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ABSTRACT Some of the previously reported clinical isolates of Elizabethkingia me-
ningoseptica may be later named species of Elizabethkingia. We determined the ac-
curacy of species identification (with two matrix-assisted laser desorption ionization–
time of flight mass spectrometry [MALDI-TOF MS] systems and the Vitek 2 GN card),
relative prevalence of three Elizabethkingia spp. in clinical specimens, and antimicro-
bial susceptibility of the species identified by 16S rRNA gene sequencing. Specimens
for culture were collected from patients in a university hospital in Seoul, South Ko-
rea, between 2009 and 2015. All 3 Elizabethkingia spp. were detected in patients;
among the 86 isolates identified by 16S rRNA gene sequencing, 17 (19.8%) were E.
meningoseptica, 18 (20.9%) were Elizabethkingia miricola, and 51 (59.3%) were Eliza-
bethkingia anophelis. Only the MALDI-TOF Vitek MS system with an amended data-
base correctly identified all of the isolates. The majority (76.7%) of the isolates were
from the lower respiratory tract, and 8 (9.3%) were from blood. Over 90% of E. me-
ningoseptica and E. anophelis isolates were susceptible to piperacillin-tazobactam
and rifampin. In contrast, all E. miricola isolates were susceptible to fluoroquinolones
except ciprofloxacin. Further studies are urgently needed to determine the optimal
antimicrobial agents for the treatment of infections due to each individual Elizabeth-
kingia species.

KEYWORDS Elizabethkingia meningoseptica, Elizabethkingia miricola, Elizabethkingia
anophelis, antimicrobial susceptibility, 16S rRNA gene sequencing

Elizabethkingia species are aerobic, nonmotile, oxidase-positive, indole-positive,
Gram-negative bacilli that do not ferment glucose. Elizabethkingia spp. can be

found frequently in soil, freshwater, salt water, and in hospital environments (1).
However, they do not normally exist in the human body. Elizabethkingia meningoseptica
(formerly Chryseobacterium meningosepticum) has been a well-known human pathogen
since its first description in a case of neonatal meningitis by Elizabeth O. King in 1959
(2). This organism was reported to cause various invasive infections in immunocom-
promised hosts and to be associated with nosocomial infections and outbreaks in
intensive care units (ICUs) (3–5). It has been considered that the incidence of E.
meningoseptica bacteremia has increased over the last decade (6). Two new species of
Elizabethkingia, Elizabethkingia miricola and Elizabethkingia anophelis, were proposed in
2003 and 2011, respectively (7–9). Therefore, some of the previously reported clinical
isolates of E. meningoseptica may be later named species of Elizabethkingia. The first
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case of E. miricola sepsis was reported in 2008 (10), and a case of E. anophelis neonatal
meningitis was reported in 2013 (11).

E. meningoseptica isolates are often resistant (R) to multiple �-lactam antibiotics due
to intrinsic class A extended-spectrum �-lactamases (ESBLs) and inherent class B
metallo-�-lactamases (MBLs) (12). The antimicrobial susceptibility of Elizabethkingia
may vary depending on the species. However, there are scanty data on the suscepti-
bility of the new species. The aims of this study were to determine the accuracy of
species identification systems and the relative prevalence of three Elizabethkingia spp.
in clinical specimens and to compare the antimicrobial susceptibility of the species
identified by 16S rRNA gene sequencing.

RESULTS
Elizabethkingia spp. identified. Among the total 86 Elizabethkingia isolates, the

species identified using 16S rRNA gene sequencing were 17 isolates (19.8%) of E.
meningoseptica (99.5% to 99.9% nucleotide identity to E. meningoseptica type strain
ATCC 13253), 18 isolates (20.9%) of E. miricola (98.9% to 99.8% nucleotide identity to E.
miricola type strain GTC862), and 51 isolates (59.3%) of E. anophelis (99.1% to 100.0%
nucleotide identity to E. anophelis type strain FMS-007).

