ψ are shown in the figure legend. As visible in the figure labels, plots are obtained when varying δ in 
the range {12π/16, π} with steps of π/16. Importantly, C-points and V-points appear here as vortices of the 
complex scalar field S1 +​ iS2; as we decrease δ, two C-points clearly appear in the place of the V-point. As 
discussed in the main text, we are considering only a small area (of the order of w2/4, where w is the beam 
radius) at the center of the beam, where the singularity transformation is taking place. In (c,d), we show the 
corresponding experimental and theoretical polarization patterns associated with these fields. Here, red and 
blue colored ellipses are associated with left (s3 >​ 1) and right handed (s3 <​ 1) polarization states, respectively.
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A similar expression holds for an azimuthal VVB. In close analogy to Eq. 3, the latter equations show that a 
small variation of δ can be treated as a perturbation to the original VVB. In Fig. 1 we show a simulation of the polar-
ization distribution of perturbed radial and azimuthal VBs (Eq. 7). In particular in the upper part of panels a,b  
we plot a 2D map of the orientation angle ψ of the local polarization ellipse, calculated in terms of the reduced 
Stokes parameters; here the two C-points are clearly visible as vortices of this scalar field (the ellipse orientation), 
with their separation changing with the value of δ.

Experimental results.  To confirm the theoretical predictions discussed in the previous section, we 
implemented the setup shown in Fig. 2. The output of a Ti:Sa laser (wavelength λ =​ 800 nm) is coupled into a 
single-mode fiber (SMF), used as a spatial filter in order to produce a pure TEM00 Gaussian mode at the input of 
the setup. At the exit of the SMF, the beam (uniform) polarization is prepared into vertical or horizontal states 
by means of a linear polarizer followed by a half-wave plate (HWP). A q-plate (q =​ 1/2) with optical retardation 
δ, whose value is controlled through a tunable electric field applied to the outer faces of the cell51, transforms the 
beam into the VB reported in Eq. 7. In order to reconstruct the 2D polarization pattern in a transverse plane we 
implemented a point-by-point polarization analysis, similar to that reported in ref. 19. For each beam configura-
tion, on a CMOS camera (1280 ×​ 1024 pixels) we recorded the intensity profile of the field components associated 
with {H, V}, {L, R} and diagonal and anti-diagonal ({D, A}) polarization states. These components are selected by 
rotating suitably a set of waveplates, followed by a linear polarizer. By using a dedicated software, Stokes param-
eters are calculated point-by-point according to the definitions S0 =​ IH +​ IV, S1 =​ IH −​ IV, S2 =​ ID −​ IA, S3 = IL − IR; 
here Ij represent the measured intensities of the six polarization components, with j ∈​ {H, V, D, A, L, R}. To take 
into account small fluctuations of the beam position with respect to the camera the field intensities are averaged 
over arrays of 3 ×​ 3 pixels. An imaging system made of a lens (focal length =​ 10 cm) followed by a microscope 
objective is used to determine the polarization pattern at different positions along the propagation axis z.

By introducing a tiny alteration of the q-plate voltage with respect to the optimal condition δ =​ π, we investi-
gated the instability of a V-point singularity that transforms into a pair of C-points. When δ =​ π, the polarization 
is linear in every point of the transverse plane and has a radial or azimuthal pattern, depending on the input 
polarization. If we introduce a small detuning, that is δ →​ π −​ 2ϵ, a uniform polarized Gaussian beam is added 
coherently to the original VVB. As previously discussed, 2η C-points are expected to form in place of the original 
singularity with topological charge η. In Fig. 1 we show the experimental results that confirm these predictions. 
In order to unveil the formation of C-points pairs, that occurs very close to the beam center, we used a single lens 
to image this small portion of the beam on the camera sensor. We imaged on the camera the beam at z =​ 0.22zR 
and considered only the region r <​ 0.58w0, where zR and w0 are the Rayleigh range and the beam waist, respec-
tively. The measured Stokes parameters are used to determine the polarization pattern and, as a consequence, the 
orientation angle ψ of the local polarization ellipses, calculated as ψ = +S i Sarg( )1

2 1 2 . In good agreement with 
the theoretical predictions (see Fig. 1c,d), we observe the original V-point splitting into two C-points with oppo-
site handedness, whose spatial separation grows as  is increased, in agreement with Eq. 4. The topological charge 
of such C-points is 1/2, hence the total charge is conserved.

