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Abstract

The 2014 CSAR Benchmark Exercise was the last community-wide exercise that was conducted 

by the group at the University of Michigan, Ann Arbor. For this event, GlaxoSmithKline (GSK) 

donated unpublished crystal structures and affinity data from in-house projects. Three targets were 

used: tRNA (m1G37) methyltransferase (TrmD), Spleen Tyrosine Kinase (SYK), and Factor Xa 

(FXa). A particularly strong feature of the GSK data is its large size, which lends greater statistical 

significance to comparisons between different methods. In Phase 1 of the CSAR 2014 Exercise, 

participants were given several protein-ligand complexes and asked to identify the one near-native 

pose from among 200 decoys provided by CSAR. Though decoys were requested by the 

community, we found that they complicated our analysis. We could not discern whether poor 

predictions were failures of the chosen method or an incompatibility between the participant’s 

method and the setup protocol we used. This problem is inherent to decoys and we strongly advise 

against their use. In Phase 2, participants had to dock and rank/score a set of small molecules 

given only the SMILES strings of the ligands and a protein structure with a different ligand bound. 

Overall, docking was a success for most participants, much better in Phase 2 than in Phase 1. 

However, scoring was a greater challenge. No particular approach to docking and scoring had an 

edge, and successful methods included empirical, knowledge-based, machine-learning, shape-

fitting, and even those with solvation and entropy terms. Several groups were successful in ranking 

TrmD and/or SYK, but ranking FXa ligands was intractable for all participants. Methods that were 

able to dock well across all submitted systems include MDock1, Glide-XP2, PLANTS3, Wilma4, 

Gold5, SMINA6, Glide-XP2/PELE7, FlexX8, and MedusaDock9. In fact, the submission based on 
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Glide-XP2/PELE7 cross-docked all ligands to many crystal structures, and it was particularly 

impressive to see success across an ensemble of protein structures for multiple targets. For 

scoring/ranking, submissions that showed statistically significant achievement include MDock1 

using ITScore1,10 with a flexible-ligand term11, SMINA6 using Autodock-Vina12,13, FlexX8 using 

HYDE14, and Glide-XP2 using XP DockScore2 with and without ROCS15 shape similarity16. Of 

course, these results are for only three protein targets, and many more systems need to be 

investigated to truly identify which approaches are more successful than others. Furthermore, our 

exercise is not a competition.

Graphical abstract

INTRODUCTION

Recognizing the importance of docking calculations for structure-based drug design, many 

different academic groups, software vendors, and individual scientists have written software 

to dock small molecules into protein binding sites. These developers have different 

approaches and philosophies, and they have explored various algorithms with different force 

fields and scoring functions. In some cases, docking is straightforward. With a small, rigid 

molecule and a tight binding site, there might be only one binding mode that accommodates 

all the hydrogen-bonding partners. Perhaps the binding mode of a new compound is obvious 

based on prior crystal structures of similar compounds bound to the same protein. However, 

other cases can be extremely challenging. For example, binding a compound might involve 

major conformational changes in the protein, specific water molecules in the binding site, or 

interactions that require quantum mechanics for accurate simulation. It would be ideal if 

software developers could devise universally applicable docking methods, but in reality, 

different algorithms and force fields perform better or worse in specific situations. In fact, 

software developers may be surprised by the wide range of different molecular-docking 

problems that arise in drug-design practice. Some home-grown software is developed for a 

specific type of docking problem, often when commercial software fails. These home-grown 

methods might later be generalized and extended, but they still perform particularly well for 

the original type of problem and poorly for other docking problems. Also, docking software 

tends to work better for the original authors of a method than for subsequent users. The 

original authors may have tuned their method, knowingly or unknowingly, for the specific 

protein-ligand complexes used in their publications. Also, it is very likely that the original 

authors may simply have a better understanding of how to use their own software. These 

complications make it difficult for users to compare the software and methods available.
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Blind challenges have been used in various disciplines to compare prediction 

methodologies17–25. The Community Structure-Activity Resource (CSAR) at the University 

of Michigan, Ann Arbor has held open challenges three times before, and two have been 

based on blinded data.26,27 With complex methodologies, there is always the danger of over-

fitting to available data or to particular problems. Blind challenges provide a good way of 

checking for this. Iterative cycles of challenge, analysis, and further software development 

can gradually improve methodologies throughout a whole research community19.

The challenges should exercise and test the software with problems that simulate actual 

usage. Within the pharmaceutical industry, docking software is generally used in 1) lead 

discovery and 2) lead optimization. In lead discovery, some collection of compounds is 

typically screened against a biological assay, with the most effective compounds identified 

as “hits.” If the 3D structure of the target protein is known, then docking calculations can be 

used to predict the binding geometries or “poses” of the hit compounds within the binding 

site of the target protein. Docking can also be used to screen compounds in silico, prior to 

the acquisition of compounds, for experimental screening in a biological assay. The docked 

structures can reveal interactions with the protein, which should help explain the Structure-

Activity Relationships (SARs), and may suggest chemical modifications to improve potency 

or selectivity. In lead optimization, chemists make modifications to the “lead” compounds, 

seeking to boost potency, selectivity, solubility, and other properties. Experimental and 

computational chemists use docked structures and crystal structures to design new 

compounds. As lead optimization progresses, the team may get crystal structures for 

multiple analogs within the congeneric series of interest. These crystal structures can greatly 

facilitate subsequent docking calculations by helping to define the likely binding geometry, 

characterizing the movements induced in the protein by the compounds, and by revealing 

key water molecules. Prediction of the binding geometry may be difficult in lead discovery, 

but relatively easy for lead optimization within a congeneric series. Of course, prediction of 

potency is generally challenging in both lead discovery and lead optimization.

