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Abstract

Probabilistic label maps are a useful tool for important medical image analysis tasks such as 

segmentation, shape analysis, and atlas building. Existing methods typically rely on blurred signed 

distance maps or smoothed label maps to model uncertainties and shape variabilities, which do not 

conform to any generative model or estimation process, and are therefore suboptimal. In this 

paper, we propose to learn probabilistic label maps using a generative model on given set of binary 

label maps. The proposed approach generalizes well on unseen data while simultaneously 

capturing the variability in the training samples. Efficiency of the proposed approach is 

demonstrated for consensus generation and shape-based clustering using synthetic datasets as well 

as left atrial segmentations from late-gadolinium enhancement MRI.

Index Terms

parameter map; probabilistic labeling; generative models; consensus generation; shape 
representation

1. INTRODUCTION

Uncertainty in boundary of an anatomical shape is common in medical imaging applications 

involving soft tissue imaging, including neurology, cardiology, and oncology. Heterogeneous 

pixel intensities, imaging artifacts, partial volume effects and ill-defined boundaries usually 

induce a level of disagreement among human raters as well as (semi) automated 

segmentation algorithms in defining voxel-wise labeling. Likewise, differences in anatomy 

between subjects, patients, or specimens introduces variability in what one might expect to 

find in an image. Quantifying these uncertainties can benefit a variety of medical 

applications, such as label fusion in multi-atlas segmentation [1, 2], deformable atlas 

building [3, 4, 5], segmentation [5, 6, 7, 8], tractography [9] and longitudinal anatomical 

studies [10, 11].

Uncertainties associated with a voxel-wise label assignment can be encoded using a 

probabilistic label which reflects the likeliness of assigning a specific label to a voxel. It is 

typically represented as a vector of L − 1 non-negative fractions that sum up to one where L 
denotes the number of objects including the background. A probabilistic label map defined 

on the spatial domain of an image can thus be considered as a parametric distribution over 

the space of label maps.
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A label map f defines a labeling function which maps each image voxel x ∈ ℝd (d = 2, 3) to 

a single label from a set of labels ℒ = {0, 1, …, L}. Without loss of generality, we will 

focus on a single object scenario where L = 2. Consider a raster defined over spatial domain 

Ω ⊂ ℝd containing M pixels. The object of interest (i.e, foreground) ω ⊂ Ω is represented 

by a label map f ∈ {0, 1}M where f (x) = 1, iff x ∈ ω.

In a generative sense, a label map f is considered as a realization of a field of M independent 

Bernoulli random variables (multinomial in case of L > 2) defined on the domain Ω with a 

voxel-wise parameter q(x) ∈ [0, 1]. This parameter quantifies the probability of a voxel x to 

be labeled as the foreground object, i.e. q(x) = p(x ∈ ω). The parameter map q : Ω → [0, 

1]M defines a probability distribution over the observed label maps and models, and 

describes the underlying uncertainty about the label assignment. The probability of a label 

map generated from such a distribution, assuming i.i.d. voxels, can be factored out in terms 

of voxel-wise probabilities given by,

(1)

To relax the voxel-wise independency assumption, contextual information can be 

incorporated using spatial priors such as Markov random fields (MRF). In this case the 

generative model for binary label maps becomes:

(2)

where U(f) are clique potentials that favor spatially coherent label maps. Z is a normalization 

constant and T is a constant called the temperature.

Existing methods define the parameter map q through heuristics that do not typically have a 

statistical foundation. For example, commonly used representations of parameter map 

include sigmoid of signed distance maps (SDMs) [1, 2, 4, 5, 8]; where distance of a voxel to 

the shape’s boundary does not correlate well with the underlying probability distribution 

over label maps. Another popular representation is smoothed average of label maps [3, 5, 6, 

8]. However blurring of label maps blindly smooths out shape features irrespective of the 

degree of uncertainty along shape boundary. Therefore, optimized weighted average of label 

maps are often used as an alternative representation [12, 13, 14]; nonetheless such an 

approach has been shown to overfit the limited training data [15].

In this paper, we propose to estimate a parameter map from a set of image segmentations, 

using a generative model a maximum-a-posteriori (MAP) formulation. This formulation 

gives an optimal parametric representation that encodes uncertainties in the observed label 

maps while being generalizable to unseen data. We further demonstrate efficiency of the 

proposed approach on medical imaging applications: consensus generation and shape-based 

clustering using synthetic datasets as well as real datasets of left atrial segmentations from 

late-gadolinium enhancement MRI.
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2. METHODS

Consider a set of label maps ℱ = {f1, f2, …, fN} independently drawn from a population. 

