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Spatiotemporal Pattern of PM2.5 
Concentrations in Mainland China 
and Analysis of Its Influencing 
Factors using Geographically 
Weighted Regression
Jieqiong Luo1,2,3, Peijun Du1,2,3, Alim Samat4, Junshi Xia5, Meiqin Che1,2,3 & Zhaohui Xue6

Based on annual average PM2.5 gridded dataset, this study first analyzed the spatiotemporal pattern 
of PM2.5 across Mainland China during 1998–2012. Then facilitated with meteorological site data, 
land cover data, population and Gross Domestic Product (GDP) data, etc., the contributions of latent 
geographic factors, including socioeconomic factors (e.g., road, agriculture, population, industry) and 
natural geographical factors (e.g., topography, climate, vegetation) to PM2.5 were explored through 
Geographically Weighted Regression (GWR) model. The results revealed that PM2.5 concentrations 
increased while the spatial pattern remained stable, and the proportion of areas with PM2.5 
concentrations greater than 35 μg/m3 significantly increased from 23.08% to 29.89%. Moreover, road, 
agriculture, population and vegetation showed the most significant impacts on PM2.5. Additionally, 
the Moran’s I for the residuals of GWR was 0.025 (not significant at a 0.01 level), indicating that the 
GWR model was properly specified. The local coefficient estimates of GDP in some cities were negative, 
suggesting the existence of the inverted-U shaped Environmental Kuznets Curve (EKC) for PM2.5 in 
Mainland China. The effects of each latent factor on PM2.5 in various regions were different. Therefore, 
regional measures and strategies for controlling PM2.5 should be formulated in terms of the local 
impacts of specific factors.

Clean air is regarded as a basic requirement of human comfort, health and well-being. As we all know, air pollu-
tion has many serious adverse effects, such as negative impacts on the climate, ecosystem services, biodiversity, 
and food security1 and continuously posing severe threats to human health worldwide. According to a study of 
World Health Organization (WHO), more than two million people prematurely died each year attribute to the 
effects of air pollution since the 21st century. It is worth noting that more than half of these deaths happened in 
developing countries, particularly in China and India2. Particulates, especially PM2.5 (aerosol particles with aer-
odynamic diameter less than 2.5 μ​m), are the deadliest form of air pollutants. Epidemiologic studies have shown 
that exposures to PM2.5 are associated with increased cardiovascular and respiratory morbidity and mortality3. 
With the rapid development of urbanization and industrialization, PM2.5 pollutions in China, especially in the 
North part, is becoming serious, which can be clearly observed by satellite measurements4–6. Thus, the analysis of 
the spatiotemporal pattern of PM2.5 across China is very imperative for carrying out environmental epidemiologic 
studies.
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For the past couple of years, most of the studies have investigated the spatiotemporal pattern of PM2.5 in China 
on a regional scale7–10. For instance, Liu et al.7 found that there were no significant differences of PM2.5 concentra-
tions between urbanized and suburban areas of Shanghai. Meanwhile, from 2006 to 2008, the seasonal variation 
of PM2.5 in Hangzhou was noticeably characterized by higher concentration in winter and lower in summer8, 
which is consistent with the results of Xi’an9 and Beijing cities10. In recent years, the exploration of spatial and 
temporal variability of PM2.5 pollutions in these areas has expanded to more broad regional11,12 and national 
scales13,14. As aforementioned, most studies of the spatiotemporal pattern of PM2.5 at a regional scale are con-
ducted with a short time scale and high temporal resolution, whereas those on a large regional or national scales 
usually use inter-annual and long time series data sets with a lower spatial resolution (e.g., 50 km). There has been 
a lack of research on the spatiotemporal pattern of PM2.5 concentrations in China with high spatial resolution 
using long time series data. Therefore, one of the primary objectives of our study is to analyze the spatiotemporal 
pattern of PM2.5 concentrations in China using more than a decade of data.

From the microcosmic perspective, a considerable number of existing studies have been dedicated to inves-
tigating the main sources of PM2.5 in China. They mainly focused on one large city at a specific time spot. For 
example, Liu et al.15 investigated the source apportionment of PM2.5 using observations in Beijing, a highly pol-
luted city in Northern China. Wang et al.16 found that industrial process and vehicle emission are the dominant 
local contributors to total PM2.5 mass in the whole city. Also, analysis of the source apportionment of PM2.5 in the 
Yangtze River Delta of China indicated that PM2.5 is primarily from secondary pollutants and primary emissions 
from vehicles and biomass burning17.

From the macroscopic perspective, many previous studies have evaluated the impacts of natural geographical 
factors on PM2.5 concentrations at a regional scale, including vegetation18–22 and meteorological parameters23–25. 
However, limited attention was paid to explore the relationships between PM2.5 and socioeconomic factors. For 
instance, Lin et al.13 found that there was a significant positive correlation between population growth, economic 
development, urban expansion and PM2.5 concentrations. Other studies also identified that urbanization indi-
cators (i.e., urban built-up area, population and industry fraction) have great impacts on urban PM2.5 concen-
trations26,27. In addition, Han et al.28 found the evidence of the increasing effects of human activities on PM2.5 
pollutions through analyzing the relationship between artificial surface, cropland and PM2.5 concentrations.