CSAR and Its Benchmark Exercises

CSAR was funded by the National Institute of General Medical Sciences for a five-year 

period to collect and curate datasets for use in improving docking and scoring. These 

datasets were primarily obtained from the pharmaceutical industry such as Abbvie28, 

Vertex28, and GlaxoSmithKline (GSK). A few datasets were obtained from academia, such 

as one from the Baker group that formed our 2013 exercise27. Part of the remit of the CSAR 

Center was to run regular exercises to actively engage the docking and scoring community in 

assessing the current state of the art and the impact of potential improvements. The datasets 

that were collected by CSAR were used to run four worldwide exercises in 201017,18, 

201226, 201327, and 2014). For each of the exercises, the Journal of Chemical Information 
and Modeling has published a series of papers from the organizers and participants to report 

their outcomes. All crystal structures used in the exercises were deposited in the Protein 

Data Bank (PDB) for others to use in developing their methods.29 The 2014 CSAR 

Benchmark Exercise, conducted with GSK data, is our last exercise. There is one last CSAR 

dataset of Hsp90 structures and affinities that was donated by colleagues at Abbott (now 

AbbVie) and augmented by in-house experiments at Michigan. This data has been passed on 
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to the Drug Design Data Resource (D3R, www.drugdesigndata.org), a new effort for 

docking and scoring data that is housed at UCSD.

GlaxoSmithKline and the CSAR 2014 Exercise

To provide suitable data for blind challenges, GSK reviewed available unpublished crystal 

structures and their electron densities from in-house lead discovery and lead optimization 

projects. Three targets emerged from the review: tRNA (m1G37) methyltransferase (TrmD), 

Spleen Tyrosine Kinase (SYK), and Factor-Xa (FXa). TrmD is a target for antibiotic 

discovery30. SYK is a target for autoimmune diseases. FXa is an established target for blood 

clotting.

TrmD is a relatively new target where GSK has carried out lead discovery work using 

Encoded Library Technology (ELT) and fragment-based design31. GSK determined crystal 

structures for more than 30 fragments and several ELT hits bound to TrmD. The fragment-

based compounds are relatively low molecular weight, with correspondingly low potency. 

Most of the compounds have some similarity to the S-adenosyl-L-methionine substrate, but 

are otherwise relatively diverse. This TrmD dataset provides one of the very first fragment-

based challenges for docking software.

SYK is a kinase, and it exemplifies the lead optimization problem for kinases. SYK has been 

the target in drug discovery efforts at a number of pharmaceutical and biotech companies. 

Several SYK inhibitors have emerged from these efforts32. In particular, fostamatinib has 

shown some effectiveness in clinical trials for arthritis33,34 and lymphoma35. For the CSAR 

blind challenge, GSK identified 8 unpublished, in-house, crystal structures of SYK with 

bound ligands, together with affinity data on 267 unique compounds from closely-related 

congeneric series that had not previously been disclosed. A few ligands had affinity data for 

different salt forms which resulted in 276 reported affinities. The SYK dataset includes a 

large number of closely-related compounds that simulate the challenges encountered in lead 

optimization in the kinase target class.

FXa has been the target in drug discovery efforts at many pharmaceutical companies, and at 

least three FXa inhibitors have reached the market (Rivaroxaban36, Apixaban37, and 

Edoxaban38). Structure-based design has been used extensively in these FXa projects, and 

FXa has been used as a testbed for new methodologies in structure-based design39. Although 

GSK and other pharmaceutical companies have published extensively around FXa40–51, 

there are still many crystal structures and much assay data that has never been disclosed. For 

the CSAR blind challenge, there were three complexes for which binding affinities and 

structures were available. There were 163 affinity values for 106 unique ligands in closely-

related congeneric series that had not been disclosed previously. This dataset uses new 

compounds to exercise docking software on an old, familiar target. This dataset should 

provide a good test of docking software working in lead optimization mode.

The CSAR 2014 Exercise opened on March 31st, 2014 and the last submissions were taken 

on July 25th, 2014. In Phase 1 of the CSAR 2014 Exercise, participants were given several 

protein-ligand complexes, each with 200 docked poses for the ligands. Participants were 

asked to score the poses and identify the one near-native pose over the 199 docking decoys. 
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In Phase 2, the groups had to dock and rank/score a set of small molecules given only a set 

of SMILES strings for the ligands and crystal structure of the target with a congeneric ligand 

bound. A particularly strong feature of the data used in the CSAR 2014 Exercise is the large 

number of ligand affinities provided by GSK from their SYK and FXa projects. Large 

numbers are needed to identify statistically significant differences across the various 

computational approaches52. Few datasets have this critical feature. Furthermore, some of 

the affinity data from GSK is redundant for SYK and FXa ligands; this comes from multiple 

assay measurements or different salt forms for some molecules. All ligand sets were given to 

participants in their “raw” format, so they contained the redundant ligands. This very unique 

feature allows us to evaluate the computational reproducibility in the participants’ 

submissions and compare it to the experimental variability.

METHODS

CSAR – Phase 1

Some of the donated crystal structures were not used in Phase 1 because they were held in 

reserve for the second phase of the exercise. In Phase 1, we used structures of 14 ligands 

bound to TrmD (gtc000445-gtc00448, gtc000451-gtc000453, gtc000456-gtc000460, 

gtc000464, and gtc000465), five ligands bound to SYK (gtc000224, gtc000225, gtc000233, 

gtc000249, and gtc000250), and three ligands bound to FXa (gtc000101, gtc000398, and 

gtc000401). All sets of electron density from GSK were examined by CSAR colleagues, and 

all of these crystal structures satisfied the criteria for high-quality (HiQ) crystal structures as 

defined in the release of the 2012 CSAR data set.28

Those structures were used to generate a near-native pose and 199 decoys for each system. 