The same phenomenon can be observed for V-points with higher topological charge, obtained using q-plates 
with |q| >​ 1/2. In Fig. 3 we plot the polarization pattern and the orientation angle of ψ measured for a q-plate 
with q =​ 1 and α0 =​ 3π/4. Here a V-point with charge η =​ 2 is observed to split into four C-points. For each cir-
cular component, the central vortex has a charge ±​2; as mentioned previously these are unstable and decay into 
two equally charged vortices40,42; this process is much faster (with respect to a variation of δ) if compared to the 
V-point splitting discussed previously (see Fig. 1). Two pairs of C-point move away from the beam center as δ 

Figure 2.  Experimental apparatus. A TEM0,0 beam is obtained by filtering the output of a Ti:Sapphire laser 
through a single mode fiber (SMF). The initial polarization state is selected by using a polarizing beam splitter 
(PBS), a half-wave plate (HWP) and a quarter-wave plate (QWP). Then the beam passes through an electrically 
tunable q-plate, whose optical retardation is controlled by applying an adjustable electric field. When exiting the 
q-plate the beam has acquired an inhomogeneous polarization pattern that can be experimentally reconstructed 
by employing a point by point Stokes polarimetry, as discussed in the main text. The projection over the 
six polarization states H, V, A, D, L, R is implemented through a QWP and a HWP followed by a PBS. The 
intensity of the analyzed field component is recorded on a CMOS camera. A lens (focal length f =​ 10 cm) and 
a 20X microscope objective placed on a translation stage are used to study the polarization pattern at different 
distances z from the q-plate.
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decreases, although in each pair the distance between the two singularities remains small so that they cannot be 
clearly resolved in our system.

By changing the voltage applied to the q-plate we can tune the device retardation to any value in the range (0, 2π),  
thus we can also explore what happens when the Gaussian term becomes comparable to the VVB amplitude. In 
Fig. 4 we show the polarization and intensity patterns measured in the near field of the beam (compared with 
theoretical predictions), obtained when varying δ between 0 and π with steps of π/8. Theoretical simulations are 
added here for comparison. At a glance, when decreasing δ, C-points are observed to move away from the beam 
center and seem to disappear when δ <​ π/2. Accordingly, the topological features of the polarization pattern 
change abruptly when the amplitude of the Gaussian term becomes higher than the original VVB. This is not 
surprising, as we are exploring an intermediate regime between the extreme cases δ =​ 0 (a Gaussian beam with no 
polarization singularities) and δ =​ π (VVB beam with a η =​ 1 V-point), which have different topological features. 
However, as the VVB and the perturbing term diffract differently, these features are expected to change when the 
beam propagates, making the situation much more complex. Importantly, this behavior will depend also on the 
VVBs radial profile, here assumed to be that of HyGG modes; although the generalization to other types of helical 
modes is out of the scope of this work, in the Methods we briefly discuss the simple case in which the VVBs radial 
profile is that of lowest radial-order Laguerre-Gauss modes with p =​ 0. In this specific case indeed an analytical 
expression for the C-point positions can be found. For our specific configuration, we investigate the dynamical 
evolution of polarization singularities by considering the expression of the beam generated by a q-plate (with 
α0 =​ 0) when shined with a H or V polarized Gaussian beam:

