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Abstract

The alarming increase in both the incidence and severity of food allergies has coincided with 

lifestyle changes in Western societies, such as dietary modifications and increased antibiotic use. 

These demographic shifts have profoundly altered the co-evolved relationship between host and 

microbiota, depleting bacterial populations critical for the maintenance of mucosal homeostasis. 

There is increasing evidence that the dysbiosis associated with sensitization to food fails to 

stimulate protective tolerogenic pathways, leading to the development of the Type 2 immune 

responses that characterize allergic disease. Defining the role of beneficial, allergy protective 

members of the microbiota in the regulation of tolerance to food has exciting potential for new 

interventions to treat dietary allergies by modulation of the microbiota.

The incidence of allergic diseases has increased dramatically over the last fifty years, 

particularly in developed countries. The rise in prevalence has occurred in such a short time 

frame that genetics alone cannot explain it. This same time period has been marked by 

improvements in sanitation, stark dietary changes, and increased vaccination and antibiotic 

use in Western societies, all of which have been linked to increasing susceptibility to allergic 

and autoimmune diseases (1–4). What these lifestyle changes have in common is their 

ability to alter the populations of commensal microbes (the microbiota) that live in and on 

our bodies (1). The “hygiene hypothesis” was the first to imply a link between microbes and 

allergy by suggesting that the lower incidence of allergic diseases in children with older 

siblings resulted from increased exposure to infectious disease in early childhood (5). This 

idea was expanded in subsequent epidemiological studies which found that children raised in 

rural environments had a lower incidence of allergic disease than those in urban settings and 

had greater environmental exposure to microbial products such as lipopolysaccharide (LPS) 

(6–10). More recent work has revised the original hygiene hypothesis concept to include 

increased antibiotic use and vaccination as other lifestyle changes that have reduced 

childhood infections and altered the microbiota (11). Cesarean birth and formula feeding 

have also disturbed nature’s co-evolved strategy, altering founder microbial taxa and 

increasing susceptibility to diseases associated with this “Western” lifestyle (12–14). 

Consumption of a highly processed modern diet, high in fat, low in fiber, and quite different 

from that of our ancestors, has had profound consequences for the composition of the 

intestinal microbiota (15–17). Collectively, these studies suggest that environmental and 
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lifestyle changes have affected the relationship between the commensal microbiota and its 

human host and contributed to the increasing incidence of allergic disease.

The skin and all mucosal surfaces are populated by a site specific microbiota (18). The 

microbes present can include bacteria, viruses, bacteriophage, archaea, fungi, parasitic 

worms and protists (19, 20). Commensal bacteria are the best characterized, particularly in 

the gastrointestinal tract, where their density increases from an estimated 104 to 108 per 

milliliter of luminal contents in the small intestine to approximately 1011 organisms per 

milliliter of luminal content in the colon, the highest bacterial density of any environment 

analyzed so far on earth (21). In addition to this large community of bacteria, the 

gastrointestinal tract also contains more immune cells than any other organ. The two are in 

intimate communication; maintenance of homeostasis between these microbes and the 

immune system is essential to health. Exciting new research is beginning to identify the 

mechanisms by which beneficial functions of the microbiota regulate tolerance to dietary 

antigens (22, 23).

In this review we will discuss the role of the microbiota in maintaining tolerance to food and 

examine how commensal dysbiosis promotes the development of food allergy. Finally, we 

will examine the clinical evidence for a role for the microbiota in regulating food allergen 

sensitization and explore strategies for the development of microbiome-modulating 

therapeutics to prevent or treat food allergy.