Each crystal structure was set up for docking and scoring using MOE 2011.10 (force field: 

MMFF94x with AM1-BCC charges for the ligands)53. To set up the protein, hydrogens were 

added in MOE 2011.10. The ligands and near-by (≤6Å) asparagines, glutamines, and 

histidines were inspected to select the appropriate tautomer and/or charge state. A few 

residues far from the binding sites had missing sidechains that were added with the “Mutate” 

option within the sequence editor of MOE. Any breaks in the chains were capped with ACE 

or NME residues. All added caps, sidechains, and hydrogens were minimized using MOE’s 

default minimization parameters and the mmff94x forcefield. Each ligand was removed from 

each structure, and 500 docked poses were generated with DOCK (version 6.5)54. A subset 

of 200 poses was chosen for each protein-ligand pair (a self-docking scheme). One of the 

poses was <1 Å RMSD of the actual crystal structure pose, and the other 199 decoys were 

chosen systematically, guided by diversity analysis in MOE. All of the decoy poses were >2 

Å RMSD of the crystal pose. Participants were asked to score/rank the 200 poses for each 

system to test their method’s ability to identify a near-native pose from a set of decoys. 

Figure 1 shows a representative distribution of decoys for each system.

For each protein-ligand pair in the 22 structures, the set-up protein was provided in a 

“.mol2” file, and the 200 ligand poses were provided in a “multi .mol2” file. It should be 

noted that participants were cautioned that any setup introduces some unavoidable bias 

toward the chosen force field. Participants were encouraged to modify the decoys to remove 

bias if necessary. It is likely that some participants minimized the hydrogens for each protein 
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(no heavy atoms were moved from the crystal coordinates in our setup). Some may have also 

chosen to minimize each ligand pose to its closest local minimum under their force field.

CSAR – Phase 2

Though crystal structures were not available for all of the ligands in Phase 2, affinity data 

was known. There were 31 unique ligands for TrmD and 267 unique ligands for SYK that 

were provided to the participants for docking and ranking/scoring. A small number of 

redundancies (different salt forms) lead to a total of 276 affinity measurements for SYK. 

There were 106 unique ligands for FXa. Of the 106 ligands, 55 had binding affinities 

available from two different assays, and one ligand had affinity available in three different 

assays for a total of 163 independent binding affinity values. When multiple affinity 

measurements were available for a ligand, our analysis used the median value when 

comparing the submitted scores/ranks to affinities.

In order to provide a thorough assessment of docking and scoring functions, the ligands need 

to possess a wide range of affinities, preferably spanning at least 3 log units. For TrmD, the 

minimum pIC50 is 3.5 and the maximum is 8.3 log units. For SYK, the range spans from 5.2 

to 8.9 log units, and for FXa, the span is 4.9 to 9.2 log units. The distribution of pIC50 values 

can be seen Figure S1 of the Supplemental Information. TrmD ligands had lower affinities (p 

< 0.0001 two-tailed Wilcoxon rank-sum), as would be expected for a fragment-based set of 

ligands. The median pIC50 for TrmD was 5.7, as opposed to 7.5 and 7.3 for SYK and FXa, 

respectively. Figure S1 also shows the distribution of molecular weight, number of rotatable 

bonds, SlogP, and the number of oxygens and nitrogens as an estimate of hydrogen-bonding 

capabilities. These physiochemical properties of the ligands were calculated using 

MOE2013.0855. All experimental data and methods are provided in the Supplemental 

Information as well as the CSARdock.org website. The crystal structures and structure 

factors from GSK have been deposited in the PDB, and the ID codes for each complex are 

given in the Supplemental Information.

Participants were asked to dock and score each ligand with the method(s) of their choice, 

given the SMILES strings for the ligands and crystal structure coordinates for the target with 

congeneric ligands bound in the active site. Ideally, the participant would test multiple 

methods to systematically identify improvements for their methods. Participants provided 

scores/ranks and docked poses for each ligand. Babel56 was used to convert all submitted 

coordinate files into a consistent format. Crystal structures were not available for every 

ligand, but when they were, the submitted poses for ligands were compared to the 

crystallographic pose using symmetry-corrected RMSD. This value was calculated by an 

SVL script implemented using MOE. The script was generously provided by the Chemical 

Computing Group (CCG). To compare the submitted scores/ranks to the measured binding 

affinities, the R-squared, Pearson (r), Spearman (ρ), and Kendall (τ) were calculated using 

SUPPLEMENTAL INFORMATION
The distributions of the ligands’ affinity and key physical properties, starting data given to participants in Phase 1, numbers for the 
near-native poses in the decoy sets used in Phase 1, starting data provided for Phase 2, evaluation of submitted scores/ranks from 
Phase 2, histograms of median RMSD and ρ from the submissions to Phase 2, experimental affinity data, PDB codes for each protein-
ligand complex, and the description of the experimental methods. This material is available free of charge via the Internet at http://
pubs.acs.org.
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JMP Pro 1057. The 95th percent confidence intervals were calculated for the Pearson (r) and 

Spearman (ρ) correlations using the Fisher transform58, while the 95th percent confidence 

interval for the Kendall (τ) coefficient59 is approximated by τ + 95% = τ + σ*1.96 and τ - 
95% = τ - σ*1.96, where

It should be noted that some methods used a negative score for the most favorable pose, and 

others used positive scores. It was necessary to translate all the participants’ scores/ranks 

into a “common frame of reference.” The maximum and minimum scores were translated to 

a scale of 0.0 to 1.0, with 0.0 as the most favorable score. This translation was done in 

conference with participants to ensure the conversions were correct and properly represented 

the participants’ interpretation of their scores.