The matrix-assisted laser desorption ionization–time of flight (MALDI-TOF) Vitek MS
system with an amended database correctly identified all of the 17, 18, and 51 isolates
of E. meningoseptica, E. miricola, and E. anophelis, respectively. However, the Bruker
Biotyper correctly identified 16 of 17 E. meningoseptica isolates and 17 of 18 E. miricola
isolates but none of the E. anophelis isolates (Table 1). The Vitek 2 GN card system
correctly identified 16 of 17 E. meningoseptica isolates but none of the other species.

Among the 86 isolates of Elizabethkingia spp., 66 (76.7%) were recovered from the
lower respiratory tract, 8 (9.3%) from blood, 7 (8.1%) from urine, and 5 (5.8%) from other
specimens (Table 2). Among the 8 isolates from blood, 2 isolates were identified as E.
miricola and 6 isolates were identified as E. anophelis. There were no E. meningoseptica
isolates from blood. Careful clinical evaluation suggested that the positive blood

TABLE 1 Comparison of species identified by 16S rRNA gene sequencing with those by
the two MALDI-TOF systems and the Vitek 2 GN card system

16S rRNA gene
sequencing
(no. of isolates)

MALDI-TOF Vitek MSa

(no. of isolates)

MALDI-TOF Bruker
Biotyper (no. of
isolates)

Vitek 2 with GN card
(no. of isolates)

E. meningoseptica (17) E. meningoseptica (17) E. meningoseptica (16) E. meningoseptica (16)
Chryseobacterium

indologenes (1)
C. indologenes (1)

E. miricola (18) E. miricola (18) E. miricola (17) E. meningoseptica (16)
C. indologenes (1) C. indologenes (2)

E. anophelis (51) E. anophelis (51) E. meningoseptica (49) E. meningoseptica (48)
C. indologenes (1)

E. meningoseptica/
E. miricola (1)

E. meningoseptica (2)

E. miricola (1)
aIdentification was based on a SARAMIS database amended with Elizabethkingia spp. spectra provided to
bioMérieux.

TABLE 2 Source of detection of 86 isolates of Elizabethkingia spp. at a tertiary care
hospital from 2009 to 2015

Species (no. of isolates)

No. (%) of isolates from:

Lower respiratory Blood Urine Othera

E. meningoseptica (17) 14 0 3 0
E. miricola (18) 12 2 0 4
E. anophelis (51) 40 6 4 1

Total (%) 66 (76.7) 8 (9.3) 7 (8.1) 5 (5.8)
aOther sources includes eye, neck, head, pleural fluid, and external ear fluid.
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cultures in 4 of the 8 patients were not significant. However, they may have been
transient invaders from central arterial or venous lines or endotracheal tubes. Therefore,
no antimicrobial agents were administered for Elizabethkingia infection (Table 3). All of
the 8 patients had various underlying diseases and had indwelling catheters or endo-
tracheal tubes. Four patients were admitted to the ICU. All of the patients, except for
one, were treated with various antimicrobial agents during the 7 days prior to blood
culture. Among the four patients, two were cured with tigecycline and trimethoprim-
sulfamethoxazole, to which the isolates were susceptible (S). The remaining two
patients were cured with trimethoprim-sulfamethoxazole, although the MICs for the
isolates were 4 and 76 �g/ml (resistance breakpoints, �4 and 76 �g/ml), respectively.

In pulsed-field gel electrophoresis (PFGE) analysis, isolates of each Elizabethkingia
species belonged to 5 to 10 different PFGE groups, while identical pulsotypes were
found in 8 of 17 E. meningoseptica isolates, 6 of 18 E. miricola isolates, and 17 of 51 E.
anophelis isolates (see Fig. S1 in the supplemental material).

Antimicrobial susceptibilities. The MICs of the antimicrobial agents and the
susceptibilities of the isolates are shown in Table 4 (see Data Set S1 in the supplemental
material). Among the E. meningoseptica isolates, 100% and 94% were susceptible to
piperacillin-tazobactam and rifampin, respectively, but only 23% to 41% were suscep-
tible to fluoroquinolones. Unlike E. meningoseptica, all E. miricola isolates were suscep-
tible to fluoroquinolones, except for ciprofloxacin. Over 90% of E. meningoseptica and
E. anophelis isolates were susceptible to piperacillin-tazobactam and rifampin. Although
none of the species were susceptible to vancomycin, all three species exhibited at least
94% intermediate (I) reaction to this agent.