Extending the Hygiene Hypothesis to the Microbiota

The pathogenesis of food allergy involves an aberrant type 2 immune response to dietary 

antigens. The most common allergenic foods are tree nuts, peanuts, milk, eggs, shellfish, 

fish, wheat and soy, although a great number of other foods can also elicit an allergic 

response (24). A healthy immune response to food antigens is a state of non-responsiveness, 

referred to as oral tolerance (25). When oral tolerance is not induced food antigens can 

instead evoke a response that is characterized by differentiation of naïve T cells into food 

antigen specific Th2 cells (fTh2), which produce large amounts of IL-4 and IL-13 that drives 

B cells to produce antigen specific immunoglobulin E (IgE) (26). IgE binds to the surface of 

mast cells and, upon re-exposure, antigen crosslinking results in mast cell degranulation. 

The release of mast cell mediators, such as histamine, leads to the symptoms associated with 

food allergy including anaphylaxis (27). In support of the epidemiological observations 

attributing a protective role to the microbiota in constraining allergic responses, germ free 

mice, which are born and raised in a sterile environment, have an exaggerated systemic type 

2 immune response characterized by high levels of IgE, and are more susceptible to oral-

antigen induced anaphylaxis than mice colonized with a diverse microbiota (28, 29). Early 

work demonstrated that administration of LPS to germ free mice is sufficient to restore oral 

tolerance (30). In keeping with this observation mice unable to signal via TLR4, the receptor 

for LPS, exhibit increased allergen specific IgE and exacerbated anaphylactic symptoms in 

response to repeated intragastric administration of peanut extract plus cholera toxin when 

compared to TLR4 sufficient mice (31). TLR4 is one of a group of pattern recognition 

receptors (PRR) that the immune system uses to detect microbe-derived products, including 

LPS and DNA. Microbial sensing through TLRs is critical for maintaining intestinal 
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homeostasis and limiting inflammation (32). Oral administration of a broad spectrum 

antibiotic cocktail evoked food allergen sensitization in TLR4 sufficient mice, suggesting 

that intestinal bacteria were the source of the TLR4 ligand (31). Recent work by has begun 

to reveal an even more complex role for LPS in allergic disease (33). Fecal samples were 

collected during the first three years of life from genetically related, but geographically 

separated, children at high (Finnish), low (Russian) and transitional (Estonian) risk for the 

development of autoimmune and allergic disease, including food allergy. The authors found 

that the low risk Russian children had higher proportions of Bifidobacterium, whereas 

Finnish and Estonian children had increased abundance of Bacteroides. Surprisingly, 

metagenomic analysis revealed striking differences in LPS synthesis between the Finnish 

and Russian cohorts. Russian children had LPS mostly originating from E. coli, whereas the 

bulk of the LPS in Finnish children originated from Bacteroides. Importantly, the LPS 

variant produced by Bacteroides was structurally and functionally distinct from E. coli LPS. 

E. coli LPS is strongly immunostimulatory and chronic exposure results in a refractory state 

known as endotoxin tolerance (34), which is thought to contribute to the protective effects of 

the microbiota suggested by the hygiene hypothesis (35). Not only was Bacteroides–derived 

LPS less immunostimulatory to primary human peripheral blood mononuclear cells 

(PBMCs) than E. coli LPS, but when PBMCs were treated with the two LPS variants mixed 

together, the high cytokine production elicited by E. coli LPS was abrogated. These findings 

raise the possibility that colonization early in life with a low immunostimulatory microbiota 

can impair aspects of immune education and predispose to inflammatory diseases such as 

food allergy (35, 36). A better understanding of how various components of the microbiota 

influence immune system development will inform therapeutic strategies aimed at restoring 

the benefits conferred by particular microbial communities.

Oral tolerance to food antigens

The gastrointestinal tract is under constant bombardment by microbial and food antigens. 

The healthy intestinal immune system is therefore, of necessity, geared towards a tolerogenic 

response characterized by the presence of large numbers of regulatory T cells (Tregs). 