Programs used by participants in each phase of the CSAR 2014 Exercise

It should be noted that some of the participants used different methods in Phase 1 and Phase 

2. Because of this, it is confusing to discuss the results based on each participant; instead, it 

is clearer to discuss the results based on the method used in each phase independently. The 

convention for labeling groups is simply based on the order in which the participants 

submitted their predictions, and the labels for the submissions are different for the two 

phases. In Phase 1, submissions from participants are noted by numbers, p1-p30 (there is no 

group p3 because of a submission error). In Phase 2, participating groups are named by 

letters, A-Y. If a group submitted more than one set of results to compare multiple 

approaches, they were labeled with numbered extensions (e.g., p12-1 and p12-2 or B-1 and 

B-2). Some groups chose not to disclose their general approach or specific methods.

The submissions for Phase 1 consisted of ranks or scores for the sets of 200 docked poses 

provided for each ligand complex. Submissions were evaluated based on identifying the 

near-native pose with the top score and within the top-3 scores. The methods used for 

submissions to Phase 1 and their results are given in Table 1. A few of the methods are 

described here because they are too detailed to give sufficient descriptions in the table. 

Group p20 used a hybrid, empirical scoring function with a Lennard-Jones potential 

computed from AMBER, a desolvation term based on atomic polarities derived from the 

molecule’s AlogP, a hydrogen-bond energy term adapted from SLICK, and penalty terms to 

account for atomic clashes and constraints.60 Table 1 notes when groups used the Vina 

scoring function within the Autodock12 software or used Vina in the SMINA6,13 program. 

Group p26 used a hybrid scoring function with terms from both Autodock61 and Autodock-

Vina12 with coefficients fit using data from PDBBind62. Group p9 utilized SZMAP63 (p9-1 

and p9-8), MMPBSA from Szybki64 with varying parameters (p9-2 through p9-7), and 

Chemgauss465 from FRED66 with or without rigid ligand optimization (p9–10 and p9-9, 

respectively). Group p2 used a regression of boosted decision tree models for scoring, based 

on atomic contacts.67–69
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In Phase 2, the groups had to dock and rank/score a set of small molecules to the three 

proteins, given only the SMILES string of the ligand and at least one protein structure with a 

congeneric ligand bound. The docking and scoring/ranking methods used by the participants 

are given in Table 2. A few points are noted here for clarity. Group R used a combination of 

SHAFTS11,70 to align ligand conformations and MDock1 to place the ligands in the protein 

structure. Group M clustered the available ligand structures from the PDB and our crystal 

structures from Phase 1 to develop pharmacophore models for each structure. Ligands were 

then matched to the pharmacophore model using Pharmer.71,72 Group I used a consensus 

score incorporating DSX-DrugScore73, X-score74, MedusaScore75, and ChemPLP53. Table 

2 notes when people used the Vina scoring function from Autodock-Vina12 or from 

SMINA.6 Group T used a hybrid scoring function with terms from both Autodock61 and 

Autodock-Vina12 with coefficients fit using data from PDBBind62 (same as p26 in Phase 1). 

Group X used a variety of scoring methods to rank the docked compounds. In method X-1, 

the Vina12 scoring function was used and manual inspection of the score was done based on 

known crystallographic information. Methods X-2 through X-5 were all scored with the 

Vina scoring function using different choices for parameters. Methods X-6 and X-7 used a 

ligand-based method with either a K-nearest neighbor cluster to compare to known binding 

ligands (X-6) or a support vector machine to compare to known binders (X-7).13

Many groups gave basic descriptions of their methods, but an in-depth, comprehensive 

discussion of all 50+ individual methods is difficult because we do not have the full details 

for each submission. For more information about the various methods, the reader is 

encouraged to read the manuscripts that the participants have submitted to this special issue. 

Their papers properly describe the unique features of their methods and what they have 

learned from the CSAR 2014 exercise.11,13,16,72,76–82

RESULTS AND DISCUSSION

Here, we provide a general overview of the performance of the docking and scoring 

methods, based on the three systems used in the exercise. We focus on points where most 

programs appear to be having success or difficulties as a whole. Overall, no single class of 
methodologies appears to perform consistently better or worse on the protein targets 
provided. Furthermore, some submissions from different participants had different outcomes 

despite using the same methods.

Phase 1. Identify the near-native pose within a set of docking decoys

A total of 22 crystal structures from GSK were chosen for Phase 1: 14 for TrmD, 5 for SYK, 

and 3 for FXa. Broad participation resulted in 29 groups submitting scores/ranks using 52 

different methods. Each of the methods was analyzed independently. Figure 2 and Table 1 

give an overview of the results for Phase 1.

Assessment of top pose and top-3 poses—Analyzing the top-scoring poses from 

each participant show that 18 of the 52 submissions (35%) had excellent performance. Seven 

of the 18 methods correctly identified the near-native pose with the top score across all 22 

complexes, and the other 11 methods missed only one or two complexes. If we look among 

each participant’s top-3 scored poses, 24 submissions (46%) had good performance. Of 
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those, 16 identify all 22 of the near-native poses, and eight miss only one or two complexes. 

The list of successful methods includes basically every type of scoring approach used: 
empirical, knowledge-based, machine-learning, shape-fitting, and even those with advanced 
electrostatics methods for solvation. The slightly higher number of empirical scoring 

functions simply reflects the fact that more were submitted than any other type of scoring.

Unfortunately, almost all of these methodological approaches also appear in the lowest 
performing submissions, with the exception of knowledge-based scoring: For our top-

score analysis, 18 other submissions performed poorly and failed to identify the near-native 

pose for half or more of the complexes. Though expanding our analysis to the top-3 poses 

increased the number of successful methods, there was little change in the poorly 

performing methods. Only 3 methods were improved enough to move out of this lowest 

category. Analysis of the poor methods was significantly hindered because several groups 

did not provide their computational details. There were several reasons: details were lost 

when a co-worker had moved on from the lab, one method was unpublished and still in 

development, others had proprietary reasons, etc. However, the correlation between poor 

performance and unavailable details is notable.