Unfortunately, to the best of our knowledge, there is no research to systematically and comprehensively ana-
lyze the impacts of natural geographical and socioeconomic factors on PM2.5 at a national scale. Given the fact 
that China is facing severe air pollution and PM2.5 is its main component, to investigate the relationships between 
PM2.5 concentrations and its influencing factors is very important and valuable for drafting appropriate air pol-
lution control policies. Thus, considering the fact that PM2.5 concentrations vary over space and there probably 
exists spatial autocorrelation within PM2.5 concentrations of surrounding regions, another primary objective of 
our study was to explore the contributions of the influencing factors, including natural geographical and soci-
oeconomic factors on PM2.5 in 343 cities of Mainland China using geographically weighted regression (GWR) 
model. It is necessary for China in achieving the goals of sustainable development and the National New-type 
Urbanization Plan28,29.

In brief, this study has three main contributions. First, using more than a decade of data, we analyzed the 
spatiotemporal patterns of PM2.5 concentrations in China at a high spatial resolution. Second, to our knowledge, 
this research was the first attempt to investigate the relationships between PM2.5 concentrations and the natural 
geographical and socioeconomic factors across Mainland China on a city level from the macroscopic perspective. 
Last but not least, GWR, a local form of linear regression was applied in this study to fully consider the spatial 
heterogeneity of PM2.5. And it is of paramount importance for formulating and refining local pollution control 
strategies.

Results and Discussion
Spatiotemporal patterns of PM2.5 concentrations in Mainland China.  As Supplementary Fig. S1 
shown, in general, PM2.5 concentrations increased over most of Mainland China and its spatial pattern remained 
stable during the study period, and there were two main clusters of regions with low PM2.5 concentrations. One is 
located at the northern Inner Mongolian Plateau, and northeastern plains. The other is lied in the southwestern 
Tibetan Plateau. On the contrary, there are three main clusters of regions with high PM2.5 concentrations, includ-
ing the North China plains, Yangtze plains and Central China, followed by Tarim Basin, and the Sichuan Basin. 
Many studies have partly attributed the higher PM2.5 concentrations in these regions to the coal-based industries 
such as coal-fired power plants, iron and steel manufacturing17,30. Comparatively, partly thanks to the developed 
tertiary industry which produces little pollution, the PM2.5 concentrations in the Pearl River Delta are the lowest 
in the three main economic zones27. The spatial distribution areas of PM2.5 concentrations greater than 100 μ​g/m3  
during the two periods of 2005–2007 and 2006–2008 were larger than in other periods. During the period of 
1998–2012, areas that exceeded Interim Target-1 35 μ​g/m3 expanded from the central eastern region to south 
western region, and eventually connected in the Sichuan Basin. In the southwestern Tibetan Plateau, northern 
Inner Mongolian Plateau, and northeastern plains, PM2.5 concentrations are lower than the WHO air quality 
guideline (AQG) of 10 μ​g/m3. Besides, PM2.5 concentrations of the southwestern Tibetan Plateau changed very lit-
tle, while those of the northern Inner Mongolian Plateau and northeastern plains significantly increased. We can 
also observe that the tendency of high PM2.5 concentrations was still remaining high with a little decreasing trend.

Furthermore, in order to quantitate the annual variations of all grades of PM2.5 concentrations in the whole 
Mainland China and seven geographical subareas from 1998 to 2012, the cumulative proportion of area of each 
concentration range was calculated as shown in Fig. 1.

The proportion of area experiencing low PM2.5 concentrations of Grade 1 significantly decreased from 
32.92% to 25.67% and this decrease mostly occurred in Northeast, North and South China, slightly in Southwest 
and Northwest China. However, the proportion of area under high PM2.5 concentrations increased annually 
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during the study period. For example, the proportion of area in Grade 6 increased from 0.27% to 0.91% and 
this increase primarily happened in East, North and Central China, while the proportion of area in Grade 5 sig-
nificantly increased from 22.81% to 28.98%. Similarly, the proportion of area under mid-range concentrations 
also increased, with Grades 3 and 4 respectively increasing from 17.93% to 18.76% and from 13.32% to 15.88%, 
respectively, while Grade 2 decreased from 12.75% to 9.79%, mostly locating in South, Northeast and North 
China. The increase of Grade 3 was mainly located in Northeast, North and Northwest China, whereas declined 
in South, East and Central China. Meanwhile, the increase of Grade 4 came from South, North, Northeast and 
Northwest China, while declined in Central and East China.

The proportion of area whose PM2.5 concentrations is greater than the secondary standard of 35 μ​g/m3 
increased from 23.08% to 29.89%. Likewise, the areal extent of PM2.5 concentrations between the primary and 
secondary standard increased from 31.25% to 34.64%, which is slightly more than one-third of the study area. 
Among the concentration grades, Grade 5 (35–100 μ​g/m3) shows the biggest area of increasing distribution, and 
this increase occurred primarily in East, South and Central China, slightly in Northeast China. The inter-annual 
undulation in area proportion was the largest for comprising Grades 3 and Grade 4, with both of these areas first 
rapidly decreasing and then slightly increasing. The largest area proportion of Grade 6 with PM2.5 concentrations 
greater than 100 μ​g/m3 happened at the periods 2005–2007 and 2006–2008. The largest area proportion under 
Grade 3 with PM2.5 concentrations of 15–25 μ​g/m3 occurred during 2002–2004, with an area ratio of 20.35%, then 
declined to 17.00% during 2006–2008, and finally increased to 18.76% during 2010–2012.