Originally it was believed that oral tolerance was primarily mediated by the generation of 

food antigen specific Tregs (37). Antigen encountered in the lamina propria is taken up by a 

population of CD103+ intestinal dendritic cells (DC) that then migrate to the draining 

mesenteric lymph nodes (mLN). Within the mLN large amounts of retinoic acid (RA), a 

vitamin A derivative, and TGF-β produced by both CD103+ DCs and LN stromal cells 

instruct antigen specific naïve T cells to differentiate into Tregs (38–40). Additionally, RA 

and TGF-β induce upregulation of the gut homing receptors CCR9 and α4β7 on these newly 

differentiated Tregs to recruit them back to the intestinal lamina propria (38–40). In the 

lamina propria these Tregs are expanded by the production of IL-10 from resident CX3CR1 

macrophages (41). Some of these newly expanded Tregs may also enter into the circulation 

to mediate systemic tolerance to orally available antigens (42). In support of this model, in 

the absence of gut homing, or in animals lacking CX3CR1 macrophages, oral tolerance is 

abrogated (41). Other work shows that oral antigen exposure induces an allergic phenotype 

in mice with vitamin A deficiency (43). RA deficient mLN DCs drive naïve T cells towards 

a pathogenic Th2 phenotype instead of Tregs (43). Collectively, this data supports the 
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concept that food antigen specific Tregs are critical for protection from dietary allergies (41, 

42). However, these studies have only shown that antigen specific Tregs, induced by oral 

administration of model food antigens such as ovalbumin (OVA), induce non-responsiveness 

to subsequent peripheral immunization (42). As such, it has not been clear if Treg 

development is a feature common to all food antigens found in a complex diet or whether 

these food antigen specific Tregs also contribute to intestinal homeostasis. Recent work 

using germ free mice weaned onto an elemental diet void of antigens has demonstrated that 

the majority of Tregs in the small intestine are indeed induced in response to food antigens 

in a complex diet (44). The induction of small intestinal Tregs occurs rapidly following 

introduction of solid food, and decreases over 4–6 weeks following removal of food antigens 

(44). Mice weaned onto antigen free diets had a greater proportion of antigen specific T cells 

differentiating into inflammatory T cells rather than Tregs following oral antigen 

administration, suggesting that Tregs raised against dietary antigens limit proinflammatory 

responses to model antigens such as OVA. Food antigen specific Tregs therefore contribute 

to protection against allergic sensitization to dietary antigens, possibly by reinforcing a 

tolerogenic environment in the small intestine.

Microbiota-mediated tolerance to food antigens

In addition to dietary antigens the intestinal immune system must also maintain a tolerogenic 

response to the microbiota resident within the gut lumen. Components of the microbiota 

strongly induce colonic Tregs, as demonstrated by a deficit in Tregs in the colonic lamina 

propria of germ free mice which increase in frequency following colonization (45, 46). 

Colonic Treg induction has been attributed to the Clostridia, a class of mucosa-associated 

Firmicutes, (45, 47). Spore-forming Clostridia isolated from both mouse and human feces 

strongly induce colonic Tregs, (45, 47). More recently, however, it has been suggested that 

colonic Tregs can be induced by other members of the microbiota as well (48). It is unclear 

whether there is a common mode of action of Treg induction between these diverse bacterial 

groups, or whether they stimulate specific TLRs. It is also not known whether all (or most) 

Tregs induced by commensal bacteria bear bacteria specific T-cell receptors (TCRs) (49). 

Moreover, there is evidence that bacteria-induced Tregs also contribute to tolerance towards 

other antigens, including those from food. Indeed, Clostridia-induced Treg expansion was 

associated with protection from food allergen sensitization (22, 45, 47). As there is 

heterogeneity within the intestinal Treg population it is possible that particular bacteria may 

induce specific populations of Tregs that have different functions for maintaining 

homeostasis (50). Kim et al observed that antibiotic treatment markedly reduces RORγt+ 

Tregs in the colonic lamina propria, suggesting that these Tregs are bacteria dependent, 

whereas mice fed an antigen-free diet had a selective reduction of RORγt- Tregs in the small 

intestine indicating these are food antigen dependent (44). This finding supports previous 

literature that commensal bacteria induce a population of RORγt+ Tregs in the colon (48, 