ρ ζ δ ρ ζ δ

ρ ζ δ ρ ζ δ

= ±

+ ± +

φ

φ

−

−
−

OUT i e R

i e L
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Figure 3.  Instability of a higher-order V-point in VVB with η = 2 generated by a q-plate with q = 1 and 
α0 = 2.1 rad, acting on a TEM0,0 vertically polarized beam. (a) We plot the orientation angle ψ of the 
measured polarization ellipses, and the corresponding theoretical predictions, when varying δ between δ =​ π 
and δ =​ 3π/4 with steps of π/16. Simulations show that the original V-point splits into two pairs of C-points; 
similarly to the previous case, in each pair the two singularities have opposite handedness. In the experimental 
data, the formation of these two pairs can be observed clearly: as discussed in the main text, this is associated 
with the decay of the high-order phase vortex in each of the two circular components. Nevertheless, for each 
pair the system spatial resolution does not allow to distinguish two different C-points, because they remain 
very close to each other, at least for small deviations from the ideal case. In (b), we show the corresponding 
experimental and theoretical polarization patterns associated with these fields. Here, red and blue colored 
ellipses are associated with left (s3 >​ 1) and right handed (s3 <​ 1) polarization states, respectively.
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where the ±​sign stands for H or V input polarization, respectively, and m =​ 2q. Dimensionless units are intro-
duced here, where the distance from the q-plate z and the radial coordinate r are normalized with respect to the 
Rayleigh range zR and the waist w0 of the beam, respectively (ζ =​ z/zR, ρ =​ r/w0). C-point positions are calculated 
by solving the equations CL/R(ρ, φ, ζ) =​ 0, where left and circular components CL/R are those reported in Eq. 8 
(see the Methods for details about the solution of such equations). In Fig. 5a we plot the position of left-handed 
C-points as a function of the coordinate ζ, for the case m =​ 1 (similar features are obtained for higher values of m).  
For small values of ζ, multiple rings characterize the radial distribution of HyperGeometric-Gaussian modes and, 
as a result, many C-points may appear at given transverse plane. However, for any value of δ and ζ, there exist 
at least a left-handed C-point (and its right-handed partner), although it might be positioned in the peripheral 
regions of the beam where the field intensity is negligible. For high values of ζ (far field), numerical simulations 

Figure 4.  Transition from a trivial to a topologically non-trivial polarization pattern. In panels a,b we 
report the experimental and theoretical intensity and polarization distribution of the near field (ζ =​ 0.01) for 
both radial and azimuthal VVB, respectively. We observe no polarization singularities (actually, C-points exist 
in a region where the beam intensity is too low, as shown in Fig. 5) when δ <​ π/2. At δ =​ π/2 an undefined 
number of C-point dipoles appears, in proximity of intersections between the Gaussian and the oscillating 
HyGG−1,1 envelopes. When δ is increased, a pair of C-points with η =​ 1/2 appears in the polarization pattern, 
with the distance between these points getting smaller as δ →​ π. The topological charge associated with a path 
enclosing both singularities is η =​ 1. Here, red and blue colored ellipses are associated with left (s3 >​ 1) and right 
handed (s3 <​ 1) polarization states, respectively.
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show that the distance between C-point positions and the beam axis is proportional to the coordinate ζ. In this 
configuration, we can evaluate if these singularities can be still considered within the beam; in particular, for 
different values of δ we can compute the fraction of the beam intensity contained in the circular region delimited 
by the C-point radial position. In Fig. 5b we plot the relative encircled intensity of the beam, which is observed 
to increase as the Gaussian contribution becomes stronger. When δ <​ π/8, for example, more than the 99% of the 
beam intensity is contained in the radius defined by the C-point position, i.e. the singularities can be considered 
as lying outside the beam. In the near field, instead, qualitative differences manifest depending on the q-plate 
retardation being higher or lower than π/2. In particular, in the latter case the singularities move away at infinite 
distances, while in the former, L and R C-points merge at the beam center (forming a single V-point). These dif-
ferent features are a consequence of the irregular behavior of HyGG−|m|,m modes in the limit ζ →​ 0. As discussed 
in the Methods indeed (see Eq. 13) C-points can form at the intersections between the Gaussian and HyGG−|m|,m 
envelopes; when δ >​ π/2, these envelopes cross in the region of the central dip characterizing HyGG−|m|,m modes, 
at a specific radial distance that depends on δ. However, since the dip width vanishes when approaching the near 
field, independently of δ all C-points merge at the center. When δ <​ π/2, singularities do not form in the HyGG 
dip but rather at the intersection of the tails of both Gaussian and HyGG modes; such intersections exist since the 
latter have a larger radial profile, for finite values of ζ. But as ζ →​ 0, the HyGGs envelope converges to that of the 
Gaussian beam, and clearly two Gaussian profiles with different amplitudes cannot have intersection points, so 
that all C-points are expelled from the beam. In the Methods, we repeat this analysis for the simpler case in which 
Laguerre-Gauss modes are taken in the place of HyGG modes. In such configuration indeed an expression for 
C-points position can be derived analytically.

As shown in Fig. 5a, VBs obtained when δ <​ π/2 may show C-points only after a definite value of ζ. We confirm 
experimentally this effect by investigating the dynamical formation of such singular points in the polarization 
pattern of a beam obtained when δ =​ 6.7π/16. In Fig. 6 we report the experimental data and the associated theo-
retical predictions. Although no C-points are observed in the near field (see Fig. 4), they appear as we increase the 
propagation distance ζ, in agreement with our previous discussion (see Fig. 5a). In particular, at ζ =​ 0.2 we can 
observe a double pair of singularities, as a consequence of the oscillatory behavior of the VVB amplitude profile.