Figure 1.  Annual variations of different grades of annual average PM2.5 concentrations in whole Mainland 
China and seven geographical subareas from 1998 to 2012. (a) Mainland China, (b) North China, (c) 
Northeast China, (d) Northwest China, (e) Subarea Map, (f) East China, (g) Southwest China, (h) South 
China, (i) Central China. The subarea map was generated in ArcGIS10.2, URL: http://www.esrichina-bj.cn/
softwareproduct/ArcGIS/.

http://www.esrichina-bj.cn/softwareproduct/ArcGIS/
http://www.esrichina-bj.cn/softwareproduct/ArcGIS/
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From Fig. S1 and Fig. 1, it should be stressed that three-fourths of Mainland China had PM2.5 concentra-
tions that exceeded the WHO AQG of 10 μ​g/m3. The concentrations were particularly high in Central, North, 
Southwest and East China, and the most severe areas were the northern Henan, southern Hebei and Shanxi, 
central Shaanxi, eastern Sichuan and western Shandong. It is worth noticed that there was a rapid increase of 
highest PM2.5 concentrations (>​100 μ​g/m3) over southern Hebei, northern Henan and western Shandong during 
1998–2008, with peaks during 2007–2009, followed by a significant reduction during 2008–2010. It is believed 
that this reduction was associated with the national energy conservation policies that were carried out during the 
“Eleventh Five-Year” period10.

Relationship between PM2.5 concentrations and latent geographic factors.  With the help of ordi-
nary least squares (OLS), multivariate correlation analysis was carried out between latent geographic factors and 
PM2.5 concentrations to identify the decisive factors of PM2.5 concentrations before GWR. Figure 2 showed all the 
correlation coefficients between latent geographic factors and PM2.5 concentrations. Overall, most of the correla-
tions are significant in 343 cities except for the factors of bareland and desert.

From Fig. 2, there is a significantly positive correlation between road, agriculture, population, industry, eco-
nomic, urban and PM2.5 concentrations. It implies that PM2.5 originates primarily from motor vehicle emissions 
(diesel and gasoline exhaust), dust (road dust, surface dust, building construction dust), industrial and combus-
tion sources including coal and biomass combustion (e.g. straw, bark residuals, sawdust and shavings)15,16,28,31. In 
particular, traffic (47.9%) and combustion (29.7%) aerosol were two conclusive factors of PM2.5 concentrations22. 
This is consistent with the results of our study that road and agriculture have the strongest relationships with 
PM2.5 concentrations.

A significantly negative correlation was found between vegetation and PM2.5 concentrations. Previous stud-
ies have shown that vegetation can mitigate particulate air pollution through a number of mechanisms, such as 
intercepting and accumulating atmospheric particles through leaf pubescence and stomata18–20. The maximum 
effect on PM2.5 concentrations is the shrub land, followed by the grass land and forest. This is due to the fact that 
different species have different properties, such as leaf size, stomata, vegetation structure and leaf microstructure 

Figure 2.  The correlation coefficients between latent geographic factors and PM2.5 concentrations. 
The latent geographic factors under the blue circle, including “Road”, “Industry”, “Economic”, “Population”, 
“Agriculture”, “Urban”, “Desert”, “Vegetation”, “Climate”, “Topography”, “Water”, “Bareland”, were extracted from 
the variables in the yellow rectangle. For instance, “Climate” was based on “Air pressure”, “Air temperature”, 
“Precipitation”, “Relative humidity”, “wind speed”. For factors that contain multiple variables, the coefficients 
between blue circle and yellow rectangle directly are the contribution of the variables to PM2.5. Similarly, the 
coefficients between blue and purple circle are the contribution of the factors to PM2.5. For univariate factors, 
the coefficients between blue and purple circle are also the contribution of the variables to PM2.5.
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which will affect the capture efficiency21, whilst forest may influence the microclimate, e.g. blocking effective 
ventilation and thus lead to higher local PM2.5 concentrations22.

The results also indicated that there is a significantly negative correlation among all variables of topography 
and PM2.5 concentrations. The decreasing order of ranking is that DEM (altitude), slope and aspect. This may be 
the reason why PM2.5 concentrations of the Sichuan Basin are much higher than that of its circumjacent regions.

Meanwhile, the correlations between all variables of climate and PM2.5 concentrations were negative except 
air pressure. That is to say, an increase (decrease) of each meteorological factor except air pressure will result in 
the decrease (increase) of PM2.5 concentrations. Specifically, there was a moderate negative relation between air 
temperature and PM2.5 concentrations, with a correlation coefficient of −​0.415. This is because when temperature 
rises, air convection becomes quick and frequent, which leads to the diffusion and dilution of PM2.5, decreasing 
PM2.5 concentrations, and vice versa. There was a moderate negative correlation between wind speed and PM2.5 
concentrations, with a correlation coefficient of −​0.487 and higher wind speed is conducive to the diffusion of 
PM2.5, which results in lower concentrations of PM2.5. A weak negative correlation was found between relative 
humidity and PM2.5 concentrations because when air humidity increases, particles will adsorb moisture, occur 
condensation, and finally fall in the form of precipitation that results in lower concentrations of PM2.5

23. The cor-
relation coefficients between precipitation and PM2.5 concentrations was −​0.397 and there are two main impacts 
of precipitation on PM2.5. One is that the adsorption and collision of raindrops upon PM2.5 result in the wet 
sedimentation of PM2.5. The other one is that after rainy weather PM2.5 concentrations significantly decrease due 
to the notable reducing of dust and fugitive dust which previously suspended in the atmosphere. PM2.5 concen-
trations display a strong positive correlation with air pressure, with significant correlation coefficients of 0.639. 
This is due to the fact that when there was high pressure, the down draft hinders the upward movement of PM2.5, 
causing an accumulation of particles24.

However, there are weak negative correlations among all variables of desert and bare land. The Variance 
Inflation Factor (VIF) was used to detect whether collinearity problems existed among the variables by OLS. 
It turned out that the VIF values of most variables are less than 7.5 except water. In conclusion, socioeconomic 
factors of road, agriculture, population, industry, economic, urban and natural geographic factors of topography, 
climate and vegetation were chosen as independent variables of the GWR model.