51). DCs from the small intestine and colon migrate to anatomically different mLNs and 

induce immunologically distinct T cell responses (52, 53). Colonic and small intestinal DCs 

differ both phenotypically and functionally, which may reflect the different antigenic 

burdens encountered by DCs at these physiologically distinct sites along the GI tract (52, 

53). This finding may help to explain why bacteria and food antigens induce distinct 
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populations of Tregs that differ in both location and phenotype. Evidence that bacteria-

mediated Treg expansion can protect from food allergen sensitization (22, 45, 47) suggests 

that food and bacteria derived Tregs work cooperatively to mediate oral tolerance and 

protect from food allergen sensitization (Figure 1). It is possible that bacteria specific Tregs 

migrate to the small intestinal lamina propria (perhaps through recirculation via the mLN) 

and secrete IL-10 to reinforce the tolerogenic environment (54). Indeed, a population of 

RORγt+ Tregs is present within the small intestine, albeit at a lower frequency than in the 

colon, and is reduced following antibiotic treatment, supporting the idea that microbe-driven 

Tregs can also localize at this site (44). In light of this, the tolerogenic environment 

maintained by bacteria-derived Tregs likely contributes to the production of food antigen 

specific Tregs rather than pro-allergic Th2 cells upon subsequent exposure to food antigens. 

In addition, RORγt+ Tregs are found in small numbers in other body sites, including the 

lung, spleen and skin (55), suggesting that these cells disseminate throughout the body. This 

may help to explain the role of the intestinal microbiota in protection from other allergic 

diseases including asthma.

Other studies are beginning to identify the signaling pathways for bacteria mediated Treg 

induction important for preventing allergic sensitization to food. Several reports have 

implicated microbial sensing by host TLRs in the induction of colonic Tregs that maintain 

tolerogenic responses (46, 56). Mice lacking MyD88, an adaptor molecule for downstream 

TLR signaling, develop more severe intestinal inflammation in response to epithelial damage 

induced by dextran sodium sulfate, suggesting an important role for microbial sensing in 

limiting inflammatory responses (32). TRAF6 is another important adaptor molecule for 

TLR signaling that acts downstream of MyD88 to activate transcription factors such as 

NFκB to induce cytokine production (57). Mice with a specific deletion of TRAF6 in 

CD11c+ antigen presenting cells (Traf6ΔCD11c) have reduced numbers of Tregs in their 

small intestine and present with a spontaneous type 2 inflammation at this site (58). 

Exacerbation of the inflammatory phenotype in germ free Traf6ΔCD11c mice further 

supports a role for microbe induced Tregs in preventing pathogenic type 2 intestinal 

inflammation (58) (59). Interestingly, this phenotype was specific for the small intestine as 

no overt inflammation was observed in the colon. This may be due to the different 

physiological functions of the small and large intestine since the large intestine functions 

primarily to reabsorb water while the small intestine encounters the bulk of the food 

antigens. As such, the tissue selective inflammation observed in this model may indicate that 

the inflammatory response occurs as a result of a breakdown in tolerance to food antigens.

In addition to microbial ligands that can be sensed via PRRs, commensal bacteria release 

metabolites such as short chain fatty acids (SCFAs) upon fermentation of insoluble dietary 

fibers (4). SCFAs, including acetate, propionate and butyrate have been demonstrated to 

have immunogenic activity both locally, within the intestine, and systemically (23, 60–62). 

SCFAs are utilized by colonocytes as an energy source (63, 64), but also have 

immunomodulatory properties by signaling through G-protein coupled receptors (GPCRs) 

(65–67) and act to inhibit histone deactelylases (HDACs) (68). One possible consequence of 

dysbiosis for the development of allergic responses may result from reduced levels of SCFAs 

(69). There is a body of literature supporting the idea that low levels of SCFAs are 

associated with an allergic phenotype and that increasing SCFA levels can ameliorate 
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disease (61, 63, 70). One mechanism by which SCFAs protect against allergic disease is 

through the induction of colonic Tregs (60, 62, 68). The addition of SCFAs to the drinking 

water of germ free mice resulted in an increased abundance of colonic Tregs and protected 

against colonic inflammation (62). Recent work showed that mice fed a high fiber diet had 

increased SCFA levels and were protected against food allergy, in part through enhanced 

induction of Tregs in the mLN (23). DCs isolated from the MLN of the high fiber diet fed 

mice had increased retinal dehydrogenase (RALDH) activity when compared to controls, 

suggesting a link between the protective effects of dietary fiber and vitamin A metabolism 

(23).