We seek to estimate the optimal parameter map q* : Ω → [0, 1]M which corresponds to the 

generative model described by voxel-wise Bernoulli distributions and MRF Gibbs potential. 

Since q is a constrained field where q(x) ∈ [0, 1], formulating the parameter estimation 

problem w.r.t. q would require either imposing a conjugate prior, i.e. Beta distribution, that 

would pull estimates of q to [0, 1], or solving a constrained optimization problem subject to 

inequality constraints. It is worth noting that imposing a conjugate prior would introduce 

spatially varying hyperparameters in order to define the voxel-wise prior distribution. This 

would further require a hyperprior to favor smooth spatial changes of these hyperparameters. 

Instead, we opt to solve an unconstrained optimization problem in terms of the log-

likelihood ratio ϕ (a.k.a. log-odds [5]). The merit of log-odds lies in being an unconstrained, 

real-valued field which corresponds directly to the parameter map q,

(3)

(4)

The Bayesian formulation of our estimation problem amounts to finding the optimal log-

ratio transform ϕ* that maximizes log-posterior probability, i.e. log p(ϕ|ℱ). Assuming 

independent label maps, the posterior can be written as,

(5)

By construction, the likelihood of a label map p(fn|ϕ) can be defined as p(fn|q). It should be 

clear that the choice of MRF prior on label maps in (2) does not affect ϕ-optimization. Using 

(3), it can be shown that the log-likelihood can be written as follows, with f̄ being the 

average label map of ℱ,

(6)

The spatial coherency of ϕ is promoted through a smoothness prior p(ϕ) that encourages 

smooth transitions in local neighborhoods. MRF prior on ϕ can be written as a Gibbs 

distribution, p(ϕ) ∝ exp {−λU(ϕ)}; λ ≥ 0. λ is a hyperparameter which governs the impact 

of smoothness prior relative to the data fidelity term (6). The Gibbs energy U(ϕ) acts as an 

edge detector which penalizes violation of the smoothness assumption. Hence, we use 

laplacian-square energy, i.e. U(ϕ) = ‖Δϕ‖2. We coin the term ShapeOdds to refer to the 
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estimated log-odds map due to its spatial coherency structure. Its MAP estimate can be 

written as,

(7)

where prior energy in the objective function E can be written in terms of the Laplacian 

operator L such that,

(8)

The first variation of (8) reads as,

(9)

where L‡L denotes the bilaplacian (a.k.a. biharmonic) operator. It is worth mentioning that 

the objective function E is convex w.r.t. ϕ due to the positive definiteness of bilaplacian 

operator and the constrained values attained by q which would result in a positive definite 

Hessian matrix.

We can solve for a global optimum with a gradient descent scheme. In order to enable large 

time steps Δt while maintaining stable updates, we use a semi-implicit scheme with finite-

forward time marching to define an iterative update for ϕ,

(10)

where spatial convolution ⊗ can be efficiently performed as multiplication in Fourier 

domain. Note that (10) forms a data-driven smoothing operator which respects the 

underlying uncertainty along shape boundary. Further, we can use a voting-based 

initialization for the parameter map q. Initial probabilities q(x) = p(x ∈ ω) can be computed 

based on the frequency of x ∈ ω in the given set ℱ. Our experiments demonstrate the 

insensitivity of ShapeOdds estimation to the initial solution using voting-based, all zero, or 

random initializations. To avoid log-ratios blowing up at voxels that have unanimous values 

in the training data, we relax the input infinitesimally, so that fn(x) = 1 − ε if x ∈ ω and fn(x) 

= ε otherwise, for ε > 0. We have found that the ϕ-optimization is not sensitive to such 

setting, and we use ε = 1e − 6 for the experiments in this paper.