A higher R2 value means that the explanatory variables explain more variance in PM2.5 concentrations. From 
the report of the GWR model, the R2 value of GWR was 0.9633, whereas it was 0.6788 of OLS, indicating that 
the global OLS model only can explain 67.88% of the variance in PM2.5 concentrations, but the GWR method 
had a significant improvement. In terms of the analysis of variance (ANOVA), the model fit at a significant level 
(F =​ 13.97, p <​ 0.01), indicating that the GWR model outperformed the OLS model. Moreover, the corrected 
Akaike information criterion (AICc)32 value of GWR (720.18) was much lower than that of the OLS (1182.77). 
In other words, the performance of GWR model was much better than that of the global OLS model. Through 
golden-section search33,34, a bandwidth size of 60 was selected as an appropriate value for the GWR model, and it 
means that 60 samples were provided for each local estimation within the adaptive bi-square kernel.

Figure 3 shows the spatial heterogeneity of standardized residuals for PM2.5 concentrations derived from the 
GWR model and spatial autocorrelation analysis. As it shown, the regions with studentized residual (StdResid) 
value between −​2 and 2 account for 93.58% of the whole Mainland China, which indicates that the relations 
between each of the nine factors and PM2.5 are stable. However, few unusually high (red areas) or low (blue areas) 
residuals can be observed. Red areas are under predictions in which the actual PM2.5 concentrations are higher 
than the model fitted value. Blue areas are over predictions in which the actual PM2.5 concentrations are lower 
than fitted value. Regions that have a notable under-prediction of PM2.5 concentrations need further examina-
tion to detect the possible explanations. For instance, those regions of the Tarim Basin in some desert areas, e.g. 
Hotan prefecture and Bayingolin Mongol Autonomous prefecture have highest residuals (StdResid >​2). This 
is because that the higher concentrations of PM2.5 in the desert regions are mainly connected with sand and 
dust weather phenomena11. The Yuncheng city of southern Shanxi province and Tianjin city have much higher 
residuals because they are rich in marine salt and coal mine. The eastern Sichuan basin, e.g. Deyang, Zigong and 
Yibin city has high residuals because of its unique geographical climate conditions35. Shenzhen city of southern 
Guangdong province also has much higher residuals because of the influence of coal used as fuel in this area for 
industrial plants27,36. Spatial autocorrelation among residuals of GWR was detected by Moran’s I test. Moran’s I for 
residuals is 0.025 and is not significant at a 0.01 level (Z-score =​ 1.550, p =​ 0.1212), indicating that the pattern of 
the residuals does not appear to be significantly different than random. It also suggests that the GWR model does 
not miss any key explanatory variables and it is properly specified.

The GWR model also indicates that the effects of independent variables on PM2.5 concentrations vary across 
space. Figure 4 shows the classification maps for the local estimates and p values of nine factors’ regression coeffi-
cients. These results clearly illustrate the existence of an unstable local spatial dependence between PM2.5 concen-
trations and its nine latent geographical factors. In general, it is evident that all coefficients resulting from global 
models are significant. Such inference is also strong for local coefficients in terms of sign and magnitude.

Specifically, although local parameter estimates for “Road” are positive in most areas of Mainland China, the 
intensity of the relationships is not constant (Fig. 4(a1)). The positive and strong relationships are found in the 
northern regions of East China, southern districts of Northwest, North and East China, and a distinct region 
located in South China (Fig. 4(a2)). In such areas, the effect of “Road” upon PM2.5 is relatively higher than in 
other areas, which indicates very efficient strategies to abate the PM2.5 concentrations. The map is produced for 
“Agriculture” (Fig. 4(b1)) illustrates that there are strong positive trends in the central parts towards the northeast 
and southwest, while weak negative relationships in the North and South China. Meanwhile, the regression coef-
ficients of “Agriculture” were primarily significant, except in South China, northern areas of the Northeast and 
East China, and central districts of Southwest China (Fig. 4(b2)). In Southwest China, North China, Northeast 
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China and southern regions of Northwest China, the regression coefficients of “Population” were notable positive 
(Fig. 4(c1,2)).

The direct effect of “Industry” has been illustrated with greater magnitude in the central areas of Southwest 
and Northwest China, whole of South China, most areas of East China, and distinct areas of North and Central 
China (Fig. 4(d1)). And the regression coefficients were primarily significant in the northern regions of the 
Northwest, North, South and East China, southern areas of the Northeast and East China (Fig. 4(d2)). In most 
areas, the local coefficient estimates of “Economic” were positive. Comparatively, it is noteworthy that nega-
tive estimates were found in some areas. These results indicated that an inverted-U shaped Environmental 
Kuznets Curve (EKC)27 relationship between GDP and PM2.5 concentrations indeed exists. Most estimates were 
significant except in Northeast China, South China, central areas of East China and eastern regions of North 
China (Fig. 4(e1,2)). The regression coefficient estimates of “Urban” were primarily positive in the west areas 
of Northwest and Southwest China, Northeast and North China, and the estimates were highly significant in 
Northeast China, northeast and south of North China, south and central regions of Southwest China and most 
areas of Northwest China (Fig. 4(f1,2)).