Microbiota-mediated modulation of intestinal barrier function

It’s remarkable to think that a single layer of epithelial cells is all that separates the 

enormous number and variety of food antigens and microbes within the intestinal lumen 

from the underlying immune cell rich lamina propria. Specialized epithelial subpopulations 

have unique properties and functions that are important for enforcing barrier protection to 

prevent uncontrolled access of antigens to the lamina propria (53). These include the 

production of antimicrobial peptides (AMPs) by Paneth cells and of mucus by goblet cells 

which together act to form a physical barrier that limits the access of bacteria to the 

epithelial surface (71). Additionally, intestinal epithelial cells express tight junction proteins 

that act to seal off the underlying immune rich lamina propria from excessive exposure to 

luminal antigens (72). We have found that increased intestinal permeability contributes to 

food antigen sensitization (22). Stefka et al observed that sensitization of mice to peanuts is 

associated with an increased concentration of the major peanut allergens Ara h 2 and Ara h 6 

in the serum (22). Colonization with a consortium of mucosa associated Firmicutes of the 

Clostridia class reduced serum Ara h 2 and Ara h 6 and ameliorated allergic sensitization to 

peanut, suggesting that commensal microbe-driven reinforcement of the epithelial barrier is 

important for protection against food allergy (22). The improved barrier function observed 

after colonization by this Clostridia consortium was associated with an increase in goblet 

cell numbers and mucus production in the intestine as well as upregulated expression of the 

AMPSs Reg3β and Reg3γ suggesting a broad effect on multiple intestinal epithelial cells 

types (22). Both intestinal mucus and AMP production are regulated by the barrier 

protective cytokine IL-22 (73). By utilizing treatment with a neutralizing antibody for IL-22 

or depletion of innate lymphoid cells (ILCs), which produce IL-22, Stefka et al 
demonstrated that Clostridia-induced IL-22 production by type 3 ILCs (ILC3s) was both 

necessary and sufficient to reduce intestinal permeability and prevent food antigen 

sensitization in this model (22). This finding highlights the complex role of the microbiota in 

modulating innate immune responses that, in turn, influence intestinal epithelial cell function 

and regulate its barrier protective properties (Figure 2).

Indeed, the microbiota has a profound influence on mucus production and goblet cell 

homeostasis (74). Germ free mice have altered mucus production compared to colonized 

mice, with differences observed in both the small and large intestine (74). These mucus 

layers have unique features that limit access of bacteria to the intestinal epithelium (74). In 

the large intestine the mucus forms two layers, an inner sterile layer and a diffuse outer layer 

that is heavily colonized by bacteria which are thought to feed on mucins and other proteins 
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within the mucus layer (75). The permeability of the mucus layer differs along the length of 

the intestine. In the distal colon the inner mucus layer is impenetrable to bacteria sized beads 

whereas in the proximal colon some penetrability is observed (76). In the small intestine the 

mucus layer is diffuse and allows limited penetration by bacteria, however secretion of 