Docking decoys and other possible reasons for difficulties in Phase 1—Many 

participants were comparing two or more methods, so some techniques were expected to 

have poor performance. This may be one reason that 15 methods (29%) did not capture 12 

or more of the near-native poses within their top-3 choices. Another issue may be the use of 

pre-generated docked poses. The choice to use docking decoys had overwhelming grass-

roots support in the community. In fact, participants in our previous exercises requested that 

we separate the “docking problem” from the “scoring problem” by giving everyone the same 

poses in CSAR 2014. While this seems reasonable, it introduces an inherent bias. Though 

the poses looked appropriate and performed well for many submissions, it is always possible 

that poor performance simply identifies when a method is incompatible with our setup 

protocol. In later sections, we show that success rates were higher for docking in Phase 2 

where participants set up the proteins and generated the protein-ligand poses, consistent with 

their methodology.

If we break down the results by protein target, scoring the near-native poses was most 

tractable for FXa; 27 submissions (52%) correctly predicted all three FXa structures with 

their top-scoring pose and 34 methods (66%) placed the near-native pose in the top 3 for all 

FXa structures. For SYK, 23 submissions (46%) correctly identified the near-native pose 

with the top score in all five structures used in Phase 1, and 27 methods (54%) identified 

them all in the top 3. However, the TrmD series appears to have been the most challenging in 

Phase 1. Only 10 methods (19%) identified the near-native pose with the top score for all 14 

TrmD structures used in Phase 1, and only 18 methods (35%) placed the near-native in the 

top 3 for all structures.

We propose two reasons why TrmD decoys may be more frequently misscored. First, it may 

simply reflect the fact that getting the right answer 14 times for TrmD is harder than doing it 

three or five times for FXa and SYK. The second factor clearly comes from the decoy poses. 

It appears there is a second local minimum for poses at ~5Å RMSD. This same set of poses 
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was consistently identified across many methods. Figure 3 shows those poses for ligand 

gtc000445. The difficulty many methods faced was mis-ranking this local minimum as more 

favorable than the near-native pose, which is the true global minimum. We stress that the 

structures used in Phase 1 were those with the most pristine electron density in their binding 

sites. The B-factors are very low. The crystallographic position and orientation of the ligand 

is certain, at least at the low temperatures used in protein crystallography. At room 

temperature, it is likely that this second minimum is occasionally occupied, but it should still 

be less favorable.

Phase 2. Dock and score a congeneric series, starting from a PDB structure and a list of 
SMILES

Of the 52 methods from Phase 1, 29 were also submitted to Phase 2. This included 16 of the 

blue, successful methods in Figure 2’s Top-3 results, but also 9 from the red “poor 

performance” category. In Phase 2, some participants submitted one set of docked poses 

with multiple sets of relative rankings calculated with different scoring functions. For these 

participants, the docking data gives one RMSD measure with multiple Spearman ρ for the 

different rankings from each scoring function. These were counted once in our assessment of 

docking, but all unique ρ were included in the ranking assessment. A total of 25 groups 

provided results, based on 32 docking methods and 40 scoring/ranking methods.

Processing the submissions—The congeneric series of ligands were given in SMILES 

strings, along with the 22 crystal structure “answers” from Phase 1 (plain PDB format of the 

ligand-bound complexes). Participants were told to setup the protein and small molecules as 

needed for best performance of their method. Submissions included a file of ranks/scores for 

ligands and the top poses for each small molecule docked in the target. For our docking 

assessment, we evaluated the poses based on symmetry-corrected RMSD after a weighted 

overlay of the protein backbones. New crystal structures were reserved to evaluate blinded 

cross-docking in Phase 2 (17 for TrmD, 3 for SYK, and 2 for FXa). However, submissions 

also included some unblinded self- and cross-docking poses for the ligands of the 22 crystal 

structures given to the participants from Phase 1. The supplemental information presents 

docking analysis for the blinded structures, the unblinded structures, and the full set of both 

combined. The results are similar across the categories, but the small number of structures 

makes it difficult to properly assess the statistical significance in the docking results. As 

such, the results for the largest set of all docked poses for all crystal structures are given in 

Table 2 as median RMSDs. Three groups chose to cross-dock the whole ligand set against 

all Phase-1 crystal structures given for each target. For this ensemble-docking, each groups’ 

results were consistent across all the protein conformations used, and treating each 

conformation separately as an independent “method” imposes a heavy bias for the ensemble-

dockers vs groups that submitted one set of predictions. Therefore, each set of results for 

each conformation in the ensemble was evaluated like all other submissions, but then, the 

median of median RMSDs from all conformations were used to provide one, inclusive result 

for the same approach from the same group based on multiple, but similar, crystal structures.

All affinity data from GSK were reserved for Phase 2, and we used Spearman ρ to evaluate 

the submitted rankings (median ρ for the ensemble-dockers). For FXa, participants were 
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asked to dock and score each subset of small molecules as a separate dataset, labeling them 

as set1, set2, or set3. There was some overlap in the small molecules in each set, so 

participants processed a few molecules two or three times. We analyzed each of the sets 

separately and together as one large set. For brevity, only the one-large-set analysis is shown 

and discussed here, but the conclusions are the same for each individual subset. The data in 

the Supplemental Information gives both the one-large-set result and the individual results 

for each of the three subsets. The results of Phase 2 and the methods used by the participants 

are given in Table 2. Scoring and docking across all participants is also summarized in 

Figure 4, separated into each independent protein system. Histograms of the data in Figure 4 

are given in the Supplemental Information.