“Topography” had negative effects on “PM2.5 Concentrations” except in the southern regions of Southwest and 
Northeast China, western areas of South China, and eastern districts of East and North China. And their relation-
ships were significant in most areas of Northwest and Southwest China, north and south areas of East China, and 
the distinct regions of North and Central China (Fig. 4(g1,2)). Estimated local coefficients of “Climate” were for 
the most part negative over the study area which echoes its direct effect on “PM2.5 Concentrations” (Fig. 4(h1)). 
The stronger effects were found in the central districts of North China, toward eastern expansion. And in most 
regions of North China, west of South China, east of East China, and south of the Northeast and Southwest China, 
the estimates were significant (Fig. 4(h2)). In Fig. 4(i1), the direct effect of “Vegetation” has been illustrated with 
greater magnitude in the southeast areas of Central China, eastern and western regions of Northwest China, some 
specific areas of North China, and most areas of East China. And its regression coefficients in Northeast China, 
western regions of Northwest China and Southwest China and some districts of East China and North China were 
significant (Fig. 4(i2)).

Figure 3.  Spatial heterogeneity of standardized residuals for PM2.5 concentrations derived from the 
GWR model. All the maps were generated in ArcGIS10.2, URL: http://www.esrichina-bj.cn/softwareproduct/
ArcGIS/.

http://www.esrichina-bj.cn/softwareproduct/ArcGIS/
http://www.esrichina-bj.cn/softwareproduct/ArcGIS/
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It is expected that the variables such as road, agriculture, industry show direct positive effects on PM2.5 con-
centrations, the variables like population, urban with negative signs are also detectable. Moreover, the variables 
of topography, climate and vegetation are the opposite. One reason for such counterintuitive signs as expressed 
by Chow et al.37 is that the collinearity among some independent variables or the collinearity in estimated local 
coefficients. It is argued that the local coefficients could be correlated even when there is no collinearity among 
independent variables38. Another reason is that some variables might be less significant at certain locations than 
others or are completely insignificant, which is due to the method employed in estimating the standard deviation 
in GWR models39.

Figure 4.  Spatial distribution of local estimates (a1–i1) and p values (a2–i2) of nine factors’ coefficients derived 
from the GWR model. Local estimates of (a1) Road, (b1) Agriculture, (c1) Population, (d1) Industry, (e1) 
Economic, (f1) Urban, (g1) Topography, (h1) Climate, (i1) Vegetation, p values of (a2) Road, (b2) Agriculture, 
(c2) Population, (d2) Industry, (e2) Economic, (f2) Urban, (g2) Topography, (h2) Climate, (i2) Vegetation. All 
the maps were generated in ArcGIS10.2, URL: http://www.esrichina-bj.cn/softwareproduct/ArcGIS/.

http://www.esrichina-bj.cn/softwareproduct/ArcGIS/


www.nature.com/scientificreports/

8Scientific Reports | 7:40607 | DOI: 10.1038/srep40607

Measures and suggestions for controlling PM2.5 concentrations.  Given the fact that PM2.5 pollu-
tions in Mainland China is more and more severe, it is urgent to take quick measures. For example, actions 
to strictly forbid straw-burning, install desulphurization and dust removal device for coal-fired power plant, 
close heavily polluting industry, transfer other large industries elsewhere and replace coal with cleaner renewable 
energy sources, e.g., solar energy, hydrogen fuel, geothermal. Another effective measure to reduce PM2.5 emis-
sions is reducing the use of motor vehicles. Some megacities (e.g., Beijing and Shanghai) have limited the vehicles 
usage through odd-and-even license plate rule and strict control of high displacement automobiles usage. Such 
measures could be effective in the short term, but will give considerably rise to the government cost and difficult 
to control in the near future when the pollution became more intense and integrated with regional economic 
issues28.

To fundamentally mitigate PM2.5 concentrations, the following suggestions are proposed based on our study 
and the opinions of other investigations. Firstly, the improvement of fuel quality and the implementation of a 
more stringent vehicle emission standard are the most effective means of reducing PM2.5 emissions. Secondly, 
formulating strict monitoring system, immediately setting out to a nationwide monitoring network, making con-
tingency plans for heavily polluted days and developing mitigation targets are the important means of governing 
PM2.5. Regional central heating in winter is a substantial measure of the prevention and control of urban PM2.5. 
Thirdly, the environmental protection policy should be prevention-driven rather than problem-driven. It is also 
important to emphasize that the impacts of each latent factor on PM2.5 in different regions are different. Thus, 
measures and strategies for controlling PM2.5 should be an integration of unified planning with the principle of 
adaptation to local conditions, e.g. the design of vegetation configuration based on local conditions to achieve the 
goal of increasing vegetation coverage. Furthermore, because of limited communication and lack of a negotiation 
process, we did not see significant trust building either among the public or between the public and the govern-
ment, which could have been a major benefit of public participation40. Hence the last and the most important sug-
gestions are raising public awareness of PM2.5 perniciousness and environmental conservation and strengthening 
the involvement of the public and government.

Limitations and future research directions.  The models and datasets used in this study reflected an 
integration of multiple scales, which would inevitably generate uncertainties in spatial statistics. Gridded popula-
tion and GDP datasets are secondary derived data, and to some extent will introduce new uncertainty. Although 
there were no collinearity problems existed among the decisive factors, the information redundancy still existed. 
It affects the performance of the model and even produces counterintuitive signs.

As we all know, the correlations between PM2.5 and latent geographic factors that varied at different spatial 
and temporal scales; therefore, when analyzing their causal relationships, the scale effect should be considered 
to successfully uncover the spatial and temporal characteristics of PM2.5 concentrations. Furthermore, in future 
studies, it will be necessary to distinguish the influencing ranges of different latent geographic factors and to make 
certain the inconsistency of their reacting ranges.