AMPs and high gut motility (which removes this easily detached mucus) helps to limit 

access to the epithelium (76). Within five weeks post colonization of germ free mice mucus 

thickness, impenetrability and detachment properties in the colon and small intestine 

resemble that seen in conventional mice (74). Alteration in mucus properties post 

colonization is associated with changes in the microbiota (74). Since treatment with some 

antibiotics also alters the mucus layer (77) this suggests that changes in the microbiota affect 

mucus associated barrier function in the intestine. Stefka et al demonstrated that one 

mechanism by which Clostridia protect against allergic sensitization is by eliciting increased 

mucus production (22). Additionally, both germ free and antibiotic treated mice have 

increased susceptibility to oral antigen sensitization (22, 29). Given the profound defect in 

mucus production in these mice it is likely that the altered mucus production and subsequent 

defects in barrier function contribute to a breakdown in oral tolerance. However, goblet cells 

and mucus play a role in the maintenance of intestine homeostasis beyond their well-known 

contributions to barrier function. It has been reported that culturing DCs in vitro with the 

mucus protein Muc2 induces a tolerogenic DC phenotype that induces greater Treg 

differentiation from naïve T cells (78). Tolerance to OVA is impaired in Muc2 deficient 

mice; both mucosal and systemic tolerance is restored when OVA is co-administered in the 

presence of Muc2 protein (78). Other work identified that goblet cells form goblet cell-

associated antigen passages (GAPs) by taking up luminal antigen and delivering it to 

intestinal DCs (79–81). GAP formation is a regulated process, induced by acetylcholine 

acting on goblet cells. GAPs form in the steady state in the small intestine, but goblet cell 

responsiveness to acetylcholine is inhibited by MyD88 dependent, goblet cell intrinsic, 

sensing of the gut microbiota in the colon (80). Deletion of MyD88 in goblet cells, or 

disruption of the microbiota by antibiotics, overrides the normal suppression by the 

microbiota and allows the formation of colonic GAPs, potentiating inflammation due to 

uncontrolled exposure to luminal contents (80, 81). Moreover, altering GAP formation in 

early life results in persistent Th2 responses (R. Newberry, personal communication), 

providing an additional link between alterations in the gut microbiota in early life and a 

predisposition to food allergy.

Intestinal epithelial cells also monitor the luminal environment and produce cytokines that 

direct immune responses in the underlying lamina propria (82). Stressed or damaged 

intestinal epithelial cells secrete the cytokines IL-33, TSLP and IL-25, also collectively 

referred to as alarmins, to induce protective immunity and promote repair (82). These 

cytokines are associated with the initiation of the protective type 2 immune response that is 

responsible for the clearance of enteric helminths and repair of epithelial damage induced by 

infection (83–85). Epithelial alarmins activate type 2 ILCs to produce IL-13 and prime 

intestinal DCs to promote the differentiation of naïve T cells to Th2 cells that mediate worm 

clearance (82, 86). Recently the population of epithelial cells that produces IL-25 was 

revealed to be a specialized lineage known as tuft cells (83–85, 87). Howitt et al showed that 

tuft cells release IL-25 in response to activation by parasites via chemosensory receptors 

Plunkett and Nagler Page 7

J Immunol. Author manuscript; available in PMC 2018 January 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(82). As some chemosensory receptors are GPCRs, this raises the interesting possibility that 

in addition to helminths, these receptors may also respond to microbe-derived signals, such 

as SCFAs, skewing the immune environment in the intestine. Indeed, there is evidence that 

the microbiota can directly regulate the expression of epithelial alarmins in the intestine. 

Intestinal expression of IL-25, IL-33 and TSLP is reduced in germ free mice and increases 

following colonization (88–90). Moreover, administration of IL-25 can alter the expression 

of AMPs, changing the composition of the microbiota and demonstrating a role for IL-25 in 

the host-microbe cross-talk that is essential for homeostasis (91). In the context of allergic 

inflammation, allergen exposure can induce the release of alarmins and drive the pathogenic 

type 2 immune response associated with disease (71). Overexpression of IL25 or IL-33 

drives allergic responses to dietary antigens, suggesting that these epithelial-derived 

cytokines may contribute to the development of dietary allergies by skewing the immune 

environment in the intestine from tolerogenic to pro-allergic (92, 93). A dysbiotic 

microbiome might also elicit epithelial alarmins and prime for allergic sensitization to food 