Evaluation of docking in Phase 2—Docking results could only be assessed on the 

subset of unique ligands that had crystal structures available: 31 complexes for TrmD, 8 for 

SYK, and 3 for FXa. With the exception of a few outlying methods for each protein system, 
docking was a success for most participants, and success rates were higher for docking in 
Phase 2 than in Phase 1 where we provided setup protein-ligand poses. Overall, the top 

poses produced by the majority of all docking methods had median RMSDs ≤ 2 Å: 22 out of 

30 submissions (73%) for TrmD, 17 out of 32 (53%) for SYK, and 15 out of 30 (47%) for 

FXa. The most difficult task was consistently docking well over all three targets. Only 11 

submissions (34%) had median RMSD ≤ 2 Å for all targets examined, see blue and green 

highlights in Table 2. In particular, submission J (Glide-XP2/PELE7 with scoring based on 

PELE7 + GB solvation energy83 + ligand-strain + conformational entropy84) deserves 

special recognition for docking well to all three targets. This group cross-docked all the 

ligands against all the given crystal structures. To see robust performance across an 

ensemble of protein structures for multiple targets is an impressive accomplishment.

Our docking criteria are particularly stringent because we are only counting the top poses 

submitted for each docking method, not the top-3 poses like Phase 1. Also, the submissions 

are primarily cross-docking results, not self-docking poses. The docking success is even 

more apparent if we include the large number of structures with median RMSD between 2–3 

Å, which are clearly on the right track. For submissions with median RMSD ≤ 3 Å, the 

success rate is 28 out of 30 methods (93%) for TrmD, 22 out of 32 methods (69%) for SYK, 

and 24 out of 30 methods (80%) for FXa. Relaxing the cutoff to ≤ 3 Å also increases the 

number that successfully dock all three targets to 16 of the 32 methods (50%).

We were surprised to find that participants had the most success with docking TrmD in 

Phase 2, especially given its difficulty in Phase 1. Across the participants, TrmD 

submissions had much smaller median RMSDs than the SYK and FXa submissions from the 

same groups. The conformational search space available to the TrmD ligands is restricted 

because the ligands are smaller and have fewer rotatable bonds (Figure S1), which may 

explain part of its success in Phase 2. Furthermore, crystal structures were given to 

participants as starting points for Phase 2, and at least one example for each congeneric 

series in each protein was provided. These crystal structures could be used to correct any 

mis-dockings of TrmD (such as the 5 Å minimum seen in Phase 1), which would also 

contribute to better docking outcomes for TrmD in Phase 2 than in Phase 1. On the contrary, 

FXa’s ligands were the largest and most flexible (p <0.0001 for comparisons to both TrmD 
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and SYK sets, see the distributions of rotatable bonds in Figure S1). This results in a larger 

conformational space to sample for the FXa ligands which makes the sampling problem 

more difficult. This could explain why participants found that docking was the most difficult 

for FXa.

Evaluation of scoring/ranking in Phase 2: Scoring/rank-ordering the ligands was much 
more difficult than docking

We used Spearman ρ to calculate the agreement in the rank-order of the submitted scores vs 

the experimental affinities provided by GSK. These ρ are calculated using the entire set of 

unique ligands provided to participants for Phase 2: 31 for TrmD, 267 for SYK, and 106 for 

FXa (median affinities were used for any ligand with multiple affinity measurements). It is 

important to note that ρ values are suspect when the median RMSD > 3Å. In those cases, 

methods with ρ values ≥ 0.5 are getting the right answers for the wrong reasons, and any 

poor ρ values may be due to poorly docked poses, rather than a failure of the ranking method 

itself.

In Figure 4, the relationship between the docking and scoring results is given for each 

submission that included both docked poses and ranks. For TrmD, 50% of the submissions 

appear in the red, lower-left section in Figure 4A, showing that they are able to dock, but not 

rank, the ligands. There is little data in the public domain for TrmD, which should make this 

system more challenging for a blinded exercise. Conversely, large amounts of information 

exist in the public domain for FXa, yet it was the toughest system for participants to dock 

and score, see Figure 4C. In fact, scoring/ranking ligands for FXa was intractable for all 

methods.

Of the 37 scoring methods submitted for TrmD, 9 (32%) were successful with ρ ≥ 0.5 (and 

median RMSD ≤ 2Å). Regarding scoring for TrmD, there is a correlation between affinity 

and MW (ρ=0.39) for the ligands. Most scoring functions are based on two-body 

interactions, which are heavily influenced by the number of atoms and contacts. Two TrmD 

ligands appear to establish the correlation, gtc000449 and gtc000450. Each have a pIC50 of 

8.3 while no other ligand has a pIC50 greater than 6.8. These two ligands are also the largest 

and most flexible of the TrmD ligands. For the ligands of SYK and FXa, there is no 

meaningful correlation between affinity and MW, which may be why the scoring/ranking for 

TrmD was more successful than for the other two targets.

Of the 40 scoring methods submitted for SYK, six (15%) were successful. However, only 

one method had ρ ≥ 0.5 for both TrmD and SYK, and that was group R’s use of MDock1 

and ITScore with an added penalty term for reduced ligand flexibility in the bound state.11 

Submission B-1’s use of Glide-XP2 and its XP DockScore came very close with ρ = 0.47 for 

TrmD and ρ = 0.60 for SYK.