DISCUSSION

The accuracy of species identification was low with the Vitek 2 GN card system.
Although our Bruker Biotyper without an amended database failed to identify E.
anophelis isolates, the addition of a database for E. anophelis was recently reported (13).
This result indicates that a MALDI-TOF mass spectrometry (MS) system can be a reliable
species identification system for the genus Elizabethkingia.

Although E. meningoseptica infections are well known, E. miricola sepsis in a lym-
phoma patient was reported in the United States after the proposal of new species (10).
Several E. anophelis infections have been reported from tropical or subtropical regions,
the Central African Republic (11), Singapore (14), and Hong Kong (15). A recent study
in Hong Kong urged researchers to consider the clinically significant morbidity and
mortality of patients with E. anophelis bacteremia (13). An E. anophelis outbreak in
Wisconsin in 2016 resulted in the deaths of at least 18 patients (16).

In our study, which took place in the temperate country of South Korea, all three
species of Elizabethkingia were detected in patients, and E. anophelis was the most
prevalent. It is interesting that E. meningoseptica was not present while E. anophelis was
the most common among blood isolates (Table 2). These findings suggest that E.
anophelis plays a significant role as a human pathogen. In general, the majority of blood
isolates are clinically significant (5, 13, 16). However, in our study, only 4 of the 8
patients with positive Elizabethkingia blood cultures were clinically significant, although
all of the patients had risk factors for infection (Table 3). The majority of the Elizabeth-
kingia isolates were detected in lower respiratory tract specimens, but it was difficult to
distinguish infection from colonization as reported in other studies (4, 17).

Our PFGE analysis of each species showed that certain pulsotypes were more
prevalent than others, suggesting that these types are either more prevalent in the
hospital environment or that they have a higher capability to infect or colonize.

E. meningoseptica has been known to be resistant to multiple antimicrobial agents (18,
19). However, as mentioned above, the susceptibility of E. meningoseptica in the previous
study may include those of the other 2 species. To the best of our knowledge, our study is
the first one to compare the susceptibilities of all Elizabethkingia species (Table 4). The
organisms are typically resistant to �-lactams (15, 18). In a previous study from our group
(19), all 31 isolates of E. meningoseptica (which may include other Elizabethkingia species)
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had both blaBlaB and blaGOB genes. The GenBank database shows that chromosomes of E.
anophelis (accession numbers CP006576 and CP007547) and E. miricola (accession num-
ber CP011059) possess blaBlaB, blaGOB, and blaCME genes and an AmpC �-lactamase
gene. In our study, over 90% of the isolates of 3 Elizabethkingia spp. were susceptible to
a piperacillin-tazobactam combination. This has also been shown by other studies (5, 20).
However, it is necessary to evaluate clinical efficacy, given that all Elizabethkingia spp.
appear to be inherent MBL producers.

Antimicrobial resistance may vary depending on the species as well as the region
and time of bacterial isolation. As mentioned above, limited data are currently available
on the susceptibility patterns of Elizabethkingia spp. Although three previous studies
were performed using relatively significant numbers of isolates, the specimens were
from unspecified sources of patients, blood, or hospital environments (5, 21, 22).
Furthermore, all three reports stated that the species were E. meningoseptica, but the
isolates were identified before the proposal of new species or unreliable phenotypic
methods were used for identification. However, by comparing our results, based on

TABLE 4 Antimicrobial susceptibilities of Elizabethkingia isolates determined by the agar dilution method

Species (no. of isolates) and
antimicrobial agents

Breakpoint
(�g/ml)a MIC (�g/ml) Susceptibility (%)

S R Range 50% 90% S I R

E. meningoseptica (17)
Piperacillin �16 �128 16–32 16 32 65 35 0
Piperacillin-tazobactamb �16 �128 8–16 8 16 100 0 0
Ceftazidime �8 �32 64 to �128 �128 �128 0 0 100
Imipenem �4 �16 16–32 32 32 0 0 100
Ciprofloxacin �1 �4 1 to �64 64 �64 23 6 71
Levofloxacin �2 �8 0.5–128 16 64 35 0 65
Moxifloxacin �2 �8 0.12–64 4 32 41 12 47
Gatifloxacin �2 �8 0.5–128 8 64 35 12 53
Trimethoprim-sulfamethoxazoleb �2 �4 2–8 4 4 6 0 94
Gentamicin �4 �16 4 to �128 32 64 6 0 94
Vancomycin �4 �32 8–64 8 16 0 94 6
Rifampin �1 �4 0.25–2 0.5 1 94 6 0