Discussion
In this study we investigated the topological features of vector vortex beams and the robustness of the associated 
singularities when introducing a perturbation to the field. Polarization singularities manifesting at the center 
of such beams are unstable and transform into multiple C-points with equal topological charge ±​1/2, the low-
est order singularities of fully polarized light. Here we perturb a VVB by adding coherently a tunable amount 
of a linearly polarized Gaussian beam and demonstrate experimentally a possible mechanism that leads to the 
unfolding of the central singularity, in analogy to similar phenomena observed in the skylight polarization44 
or in high-order optical vortices29. On one hand, this realization provides a simple example of transformations 
between different polarization singularities35,36,48,55; on the other, it allows for a detailed investigation of phe-
nomena that may affect optical systems exploiting VVBs, for which the presence of the fundamental TEM00 

Figure 5.  Dynamical evolution of C-points during propagation and associated enclosed energy. (a) We 
plot the radial coordinate ρ of the position of left handed C-points vs the longitudinal coordinate ζ, for different 
values of δ (the latter are encoded in the color of the curve, as displayed in the figure legend). Two regimes 
can be distinguished: for π/2 <​ δ <​ π C-points merge at the beam center (ρ =​ 0) as ζ →​ 0, hence making the 
polarization pattern topology non-trivial. In the same regime, additional closed loops indicate the existence 
of C-point dipoles appearing and disappearing as the beam propagates, as a consequence of the dynamical 
evolution of the radial ripples characterizing HyGG modes. For 0 <​ δ <​ π/2, instead, the C-point radius 
increases indefinitely as we approach the beam near field. (b) For the same values of δ as in panel a, we plot 
here the fraction of the beam intensity contained in a circular region with a radius given by the C-point radial 
coordinate, in the far field limit. These results, in particular, are obtained when considering ζ =​ 15, but in the 
limit of large ζ, they remain essentially constant.
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mode can result from different types of misalignments38,39,41, scattering42 or from turbulence in the propagation 
medium56. Investigating the stability of VVBs can be of interest for all photonic applications involving these 
structured beams, since a modification of the intensity pattern always accompanies the singularity splitting. As 
discussed before, similar alterations of a VVB can occur as a consequence of experimental imperfections, and 
the beam distortion caused by the V-point splitting may play a role in a variety of applications, as for example in 
material shaping57. Reversing the current approach, as in prospect it could be possible to tune the q-plate optical 
retardation in order to compensate the effect of experimental imperfections and reduce such deformations of the 
beam profile58. Finally, our results may find application in the context of singularimetry; weak fields can indeed be 
measured by letting them perturb unstable optical fields, and features of materials that have interacted with such 
beams can be extracted from the pattern formed by split singularities59. In addition, since perturbations can be 
introduced by imperfections in the optical setup, the unfolding of the central V-points can be used to assess the 
quality of the VVB generation system42.

Methods
Helical modes of light.  Laguerre-Gaussian and Hypergeometric-Gaussian beams53 represent specific cases 
of the so-called Circular Beams (CB)54, a class of optical spatial modes characterized by the phase factor φimexp( ) 
associated with the orbital angular momentum. As in the main text, we used adimensional cylindrical coordinates 
ρ =​ r/w0 and ζ =​ z/zR, where w0 is the waist radius of the Gaussian envelope and zR the Rayleygh range, 
respectively.

Laguerre-Gaussian LGp,m modes have the well known expression:
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where L x( )p
m  is the generalized Laguerre polinomial and p is a positive integer.

A q-plate shined by a TEM00 mode generates the so-called Hypergeometric-Gaussian modes52 (see Eq. 5):

Figure 6.  Dynamical formation of C-points. Here we show that, for δ < π/2, C-points (absent in the near 
field) appear during propagation. In panel (a) we report the C-point position versus the longitudinal coordinate 
ζ in the case δ =​ 6.7π/16, for a H polarized input beam. The red line indicates the dimension of the regions 
investigated in the experiment while blue dashed lines show the corresponding values of ζ. In panel (b),  
we report the plot of the orientation angle ψ and the polarization pattern of the associated beam; here, 
theoretical simulations are added for comparison. Data refers to three different propagation distances, as 
reported in the plot: when ζ =​ 0.1, no singularities are visible in the polarization pattern; at ζ =​ 0.2, two C-point 
dipoles are clearly emerging, and a single pair is observed at ζ =​ 0.4. In the polarization plots, red and blue 
colored ellipses are associated with left (s3 >​ 1) and right handed (s3 <​ 1) polarization states, respectively.
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where Γ​(z) is the Euler Gamma function and F1(a; b; z) is the confluent Hypergeometric function. Through the 
main text we used the notation HyGGp,m when referring only to the radial distribution of the associated HyGG 
modes, not including the azimuthal phase factor eimφ.