Conclusions
In order to arouse the attention of researchers to investigate the causes of severe PM2.5 mass frequently in China 
nowadays from the macroscopic perspective, this paper analyzed the characteristics of spatiotemporal variations 
of PM2.5 concentrations in Mainland China during 1998–2012. This study was an initial attempt to explore the 
influencing factors, including natural geographical and socioeconomic factors of PM2.5 concentrations in 343 cit-
ies across Mainland China and dynamically evaluated the potential health risks of PM2.5 in 2000, 2005 and 2010. 
The following conclusions were drawn from this research:

(1) PM2.5 concentrations increased over most of Mainland China during the period 1998–2012. The pro-
portion of area with low PM2.5 concentrations less than the WHO AQG of 10 μ​g/m3 declined significantly from 
32.92% to 25.67%, while the proportion of area under high range concentrations greater than the WHO Interim 
Target-1 concentration of 35 μ​g/m3 increased significantly from 23.08% to 29.89%. The concentrations were par-
ticularly high in Central, North, Southwest and East China, and the most severe were in northern Henan, south-
ern Hebei and Shanxi, central Shaanxi, eastern Sichuan and western Shandong.

(2) A significantly strong positive correlation was found between all variables of socioeconomic factors (road, 
agriculture, population, industry, economic, urban) and PM2.5 concentrations, while a significantly strong nega-
tive correlation was found between almost all variables of natural geographical factors (vegetation, topography, 
climate) and PM2.5 concentrations. Moreover, Moran’s I for its residuals was 0.025 and was not significant at a 0.01 
level (Z-score =​ 1.550, p =​ 0.1212), indicating that the GWR model didn’t miss any key explanatory variables and 
was properly specified. It is also necessary to emphasize that the effects of each latent factor on PM2.5 in various 
regions are different. Therefore, regional measures and strategies for controlling PM2.5 should be integration of 
unified planning with the principle of adaptation to local conditions.

Methods
The technical flowchart of this study is shown in Fig. 5, mainly includes the following steps:

Step 1: Validate the accuracy of the annual PM2.5 concentrations grids dataset in Mainland China based on 
related literatures and evaluate the spatial and temporal characteristics of PM2.5 exposures from 1998 to 2012.

Step 2: Download data and extract latent geographic factors from these datasets.
Step 3: Analyze and compare the impact of each latent geographic factor on PM2.5 concentrations through 

multivariate correlation analysis. Moreover, calculate the VIF by OLS to detect whether collinearity problems 
existed among the factors. The goal of this step is to determine the decisive factors on PM2.5 concentrations.
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Step 4: Apply the GWR method to explore spatial non-stationarity and varying relationships between PM2.5 
concentrations and decisive factors. Moreover, spatial autocorrelation analysis was used to detect the perfor-
mance of the GWR.

In brief, conventional statistical analysis and GWR model were adopted in this study.

Conventional statistical analysis.  In order to make the analysis straightforward, annual average PM2.5 
concentrations were categorized sequentially into six grades (Grade 1: <​10, Grade 2: 10–15, Grade 3: 15–25, 
Grade 4: 25–35, Grade 5: 35–100, Grade 6: >​100 μ​g/m3) according to WHO’s air quality guidelines2 and the latest 

Figure 5.  The technical flowchart of this study. All the maps were generated in ArcGIS10.2, URL: http://www.
esrichina-bj.cn/softwareproduct/ArcGIS/.

http://www.esrichina-bj.cn/softwareproduct/ArcGIS/
http://www.esrichina-bj.cn/softwareproduct/ArcGIS/
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version of China’s ambient air quality standard (GB 3095–2012)41. WHO’s air quality guidelines have four stand-
ards, including one air quality guideline (AQG:10 μ​g/m3) and three interim targets. As for the interim targets, 
Interim Target-1 (IT-1:35 μ​g/m3) was in line with the annual average secondary standard of PM2.5 concentrations 
of China’s ambient air quality standard; Interim Target-2 (IT-2:25 μ​g/m3) and Interim Target-3 (IT-3:15 μ​g/m3) 
was consistent with the annual average primary standard of PM2.5 concentrations of China’s ambient air quality 
standard. The characteristics of the variations in the seven regions were analyzed to quantify the degree of spa-
tial variation across Mainland China. To objectively analyze the influencing factors of PM2.5 concentrations in 
Mainland China as well as to reduce the influence of data from different years, mean PM2.5 concentrations were 
calculated at city level using the PM2.5 concentrations dataset and city boundary layer derived from electronic 
map. Similarly, values of each latent geographic factors (e.g. population density, road density, slope, wind speed, 
forest cover ratio, etc.) of 343 cities were also summarized.

Geographically weighted regression.  Geographically weighted regression (GWR) was adopted to 
explore the local spatial heterogeneity of the causal relationships between PM2.5 concentrations and geographic 
factors. It is a powerful technique to examine geographically non-stationarity and varying relationships between 
dependent/response variable Y and a set of independent/explanatory variables Xj (j =​ 1, 2, …, m) at regional 
scale42. Through adding the geographical location information into the conventional regression process, the GWR 
attempts to show how the relationship between the dependent variable and the independent variables varies over 
the entire space. Also, it is described by the equation:

β β β β ε= + + + + +Y U , V U , V X U , V X L U , V X( ) ( ) ( ) ( ) (1)i 0 i i 1 i i 1i 2 i i 2i m i i mi i

where (Ui, Vi) and εi are respectively space coordinate and regression residual of the ith location. And unlike 
conventional global regression, the coefficients βj(Ui, Vi) (j =​ 1, 2, …​, m) are varying conditionals on the location.