E. miricola (18)
Piperacillin �16 �128 4–32 16 32 83 17 0
Piperacillin-tazobactam �16 �128 4–32 8 16 94 6 0
Ceftazidime �8 �32 64 to �128 �128 �128 0 0 100
Imipenem �4 �16 16 to �64 64 64 0 0 100
Ciprofloxacin �1 �4 0.5–4 1 4 56 22 22
Levofloxacin �2 �8 0.25–2 0.5 2 100 0 0
Moxifloxacin �2 �8 �0.06–1 0.25 1 100 0 0
Gatifloxacin �2 �8 0.12–2 0.5 2 100 0 0
Trimethoprim-sulfamethoxazole �2 �4 1–8 4 8 28 0 72
Gentamicin �4 �16 4 to �128 8 �128 45 22 33
Vancomycin �4 �32 8–16 16 16 0 100 0
Rifampin �1 �4 0.25 to �128 1 16 66 17 17

E. anophelis (51)
Piperacillin �16 �128 8–64 16 32 82 18 0
Piperacillin-tazobactam �16 �128 �0.12–32 8 8 92 8 0
Ceftazidime �8 �32 64 to �128 �128 �128 0 0 100
Imipenem �4 �16 16 to �64 64 �64 0 0 100
Ciprofloxacin �1 �4 1 to �64 64 �64 22 6 72
Levofloxacin �2 �8 0.5 to �128 32 64 29 6 65
Moxifloxacin �2 �8 0.12–64 4 32 41 10 49
Gatifloxacin �2 �8 0.25–128 8 32 33 12 55
Trimethoprim-sulfamethoxazole �2 �4 2–16 4 8 22 0 78
Gentamicin �4 �16 1 to �128 32 64 22 23 55
Vancomycin �4 �32 8–64 16 16 0 94 6
Rifampin �1 �4 �0.06–16 1 1 96 2 2

aThe interpretive criteria applied were those of the CLSI for non-Enterobacteriaceae; the criteria for vancomycin and rifampin were those for Staphylococcus or
Enterococcus spp. The criterion of gatifloxacin was that for moxifloxacin.

bIn the combinations, the concentration of tazobactam was 4 �g/ml constant, and the ratio of trimethoprim to sulfamethoxazole was 1 to 19.
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identification by 16S rRNA sequencing, to those of other studies, the following gener-
alization can be made: Elizabethkingia spp. are nonsusceptible to ceftazidime, imi-
penem, and vancomycin (high vancomycin susceptibility in a study may be due to the
use of a higher breakpoint, 16 �g/ml [21]); the susceptibility rates of E. miricola to
fluoroquinolones are higher than those of the other species; and the susceptibility of
Elizabethkingia spp. to other antimicrobial agents are difficult to predict.

Several reports have shown that the incidence of Elizabethkingia bacteremia in-
creased and the mortality rate was high (5, 20, 23, 24). Indwelling devices and inappropriate
antimicrobial therapy were independent risk factors for poor outcomes with Elizabethkingia
bacteremia (5, 24, 25). In our study, all 4 bacteremic patients were microbiologically cured
with trimethoprim-sulfamethoxazole alone or with a combination of tigecycline plus
trimethoprim-sulfamethoxazole or ciprofloxacin. Anecdotal reports have indicated that
some cases of E. meningoseptica infection respond only to combinations of piperacillin-
tazobactam plus rifampin, vancomycin plus rifampin, or a fluoroquinolone plus vancomycin
and rifampin (6). In our study, none of the Elizabethkingia isolates were susceptible to
vancomycin, and the majority were intermediate, indicating similar susceptibility with those
of the worldwide collection from 1999 to 2001 (22). Therefore, it seems that vancomycin
alone is ineffective in the treatment of Elizabethkingia infection.