Determination of C-point position.  Here we give a detailed description of the derivation of the C-point 
position (see Fig. 5a). We recall here the general expression describing a beam generated by a q-plate with α0 =​ 0 
when shined by a H or V polarized Gaussian beam (already reported in Eq. 8):
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where the plus or minus sign is for H and V input polarizations, respectively, ζ =​ z/zR is the propagation distance 
normalized with respect to the Rayleigh range zR, and m =​ 2q.

In our experiment the function f|m| is given by Hypergeometric Gaussian mode HyGG−|m|,m. It is worth not-
ing that specific architectures allow using the q-plate to generate helical modes with a different radial profile; as 
an example, recently a q-plate placed inside a laser cavity has been exploited for the generation of high quality 
Laguerre-Gauss VBs22 with p =​ 0. For this reason, we consider here also the case f|m| =​ LG0,m. As we will show in 
the following, the C-points positions can be deduced analytically in this case.

The C-point position at a given δ and ζ can be obtained simply by solving the implicit equation CL,R(ρ, ζ, φ; δ) =​ 0  
(see Eq. 8). We limit ourselves to searching for the distance of C-points from the center, which can be found by 
solving the simplified equation |CL,R(ρ, ζ, φ; δ)|2 =​ 0. Explicitly, this reads:
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A solution for such equation exists only if the following condition holds
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hence, by solving jointly Eq. 12–13 we are left with an implicit equation for ρ as function of ζ. If needed, then the 
solution can be inserted into Eq. 12 to find the azimuthal coordinates of the singularities.

The case f|m| =​ HyGG−|m|,|m| can be solved only numerically. Some solutions are shown in Fig. 5a and discussed 
in the main text. Here we focus on the case f|m| =​ LG0,m where we can find an analytical expression for C-points 
positions as a function of ζ. Importantly, this kind of beams (VVBs whose radial distribution is that of LG modes 
with the lowest radial index p =​ 0) can also be generated experimentally, as for example by exploiting a q-plate 
placed inside a laser cavity22. In this case Eq. 13 reads:
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It follows that the distance of C-points from the beam center ρC(ζ) is given by:
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In order to evaluate if such singularities are contained in the beam or not, one can either apply the same 
approach used for the case of HyGG modes (see Fig. 5b), or directly compare the position of singular points with 
the beam radius. This is typically defined as the root-mean-square σrms of the beam intensity in the transverse 
plane60:

∫σ ζ ρ ζ φ ρ ρ φ= I d d( ) ( , , ) , (16)rms
2 3

where I(ρ, ζ, φ) is the beam intensity. From Eq. 11 with f|m| =​ LG0,m we obtain:
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In the far field, the corresponding beam divergence is given by θrms =​ σrms/ζ, in the limit ζ →​ ∞​. The associated 
expression is simply:

θ δ δ= +m m( , ) [1 sin ( /2)]/2 , (18)rms
2

By comparing Eq. 17 and Eq. 15 we can observe that the beam radius has the same functional form as the 
C-point position. The divergence of the latter is:
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By comparing Eq. 18 and Eq. 19 it is possible to compute exactly whether C-points diverge more or less rapidly 
than the beam radius, for any value of δ. However, we observe that our analysis aims only at identifying qualitative 
features: quantitative results are ambiguous as multiple definitions of the beam divergence can be given (for 
instance the quantity θ2 rms is often used). In the near field, at odds with the HyGG case, C-points have a definite 
position given by Eq. 15 when ζ =​ 0. By comparing the latter with Eq. 17 it is possible to check if such singular 
regions are contained inside the beam. In conclusion, we point out that this analysis relying on the r.m.s. as a  
measure of the beam width cannot be done in the case of HyGG beams; indeed, |HyGG−|m|,m|2 ∝​ r−4 when r →​ ∞ 
ref. ​53 and the r.m.s becomes infinite for any value of ζ.
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