In GWR model, the regression coefficients show the local spatial variation, and the standard errors of the coef-
ficients illustrate the reliability of the estimated coefficients43. Considering the samples are not regularly spaced in 
our study, GWR v4.033,34 with the adaptive bandwidth and bi-square kernel was implemented to build the model. 
Meanwhile, golden-section search which can efficiently identify the optimal bandwidth size in most cases was 
used in this research. Furthermore, the AICc was extensively adopted to compare the global OLS model with a 
local GWR model.

Data and Study Area
Study area.  Cities, including county-level, prefectural-level cities and municipalities are the basic admin-
istrative units which can be used to reveal Chinese Mainland’s natural geographic features and socioeconomic 
condition, as well as its air pollution. Additionally, natural geographic factors and socioeconomic factors match 
well with the PM2.5 concentrations distribution at the city level. According to the above mentioned analysis, 343 
cities were used as the basic study unit to explore the influencing factors of PM2.5 in Mainland China. In order 
to better and more easily elaborate the results, Mainland China was divided into seven geographical subareas: 
Northeast China (NEC), North China (NC), East China (EC), Central China (CC), South China (SC), Southwest 
China (SWC), and Northwest China (NWC) (Table 1).

Multisource data used in this study is listed in Table 2, which is classified into two broad categories: 1) PM2.5 
data used as dependent/response variable Y in GWR model; 2) natural geographical and socioeconomic data, 
such as DEM, population, GDP and so on used as independent/explanatory variables Xj (j =​ 1, 2, …​, m).

PM2.5 data.  There is a lack of publically available global remote sensing data related to PM2.5, until van 
Donkelaar et al.4–6 used the GEOS-Chem global chemical transport model (http://geos-chem.org/) to success-
fully map global ground-level PM2.5 concentrations. They are based on total column aerosol optical depth (AOD) 
from a combination of MODIS (Moderate Resolution Imaging SpectroRadiometer), MISR (Multi-angle Imaging 
SpectroRadiometer) and SeaWIFS (Sea-Viewing Wide Field-of-View Sensor) AOD satellite instruments and 
coincident aerosol vertical profiles. The global annual PM2.5 concentrations grids dataset represents a series of 
three-year running mean grids (1998–2012) of fine particulate matter (solid particles and liquid droplets) that 
provides the highest accuracy, largest coverage (from 70°N to 55°S), longest temporal range and highest resolution 
(6 arc-minutes, 0.1 degree or approximately 10 km at the equator). It has been effectively applied on a national and 
regional scale26,28,44. These data is derived from Socioeconomic Data and Applications Center (sedac)—Hosted 
by the Center for International Earth Science Information Network (CIESIN) at Columbia University (http://
sedac.ciesin.columbia.edu/). A subset of the global PM2.5 concentrations grids dataset (1998–2012) covering the 

Geographical subarea Provinces and municipalities

Northeast China Liaoning, Jilin, and Heilongjiang

North China Beijing, Tianjin, Hebei, Shanxi and Inner Mongolia

East China Jiangsu, Zhejiang, Shanghai, Anhui, Fujian, Shandong and Jiangxi

Central China Hunan, Hubei and Henan

South China Guangxi, Hainan and Guangdong

Southwest China Sichuan, Yunnan, Guizhou, Chongqing and Tibet

Northwest China Gansu, Qinghai, Ningxia, Shaanxi and Xinjiang

Table 1.   Seven geographical subareas of Mainland China.

http://geos-chem.org/
http://sedac.ciesin.columbia.edu/
http://sedac.ciesin.columbia.edu/
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Mainland China was used in this research. Furthermore, there exist data voids in the original PM2.5 dataset due to 
snow-covered mountains, perennial cloud and sensor malfunctions, in particular for the Tibetan Plateau. With 
the purpose of alleviating this problem, the spline interpolation method45 was utilized to make up data voids.

Although van Donkelaar et al. has validated the accuracy of the global annual PM2.5 concentrations grids 
dataset based on the agreement between satellite-derived estimates and ground-based measurements5,6. 
However, considering that the relationship between AOD-PM2.5 can differ by space and countries, it was still 
necessary to evaluate the reliability of the dataset for the specific area of Mainland China. Because China has 
not built national PM2.5 network monitoring sites until the end of 2012, continuous observation data with which 
to validate satellite-derived air quality data was not available. Therefore, we collected Chinese ground-based 
PM2.5 measurements of different sites at different times from relevant published literature. Consequently, as 
Supplementary Table S1 shown, 61 sample points with site location, geocoordinates, ground-based PM2.5 values, 
and sampling periods were extracted from 34 relevant studies.

The ground measured PM2.5 concentrations and spatial distribution of these sample points are shown 
in Fig. 6(a). Furthermore, according to the location and period of the sample points, the corresponding 
satellite-derived values of PM2.5 concentration data were calculated. Also, the linear correlation between “PM2.5 
Ground-based Values” and “PM2.5 Satellite-derived Values” is shown in Fig. 6(b). A significant overall agreement 
is found (r =​ 0.770), which indicated that the satellite-derived PM2.5 concentration data were reliable. The agree-
ment was higher than that for Europe (r =​ 0.730) and North America (r =​ 0.760)6. However, the satellite-derived 
values tend to be lower than the ground-based values, and this was consistent with results of Europe and North 
America6. Some of this underestimate may arise from the different PM2.5 measurement methods which were used 
in remote sensing and site monitoring. While others might be due to that the time spans of the sample points and 
remote sensing were inconsistent, e.g., some sample points were monitored only in a few days or months of one 
year, while remote sensing monitored yearly.