In conclusion, E. anophelis was the most frequently detected species in clinical
specimens. Over 90% of 3 Elizabethkingia spp. were susceptible to piperacillin-
tazobactam. The majority of E. meningoseptica and E. anophelis isolates were
susceptible to rifampin, and all isolates of E. miricola only were susceptible to
levofloxacin, moxifloxacin, and gatifloxacin. Therefore, further studies are urgently
needed to determine the optimal antimicrobial agents for treatment of infections
caused by each individual Elizabethkingia species.

MATERIALS AND METHODS
Clinical specimens and identification of Elizabethkingia spp. Clinical specimens for bacterial

culture were collected from patients at a tertiary care university hospital in Seoul, South Korea between
January 2009 and February 2015. The species were initially identified using the Vitek 2 GN card system
(bioMérieux, Mercy l’Etoile, France). Isolates identified as either Elizabethkingia spp. or Chryseobacterium
spp. were kept frozen until used in this study.

16S rRNA gene sequencing and MALDI-TOF MS analysis. The 16S rRNA gene was amplified and
sequenced using the universal primers 8F (5=-AGA GTT TGA TCC TGG CTC AG-3=) and 1541R (5=-AAG GAG
GTG ATC CAG CCG CA-3=). The following additional primers were used to analyze the sequence: 310R
(5=-AGT ACC AGT GTG GGG GAT CA-3=) and 1170F (5=-CAA ATC ATC ACG GCC CTT AC-3=). The species
were identified by comparing the sequences using the EzTaxon server (http://www.ezbiocloud.net/).

All clinical isolates were identified by two MALDI-TOF systems, the Bruker Biotyper (Bruker Daltonics,
Bremen, Germany) and the Vitek MS (bioMérieux). There were no reference data for the identification of
E. anophelis in either system. However, the Vitek MS research use only (RUO) (Saramis) database was
amended for our study by providing the spectra data of 20 isolates of three Elizabethkingia spp. identified
by 16S rRNA gene sequencing to the bioMérieux. These were used to compute species-specific
SuperSpectra for automated identification with SARAMIS (details to be published elsewhere). The
accuracy of species identification using the MALDI-TOF and Vitek 2 GN card systems was determined by
comparing the results of the 16S rRNA gene sequence as a reference.

Pulsed-field gel electrophoresis. Chromosomal DNA of Elizabethkingia isolates were digested with
XbaI and analyzed for PFGE patterns using the CHEF DR II system (Bio-Rad, Hercules, CA, USA) as
described previously (15).

Antimicrobial susceptibility testing. The MICs of the antimicrobial agents were determined using
an agar dilution method (26). The antimicrobial agents used were piperacillin and tazobactam (Wyeth,
Pearl River, NY, USA); ceftazidime, gentamicin, rifampin, and vancomycin (Sigma Chemical, St. Louis, MO,
USA); imipenem (Choongwae, Seoul, South Korea); ciprofloxacin and moxifloxacin (Bayer Korea, Seoul,
South Korea); levofloxacin (Daiichi, Tokyo, Japan); gatifloxacin (Bristol-Myers Squibb, Princeton, NJ, USA);
and trimethoprim and sulfamethoxazole (Dong Wha, Seoul, South Korea).

The MICs were interpreted based on the Clinical and Laboratory Standards Institute (CLSI) criteria for
other non-Enterobacteriaceae (27). The breakpoints used for vancomycin (S, �4 �g/ml; R, �32 �g/ml)
and rifampin (S, �1 �g/ml; R, �4 �g/ml) were those for Staphylococcus spp. The moxifloxacin breakpoint
was used for gatifloxacin. Escherichia coli ATCC 25922, Pseudomonas aeruginosa ATCC 27853, and
Staphylococcus aureus ATCC 29213 were used as controls.

Accession number(s). The GenBank accession numbers of 16S rRNA sequence are as follows:
KP836318 and KP836320 for E. meningoseptica; KP836321 and KP844567 for E. miricola; and KT768343,
KT768344, KT768345, KP836317, and KP836319 for E. anophelis.
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