What is concerning is that submission S-1 also used Glide-XP and XP DockScore, but the 

rankings are much poorer (ρ = 0.20 and ρ = 0.38 for TrmD and SYK, respectively). The 

dockings are very similar for B-1 and S-1, but they are not exactly the same. It is possible 

the two groups used different crystal structures for their docking. Also, both groups said they 

used the standard setup protocol, but clearly, some small differences likely exist. Setup is 
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usually considered straightforward, and we trust that colleagues in our scientific community 

make the best choices for their studies. However, many of these choices are arbitrary, and it 

is easy to justify changes if difficulties are encountered during a retrospective study. In 

CSAR 2014, those choices could not be pre-tailored, and this likely explains the varied 

outcomes also seen for several different submissions based on Vina scoring. In a prospective, 

blinded exercise, the choices must stand on their own. Setup might be the unseen lynchpin 

that compromises the efforts to implement and compare methods because each method is 

inherently wedded to its own setup protocol. In our first exercise in 2010, one group’s 

changes to system setup improved their correlation to experimental ΔGbind from R2 = 0.188 

to 0.375.85 When those same changes were given to all the other participants, it made no 

difference to their R2 values despite some important corrections to ligand tautomers and 

protonation states.

Statistical significance and “null models” in Phase 2

It should be noted that the number of data points in the set directly effects the size of the 

standard deviations (σ) and 95%-confidence intervals (95% CI), with more data leading to 

smaller σ and tighter confidence intervals. SYK is our largest set with the best statistical 

significance. The successful methods (ρ ≥ 0.5 and RMSD ≤ 2Å) for SYK were MDock1 

using ITScore1,10 + lig flex11 (group R), SMINA6 using Autodock-Vina12,13 (submissions 

X-1 and X-2), FlexX8 using HYDE14 (group V), and Glide-XP2 using XP DockScore2 with 

and without ROCS15 shape similarity16 (B-2 and B-1, respectively). All of these methods 
have no overlap with other methods based on ρ ± σ; furthermore, they were statistically 
significant in their performance over the nulls based on the 95% CI. The most common null 

models are based on the correlation between experimental affinities and the ligands’ 

molecular weights (MW) or calculated SlogP.86 Valid scoring functions should add more 

value to the predictions and result in better correlation to the affinity data than these simple, 

physicochemical properties. The nulls are given in Table 2 and in the Supplemental 

Information. The Supplemental Information also provides parametric and non-parametric 

measures of ranking: R2, Pearson R, Spearman ρ, and Kendall τ with σ and 95% CI.

It is disappointing that the rankings for TrmD are within error of one another and not 

significantly different than our null models for ρ.18 All methods have significantly 

overlapping 95% CIs. Examining ρ ± σ for all methods shows that each is within error of ρ 
for SlogP vs affinity. The most optimistic assessment we can give is that the highest ρ of 

0.67 (MDock1 with ITScore1,10 in submission U-1) has error bars (± σ) that do not overlap 

with those of the MW null. Overall, these nulls highlight the fundamental problem with 
small data sets: a valid correlation cannot be identified as statistically significant from a 
random correlation. With 31 ligands and affinities for TrmD, this set is larger than many 

used in the literature for training and testing scoring functions, but it is still limited. We have 

noted before that data sets must have hundreds of data points to distinguish between 

different scoring methods in a statistically significant way.17,18,52

This is why these large datasets for SYK and FXa are so valuable as a testing and 

development resource. Unfortunately for FXa, ρ for all methods overlap the nulls’ 95% CIs. 

This is simply because of the poor predictive performance for the scoring functions. The two 
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methods with the highest ρ use Autodock-Vina12 implemented in SMINA6 (X-4 and X-5), 

and they have ±σ error bars that do not overlap with any of the nulls’ ±σ error bars. For 

those submissions, we are confident that they are better than a null approach even though 

they did not score very well.

Despite the large amount of existing data in the literature for FXa and the 
frequent use of the system in docking/scoring development, scoring was 
intractable for this system—Many methods were able to dock the ligands of FXa, but 

the real difficulty was scoring. The best agreement with experimental affinities for FXa was 

ρ = 0.36 (submission X-4). It was particularly disappointing that 11 methods produced anti-

correlated results for FXa. It should be noted that the submitted raw scores/ranks included 

definitions of their metric. The anti-correlation is not a misinterpretation of negative 

numbers for ΔGbind; it is truly a negative correlation to experimental binding affinities.

We have argued before that FXa is not a good test system for SBDD (in our analysis paper 

from the first exercise in 2010).18 Many PDB structures of FXa have sub-nM ligands bound 

in the active site, but the pockets are largely solvent-exposed and the complementarity 

appears poor (Figure 1). This may underscore a more important role for solvation effects or 

perhaps structural water in scoring/ranking the ligands. However, it is possible that the 

complexes available are limited by the crystallography. All FXa crystal structures are 

missing several regulatory domains that must be truncated from FXa to make the crystal 

form of the protein. It is possible that some of these domains provide parts of the pocket for 

the inhibitors, effect the electrostatics, or change the conformational behavior of the catalytic 

domain. All of the domains of FXa are present in the assays for the inhibitors, but some are 

missing in the crystal structures, so the data could be simply mismatched.

As further support for the proposed mismatched between the affinities and crystal structures 

for FXa, we should emphasize that the experimental error in the affinity data is minimal and 

not the limiting factor. The standard deviation for the “standards” used in the FXa assays 

average 0.1, 0.4, and 0.8 pIC50 for Sets 1–3, respectively (see Supplemental Information). 

The range of pIC50 for FXa inhibitors is 4.3, which is much larger than any errors from the 

assays. Understanding the variance in the biological data is a key component to improving 

docking and scoring.87–90 A model is only as good as the data used for training, and it is bad 

science to expect higher precision from a computational method than the measured affinities 

actually warrant.

Reproducibility in Phase 2

The format of data submissions allowed us to compare computational reproducibility to 

experimental reproducibility. In the Supplemental Information, the standard deviations of the 

experiments are discussed with the descriptions of the assays, but that is the reproducibility 

of the same compound in the same assay. For 58 inhibitors of FXa, the pIC50 has been 

measured in two or more independent and slightly different assays. This gives us a measure 

of reproducibility from assay to assay. For SYK, we only have data on one assay, but seven 

SYK inhibitors have multiple salt forms, which gives us slightly different conditions for 

those measures too. Figure 5A,B shows that the agreement in the assay data is impressive 
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with R2 of 0.95 and 0.86 for FXa and SYK, respectively. The average difference in the pIC50 

measurements is 0.2 for FXa and 0.3 for SYK.