Estimation of the optimal ShapeOdds ϕ* requires knowledge of the hyperparameter λ which 

results in smooth parameter maps without overfitting the given set of label maps. In the limit 

of infinite sample size, i.e. N → ∞, ShapeOdds converges to the average label map f̄ which 

precisely models the label maps distribution. As such, the role of smoothness prior 
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asymptotically diminishes with λ → 0. With the limited sample size, common in practice, λ 
is estimated from training samples while maximizing the expected generalization 

performance. Hence, estimating λ can be considered as a model selection problem. This 

motivates a K –fold cross-validation approach for tuning λ for a training set ℱ. We can 

formulate our model selection criterion S as the cross-validation estimate of negative log-

likelihood of unseen (held-out) label maps.

(11)

where ℱk is the set of label maps contained in the k–th fold while ℱ−k contains the 

remaining label maps to be used for training. A grid search can be performed to exhaustively 

sweep the hyperparameter space, nonetheless we have shown that S is convex w.r.t. λ, which 

enables smarter/faster solutions by sweeping through a hierarchical (i.e. coarse-to-fine) grid 

search. The best hyperparameter λ*(ℱ, K) is then used to estimate the optimal map ϕ*(λ*, 

ℱ) for entire training set.

3. EXPERIMENTAL RESULTS

The proposed parameter map estimation can be used for a broad class of applications which 

require building a probability distribution over the label map space while being 

generalizable to unseen samples. For instance, it can be used to model shape priors for 

Bayesian image segmentation. It can also serve as a shape class prototype in applications 

that involve shape matching such as multi-atlas segmentation. In this paper, we evaluate our 

model w.r.t. two medical applications: consensus generation and shape clustering. We start 

off with a proof-of-concept in order to assess the performance of proposed parameter map 

estimation compared to existing representations.

3.1. Proof-of-Concept Experiments

In order to simulate uncertainties associated with a segmentation process, consider a 2D a 

rectangular shape where its imaging resulted in weak boundaries along its right side. A set 

of 100 hypothetical segmentations (i.e. label maps) were generated using a rectangle 

undergoing random spatial deformations where each deformation field was convolved with a 

spatially varying Gaussian kernel to reflect increased degrees of disagreement on the right 

side. Training subsets of N = [4, 32] in increments of 4 were randomly drawn 100 times. For 

each experiment, λ was first estimated using the model selection criterion defined in (11) 

and then used to estimate the optimal parameter map for training set of label maps. 

Parameter maps based on sigmoid of an average SDM, Gaussian smoothed average label 

map (with different kernel sizes) and probabilistic labeling resulting from STAPLE were 

computed for comparison. The negative log-likelihood (6) over the held-out/testing label 

maps was used as the generalization error for an estimated parameter map.

Figure 1 demonstrates the generalization performance of Shape-Odds compared to other 

parameter maps as a function of the available training sample size. One can observe the poor 
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generalization of STAPLE-based probabilistic labels revealing its tendency to over-fit the 

training dataset. SDM-based parameter maps, on the other hand, make use of more training 

samples for better generalization. Nonetheless, lesser performance indicate that they do not 

correlate well with the underlying generative process. Smoothed average label maps 

generalize better than SDMs and STAPLE while loosing the ability to model the probability 

distribution of the given label maps due to the blind smoothing along shape boundaries 

irrespective of the underlying uncertainties. Figure 2 illustrates the effect of initialization on 

the final estimation of ShapeOdds and the corresponding parameter map where we 

considered voting-based, random and zero initializations for ϕ. One can notice the 

convergence to the same parameter map regardless of the initial solution. Figure 3 shows the 

mean and standard deviation of optimal hyperparameter λ*, as a function of training sample 

size. Notice that it asymptotically approaches to zero with large number of training label 

maps, decreasing the effect of the smoothness prior on ϕ that enables ShapeOdds to 

generalize to unseen data. Further, Figure 3 plots the average of model selection criterion 

(11) as a function of λ for different training sizes. Notice the convexity of this function 

while the average of optimal λ decreases with increasing number of training samples.

3.2. Consensus Generation

With ill-defined boundaries and shape irregularities, accurately delineating the contour of 

left atrium (LA) wall from late-gandolinium enhancement cardiac (LGE) MRI is a 

challenging task for human raters as well as automatic segmentation algorithms. Manual 

segmentations of epicardium and endocardium typically exhibit variations among human 

experts reflecting uncertainties along shape boundaries, calling for consensus generation. A 

good consensus need to accommodate variations among raters as well as automated 

segmentation algorithms. In specific, estimating probability distribution over label maps 

enables modeling the random process associated with the segmentation process. The 

generality of such a distribution w.r.t. unseen samples, while being consistent to the given 

ones, is thus crucial to provide means to evaluate new manual/automated segmentations as 

being drawn from similar distribution. To that regard, we collected 12 LGE-MRI of LA from 

patients with atrial fibrillation (pre-abalation). Each scan was segmented by three human 

experts defining epi/endocardium regions. We estimated the ShapeOdds for epi/endocardium 

of each patient using leave-one-out strategy.