(94). In this setting, characterized by IL-4 production by mast cells and Th2 T cells, oral 

allergen exposure results in reprogramming of Tregs from a tolerogenic to a Th2-like 

phenotype, further propagating the allergic response (95). IL-33 has been shown to drive the 

expansion of GATA3+ Tregs in the colon (96), which are similar in phenotype to 

reprogrammed Tregs implicated in the loss of tolerance to food antigens (95), supporting the 

idea that epithelial alarmin production may alter the immunological environment in the 

intestine and contribute to allergic sensitization. In further support of this hypothesis, 

consumption of a low fiber diet that exacerbates food allergen sensitization is associated 

with increased expression of both IL-33 and TSLP in the intestine (23). Conversely 

protection against allergic sensitization following high fiber diet administration alters the 

microbiota and is associated with reduced expression of IL-33 and TSLP. Taken together 

these data suggest that a “healthy” microbiota may protect against allergic sensitization by 

reducing expression of alarmins by intestinal epithelial cells. However, in conditions of 

dysbiosis the microbiota may induce elevated levels of these alarmins resulting in aberrant 

Th2 responses towards dietary antigens by skewing the immune environment in the intestine 

towards a type 2 rather than tolerogenic response (Figure 2). Identifying how epithelial cell 

alarmin production is regulated may help to identify new targets to prevent allergic 

sensitization to food.

Clinical considerations and potential therapeutics

The findings described above outline the complex interplay between host immunity and the 

microbiota. Translational studies are beginning to explore a role for microbe modulating 

therapeutics for diseases such as food allergy (97). Both murine and human studies have 

suggested that dysbiosis early in life contributes to the development of allergic disease and 

that therapeutic interventions that alter the microbial composition during this time period 

may be most effective to prevent allergic sensitization (22, 29, 98–106). Recent analysis of 

one cohort of 319 children emphasized that changes in the microbiota in the first 100 days of 

life were most likely to be associated with allergic disease (99). During this critical time 

period children at risk of developing allergic asthma exhibited marked reductions in the 

abundance of four key microbial genera (Faecalibacterium, Lachnospira, Rothia and 
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Veillonella) and in SCFA metabolites. Moreover, colonization of germ free mice with these 

genera protected from the development of allergic airway inflammation (99). This protection 

was also associated with increased levels of fecal butyrate, suggesting that one mechanism 

of protection was via SCFA signaling (99). Most studies have concluded that the efficacy of 

conventional Lactobacillus-based probiotics is limited to infancy. Berni Canani et al showed 

that treatment with a Lactobacillus GG supplemented formula accelerated the acquisition of 

tolerance in infants with cow’s milk allergy (CMA) (107). Fecal samples collected from a 

small subset of infants from this study revealed stark differences in the microbiota of CMA 

patients when compared to healthy age-matched controls (108). Twelve months of treatment 

with the tolerance inducing formula was associated with an increase in butyrate producing 

bacteria and fecal butyrate levels, suggesting that one therapeutic effect of probiotic 

administration was the alteration of intestinal microbial community structure (108). Pre-

clinical mouse data also suggests that dietary manipulation of the microbiota may be 

effective for the treatment of allergic disease (23, 70). These studies are providing exciting 

early evidence that the microbiota provides protective and inductive signals to shape the 

intestinal immune response and tip the balance in favor of tolerance over allergic 

sensitization.

Collectively, then, there is provide compelling evidence that allergic phenotypes are 

associated with alterations in the intestinal microbiome and that this dysbiosis may drive the 

allergic response. It is also possible that allergic inflammation itself induces changes in the 

microbiota. Both scenarios may contribute to allergic sensitization at different times and 

stages of disease, highlighting the complex and dynamic nature of host-microbial 

interactions. As we learn more about the specific immune modulating effects of particular 

members of the microbiota we may be able to identify microbial signatures that are 

associated with pro-allergic responses such as release of alarmins by epithelial cells that 

contribute to allergic sensitization to food. Conversely, identification of a healthy microbiota 

that reinforces tolerance and barrier function in the intestine will allow for better targeted 

treatments to harness the microbiota to restore health.