This examination of the experiments warrants a similar inspection of the calculated 

submissions. Did the participants get the same scores for these “repeat” molecules in the 

data sets? One might expect all methods to produce the exact same value each time, but 

some methods use random sampling and can produce slightly different poses and scores 

each time. Of the 37 methods for FXa, 14 had well correlated values for the repeats (R2 ≥ 

0.9) and 6 had R2 ≥ 0.8. Of the 40 methods for SYK, 20 had well correlated values for the 

repeats (R2 ≥ 0.9) and 2 had R2 ≥ 0.8.

For a more detailed comparison, we must convert the experimental standard deviations to 

relative values as we did for the calculations. Based on the range of affinities, the standard 

deviation of the FXa experiments is 5.5%, and SYK is 5.6%. For each method, the 

differences in the values for each repeat compound were calculated, and the unsigned 

difference for all repeats were averaged, see Figure 5C,D. For the FXa calculations, 9 

methods produced the same scores/ranks for all repeats (0% difference). Another 19 

methods had average differences under 11% (eg, within twice the standard deviation of the 

experiments). For the SYK calculations, 11 methods produced the same scores/ranks, and 23 

methods had average differences under 11%. Note that it is unreasonable to expect less 

variation in the calculations than exist in the experiments, so average differences that are 

within 2σ are acceptable and over 3σ are not. Only a few of the “unknown” methods from 

Table 2 had average differences larger than 3σ.

CONCLUSIONS

Successful methods used basically every type of scoring approach known: empirical, 

knowledge-based, machine-learning, shape-fitting, and even those with advanced 

electrostatics methods for solvation. In Phase 1, 35% of the submitted methods scored the 

near-native poses with the top score, and 46% placed the near-native pose in the top-3. 

Scoring the docking decoys was easiest for FXa and hardest for TrmD. In Phase 2, the 

pattern was reversed. When participants setup their own proteins and submitted docked 

poses, they had the most success with TrmD and the least with FXa. Methods that were able 

to dock well include MDock1, Glide-XP2, PLANTS3, Wilma4, Gold5, SMINA6, Glide-XP2/

PELE7, FlexX8, and MedusaDock9. In particular, the ensemble-docking results from Group 

J (Glide-XP2/PELE7 with scoring based on PELE7 + GB solvation energy83 + ligand-strain 

+ conformational entropy84) deserve special recognition for performing well against all three 

targets. To see robust performance for cross-docking to an ensemble of protein structures for 

multiple targets is an impressive accomplishment.

The most difficult task was relative ranking in Phase 2. When submitted ranks/scores were 

compared to experimental data, few methods were able to rank with Spearman ρ ≥ 0.5. 

Despite FXa’s large dataset and frequent use in method development, scoring was 

intractable for this system. The most statistically significant results were possible with SYK, 

and a few stand-out submissions deserve recognition: MDock1 using ITScore1,10 + lig 
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flex11, SMINA6 using Autodock-Vina12,13, FlexX8 using HYDE14, and Glide-XP2 using XP 

DockScore2 with and without ROCS15 shape similarity16.

The reader can reproduce this benchmark exercise based on the data and PDB list given in 

the supplemental information.
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Figure 1. 
Examples are given for TrmD, SYK, and FXa, showing the near-native poses (thick sticks 

with green carbons) among each set of 199 decoys (black lines). Protein surfaces are shown 

in white and are partially transparent. Ligands are labeled with a short-hand notation above; 

the complexes are TrmD-gtc000451, SYK-gtc000233, and FXa-gtc000101. These three 

ligands have the most favorable binding affinity, out of the ligands that have an available 

crystal structure.
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Figure 2. 
Histograms of the results of Phase 1 of the 2014 CSAR Exercise. A total of 22 crystal 

structures were used, and 52 methods were submitted. Participants were given 199 decoys 

and one near-native pose for each structure. The histograms show how many methods 

predicted the near-native pose with their top score and within the top-3 scores across all the 

structures.
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Figure 3. 
The poses that comprise a second, local minimum for gtc000445 are shown. The decoys 

(colored purple) are 5Å RMSD from the crystal pose, but they have significant overlap with 

the correct, near-native pose (colored green). The decoys are flipped over backwards with 

many favorable hydrogen bonds that lead to good scores.
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Figure 4. 
Comparison of docking and ranking performance for each method submitted for Phase 2. 

The region in the upper left is the area where the most successful submissions are found. 

The value in blue is the number of methods with median RMSD ≤ 2 Å and ρ ≥ 0.5. Median 

ρ are calculated using all the unique ligands for each system. Median RMSD are calculated 

with the set of all Phase-2 ligands that have crystal structures.
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Figure 5. 
There is very tight agreement in the IC50 data from different assays for FXa and different 

salt forms of SYK. (A) Across all the duplicate measurements for FXa, the average unsigned 

difference is 0.15 pIC50 and the standard deviation is only 0.24 pIC50. The slope is 1. (B) 
For SYK, the average unsigned difference is 0.27 pIC50 and the standard deviation is 0.21 

pIC50. The slope deviates from 1.0, but the smaller range of data makes this less relevant. 

(C) For calculations of repeat FXa inhibitors, 9 methods produced the exact same scores/

ranks for all the inhibitors. Another 20 methods had average differences less than 2σexpt (red 

line). (D) For calculations of SYK repeats, 11 methods gave the same scores/ranks, and 23 

other methods had average differences less than 2σexpt (red line).
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