Figure 4 shows the average and standard deviation of negative log-liklihood of held-out 

samples for epicardium and endocardium. Notice that ShapeOdds parameter maps is able to 

generalize to unseen samples compared to those of STAPLE. Figure 5 shows a sample LGE-

MRI slice along with the manual segmentations and the corresponding estimated parameters 

maps. One can observe the tendency of STAPLE to produce probabilistic labeling that 

overfits the training samples. In particular, STAPLE is estimating weights for the given label 

maps to produce an optimized weighted average. With two label maps for training, STAPLE 

produces a nonsmooth parameter map which limits its generalization aspect. One the other 

hand, ShapeOdds provide smooth parameter maps that are generalizable to unseen samples.
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3.3. Shape Clustering

Proposed generative model can also be used for unsupervised clustering of label maps. This 

can be useful for multi-atlas segmentation algorithms which typically require a large 

database of atlases. In particular, shape-based clustering can benefit atlas selection 

algorithms to exclude irrelevant atlases that might misguide the segmentation process. 

Further, representative parameter maps can be used to model multi-modal shape prior 

distributions for image segmentation applications. Representative parameter maps of a set of 

training label maps can be learned in an expectation-maximization (EM) fashion while 

simultaneously clustering similar shapes via maximizing the likelihood in 6. We demonstrate 

the results on synthetic dataset containing 90 supershapes [16] corresponding to three, four 

and five rotational symmetries as well as a real dataset of 62 LGE-MRI of LA from patients 

with atrial fibrillation (pre-abalation). Initial clusters are assigned based on maximum log-

likelihood from multiple random assignments. Figures 6 and 7 demonstrate the parameter 

maps and sample shapes corresponding to final clusters. Results indicate that samples with 

similar shape characteristics are assigned to the same cluster.

4. CONCLUSION

This paper proposed a generative approach to model uncertainties in boundaries of 

anatomical structures as a parameter map, beneficial for medical applications such as 

segmentation, atlas building and consensus generation. Proposed approach performed better 

as compared to existing practices such as blurred signed distance maps, smoothed average of 

label maps and weighted average of label maps. The parameter map obtained is 

generalizable even with few training samples.
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Fig. 1. 
Generalization performance (negative log-likelihood — lower is better) of different 

parameter maps as a function of training sample size. The right side is a zoom-in on the cyan 

part of the graph in the left side. Image size: 150 × 150.
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Fig. 2. 
Effect of initialization: (a) Training label maps, (b) ϕo, (c) qo, (d) ϕ* and (e) q*. Second row 

shows voting-based initialization, third row shows random initialization and fourth row 

shows zero initialization. Mean absolute difference of estimated parameter maps using 

different initialization is 9.893 × 10−5.
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Fig. 3. 
Left: optimal hyperparameter λ found using coarse-to-fine grid search as function of 

training sample size. Right: average model selection criterion as function of λ for different 

training sizes. Image size: 150 × 150.
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Fig. 4. 
The average and standard deviation of negative log-likelihood (lower is better) of held-out 

manual segmentations for epicardium (left) and endocardium (right) using ShapeOdds and 

STAPLE parameters maps. Image size: 188 × 143 × 149.
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Fig. 5. 
Consensus of the epicardium of sample LGE-MRI slice. The first row shows the manual 

segmentations of three human experts who disagree on the accurate contour of epicardium. 

The second and third rows show the parameter maps estimated via ShapeOdds and STAPLE, 

respectively, by leaving the respective expert segmentation out of the training sample. 

Negative log-likelihood of the expert segmentation given the ShapeOdds/STAPLE parameter 

map is also reported.
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Fig. 6. 
Synthetic data clustering results. Samples for each cluster are presented in decreasing order 

of log-likelihood (left to right).
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Fig. 7. 
Clustering results using left atrium dataset. First column shows the estimated representative 

parameter maps corresponding to final clusters. Further columns display samples for each 

cluster presented in decreasing order of log-likelihood (left to right).
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