Natural geographical and socioeconomic data. 

(1)	 DEM data: The SRTM UTM DEM was obtained from the processing of a void-filled version of the SRTM3 
dataset (SRTM3 V4.1). The SRTM3 V4.1 was offered by the International Center for Tropical Agriculture 

Data Sources Year Resolution or scale

Global Annual PM2.5 Grids Datasets http://sedac.ciesin.columbia.edu/ 1998–2012 10000 m

SRTM UTM DEM http://www.gscloud.cn 2003 90 m

Daily Surface Climate Variables of China http://cdc.cma.gov.cn/home.do 2010 1000 m

Gridded GDP Dataset http://www2.geodata.cn/index.html 2010 1000 m

Gridded Population Dataset http://www2.geodata.cn/index.html 2010 1000 m

Global Land Cover 30 m Dataset http://www.globallandcover.com/
GLC30Download/index.aspx 2004–2010 30 m

Desert Distribution Mapset http://www2.geodata.cn/index.html 2000 1:100000

Electronic Map 2010 1:10000

Table 2.   Basic information of the eight datasets used in this study.

Figure 6.  (a) The ground-based PM2.5 measurements collected from the literature for locations in Mainland 
China and (b) linear correlation of the two datasets (PM2.5 ground-based values and satellite-derived values). 
The left map was generated in ArcGIS10.2, URL: http://www.esrichina-bj.cn/softwareproduct/ArcGIS/.

http://sedac.ciesin.columbia.edu/
http://www.gscloud.cn
http://cdc.cma.gov.cn/home.do
http://www2.geodata.cn/index.html
http://www2.geodata.cn/index.html
http://www.globallandcover.com/GLC30Download/index.aspx
http://www.globallandcover.com/GLC30Download/index.aspx
http://www2.geodata.cn/index.html
http://www.esrichina-bj.cn/softwareproduct/ArcGIS/
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(CIAT) and its data gaps were filled with different interpolation algorithms46 and SRTM DEM. The SRTM 
DEM was acquired by radar interferometry (InSAR) during about ten days in February 2000, when a Space 
Shuttle mapped the Earth surface between 60°N and 56°S with C-band radar. Based on these data and other 
products, a covering more than 80% of earth’s land surface DEM with three arc-seconds resolution (~90 m, 
SRTM3) was derived and distributed for free in 2003. This data has been validated through comparison with 
ground control points. SRTM UTM DEM is downloaded from International Scientific & Technical Data Mir-
ror Site, Computer Network Information Center, and Chinese Academy of Sciences (http://www.gscloud.cn).

(2)	 Meteorological site data: Meteorological site data are derived from the “Daily Surface Climate Variables of 
China” catalog (SURF_CLI_CHN_MUL_DAY_V3.0 on June-25-2014), which is released by the Climatic 
Data Center, National Meteorological Information Center, China Meteorological Administration and China 
Meteorological Data Sharing Service System (http://cdc.cma.gov.cn/home.do). The dataset starts on 1 Janu-
ary, 1951, and keeps running till now, with a total of 824 fundamental stations (The number of stations does 
vary in a different year, but has remained stable since 1980) throughout Mainland China. It consists of over 
22 climate variables, although we focus on daily average air temperature (TEM), average air pressure (PRS), 
average relative humidity (RHU), average wind speed (WIN) and total precipitation (PRE) in this study. The 
raster/grid maps with 1 km resolution of the annual mean air temperature, air pressure, wind speed, rainfall 
and relative humidity are generated using thin plate spline spatial interpolation method47. The spline surfaces 
are fitted as functions of latitude, longitude, and elevation. The same elevation data used is SRTM UTM DEM 
90 m data. It is noted that the elevation is a co-predictor, and thus a topographic correction for the gridded 
data is calculated during the interpolation.

(3)	 GDP and population data: GDP and population are common indicators of socioeconomic development. The 
gridded GDP (2010) and population datasets (2010) in Mainland China were all provided by the National 
Data Sharing Infrastructure of System Science (http://www2.geodata.cn/index.html). Respectively according 
to the relationship between demographic data, GDP data and land use types, these gridded datasets with a 
spatial resolution of 1 km were transformed from statistical yearbook48.

(4)	 Land cover data: Global Land Cover 30 m dataset (GLC30) was downloaded from Global Land Cover Infor-
mation Service System (http://www.globallandcover.com/GLC30Download/index.aspx). This kind of land 
cover data was derived by using multisource data, including Landsat TM, ETM+​, Environmental Disaster 
Alleviation Satellite (HJ-1) multispectral images. The dataset has a grid cell resolution of 30 m, covers the 
global land surface from 80°N to 80°S, and consists of ten land cover types: cultivated land, forest, grassland, 
shrubland, wetland, water bodies, tundra, artificial surfaces, bareland, permanent snow and ice.

(5)	 Desert distribution mapset and electronic map: As with the GDP and population datasets, Desert distribution 
Mapset was also derived from the National Data Sharing Infrastructure of System Science (http://www2.geo-
data.cn/index.html). This mapset covers most area of Mainland China excluding Hunan, Yunnan province, 
Shanghai and Chongqing municipality. Desert was divided into six types: shifting sandy land, semi-shifting 
sandy land, fixed sandy land, semi-fixed sandy land, saline-alkaline land and gobi.

Administrative boundary, factory and road density of Mainland China used in this work were extracted from 
an electronic map in 2010. All datasets were rectified to the Universal Transverse Mercator (UTM) projection 
system (datum WGS 1984, zone 48), and integrated into a geodatabase.
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