Conclusions

The marked increase in both incidence and severity of dietary allergies that has occurred in 

parallel with profound environmental and lifestyle changes suggests a link between 

alterations in the microbiota and the rising prevalence of allergic disease. Increasing 

knowledge of how the immune response is influenced by the microbiota is revealing new 

approaches to treat diseases such as food allergy. While there is already promising evidence 

in support of manipulating the microbiota during early life to prevent allergic sensitization, it 

is not yet clear if a stably established gut microbiota can be effectively manipulated to treat 

food allergy (109). We do know that, in adults, the microbiota can be readily altered, on even 

daily timescales, by changes in components of the diet, particularly fiber (4, 15, 110). 

Moreover, the utilization of microbial metabolites to treat complex immune mediated-

diseases is starting to generate results (111). These observations lend promise to the vision 

that microbiome-modulating therapeutics will have efficacy later in life, particularly as an 

adjunctive strategy to potentiate antigen specific desensitization protocols, and promote long 

lasting tolerance (112).
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GPCR G-protein coupled receptor

HDAC histone deacetylase

IgE immunoglobulin E

ILC innate lymphoid cell

ILC3 type 3 innate lymphoid cell

ILC2 type 2 innate lymphoid cell

LPS lipopolysaccharide

mLN mesenteric lymph node

OVA ovalbumin

PBMC peripheral blood mononuclear cell

PRR pattern recognition receptor

RA retinoic acid

SCFA short chain fatty acid

TCR T-cell receptor

TLR toll-like receptor

TLR4 toll-like receptor 4

Treg regulatory T cell
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Figure 1. Induction of tolerance to food and bacterial antigens in the intestine
Food antigen is taken up by dendritic cells (DCs) in the small intestine which migrate to the 

proximal mesenteric lymph node (mLN). TGF-β and retinoic acid produced by LN stromal 

cells and DCs induce differentiation of food antigen specific Tregs (fTregs) and upregulation 

of gut homing molecules. fTregs migrate back to the small intestine lamina propria where 

TLR signaling by bacterial products induces production of IL-10 by resident CX3CR1 

macrophages and DCs that supports Treg expansion and IL-10 production. Bacterial 

products are also taken up by colonic DCs that migrate to the distal mLN and caudal LN to 

induce differentiation of bacterial specific Tregs (bTreg). Although predominant in the 

colon, bTregs also migrate to the small intestine where they release IL-10 to maintain the 

tolerogenic immune environment. Fermentation of dietary fiber to short chain fatty acids 

(SCFAs) may enhance retinoic acid production by DCs and promote Treg differentiation. 

TLR signaling by bacterial products such as LPS induces a tolerogenic phenotype in colonic 

and small intestinal DCs that promotes differentiation of Tregs.

Plunkett and Nagler Page 18

J Immunol. Author manuscript; available in PMC 2018 January 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. The microbiota regulates both protective and pathogenic barrier responses in the 
intestine
A) A healthy microbiota will induce a barrier protective response in the intestine, in part, 

through production of SCFAs that are most likely to act on ILC3s to produce IL-22. IL-22 

induces antimicrobial peptide (AMP) production by Paneth cells and mucus production by 

goblet cells to reinforce barrier function, controlling the location and composition of the 

microbiota. This barrier protective function prevents uncontrolled access to the lamina 

propria by food antigens to prevent allergic sensitization. B) Dysbiosis fails to induce these 

protective pathways. Dysregulated epithelial barrier function and a compromised mucus 

layer allow increased permeability to food antigens. Damaged or stressed epithelial cells 

release the alarmins IL-25, IL-33 and TSLP that activate ILC2s to produce IL-4 and IL-13 

which promotes the development of allergic sensitization to food antigens through the 

generation of food antigen specific Th2 cells (fTh2).
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