Skip to main content
. Author manuscript; available in PMC: 2017 Jan 12.
Published in final edited form as: J Chem Inf Model. 2016 May 17;56(6):1063–1077. doi: 10.1021/acs.jcim.5b00523

Table 1.

Results for Phase 1 are given for all 52 methods submitted by the 29 participating research groups. The columns note the number of structures for which each method was able to identify the near-native pose as the top-scoring pose and in the top-3 poses. Bold numbers in the last two columns highlight the methods that were able to score at least 20 of the structures correctly. The list of Phase 1 participants is ordered by the total number of structures where the near-native pose is their top score, but the IDs in the first columns simply reflects the order that submissions were received.

Participants
IDa
TrmD (14
Structures)
SYK
(5 Structures)
FXa
(3 Structures)
Composite
(All 22)
Pose-Scoring Method
The order of this list is not intended to declare one
method better than another. More structures are
needed for a statistically significant assessment.

Top
Score
Top 3 Top
Score
Top 3 Top
Score
Top 3 Top
Score
Top 3

p5 14 14 5 5 3 3 22 22 Autodock-Vina12 implemented in SMINA6,13
p6 14 14 5 5 3 3 22 22 GoldScore5 (TrmD, Syk), RMSD-based function (FXa)78
p7 14 14 5 5 3 3 22 22 PELE7 + GB solvation energy83 + ligand-strain term +
conformational entropy term84
p14 14 14 5 5 3 3 22 22 GBVI/WSA (MOE)91 / ChemPLP3
p17 14 14 5 5 3 3 22 22 SIE4,77
p19 14 14 5 5 3 3 22 22 Rosetta Talaris201392,93
p20 14 14 5 5 3 3 22 22 Customized empirical scoring60
p8 13 14 5 5 3 3 21 22 MedusaScore75,79
p12-2 13 14 5 5 3 3 21 22 Unknownb
p22 13 14 5 5 3 3 21 22 Glide-XP2
p26 14 14 5 5 2 3 21 22 Hybrid Autodock61/Autodock-Vina12
p27-4 14 14 5 5 2 3 21 22 Autodock-Vina12,81
p9-9 13 13 5 5 3 3 21 21 Chemgauss465/FRED66
p9-10 13 13 5 5 3 3 21 21 Chemgauss4/FRED65 with rigid optimization of ligand
p4 12 13 5 5 3 3 20 21 Machine Learning scoring model MARS94
p27-2 13 14 4 4 3 3 20 21 ITScore1,10 (refit to refined PDBbind 2012)81
p13 12 12 5 5 3 3 20 20 Unknownb
p30-2 14 3 3 20 HYDE14 + visual inspection (lab provided only top poses)
p27-3 11 14 5 5 3 3 19 22 ITScore1,10 (modified)81
p9-8 10 14 5 5 3 3 18 22 SZMAP63 (formal charge/element/bonding for atom typing)
p28 10 14 5 5 3 3 18 22 SPA95
p21 8 14 5 5 3 3 16 22 ITScore1,10 (plus flexible ligand term)11
p9-1 9 13 4 5 3 3 16 21 SZMAP63 (AM1BCC charge for atom typing)
p29 8 12 5 5 3 3 16 20 Consensus80 (GalaxyDock96, X-Score74, DrugScore73)
p15-1 11 12 2 3 3 3 16 18 ROCS15 shape similarity (best score)16
p25-5 9 12 4 4 2 3 15 19 Pharmacophore-based scoring with LigandScout97
p25-1 6 12 5 5 3 3 14 20 DSX-DrugScore73
p30-1 12 13 2 3 0 1 14 17 HYDE14
p27-1 7 10 4 4 2 3 13 17 ITScore1,10,81
p9-3 10 13 2 4 0 1 12 18 MMPBSA/Szybki64 (intRlx options)
p9-4 10 13 2 3 0 1 12 17 MMPBSA/Szybki64 (intRst options)
p9-7 10 11 2 5 0 1 12 17 MMPBSA/Szybki64 (totRst options)
p9-6 10 11 2 4 0 1 12 16 MMPBSA/Szybki64 (totRlx options)
p23-1 5 7 4 5 3 3 12 15 FLM98,99
p9-5 7 11 3 4 1 1 11 16 MMPBSA/Szybki64 (totInp options)
p9-2 7 12 2 4 1 1 10 17 MMPBSA/Szybki64 (intInp options)
p25-3 6 7 0 0 2 2 8 9 ChemPLP3
p18-2 0 0 5 5 3 3 8 8 Rank from Glide-SP100,101 + Rank from Random Forest
model102
p18-3 0 0 4 5 2 3 6 8 Score from Glide-SP100,101 + Score Random Forest
model102
p18-4 0 0 4 4 2 3 6 7 Glide-SP100,101
p16 5 7 0 3 0 3 5 13 Autodock-Vina12 + occupational probability score
p25-4 2 3 2 4 1 2 5 9 ChemPLP3 (only non-bonded)
p18-1 0 0 3 4 2 2 5 6 QSAR (Random Forest)102
p15-2 3 7 0 0 1 2 4 9 ROCS15 shape similarity (average score)16
p24 0 1 2 3 2 2 4 6 Unknownb
p2 0 1 0 1 3 3 3 5 Boost Decision Tree scoring model6769
p1 0 0 1 2 0 1 1 3 Scoring functions from Agostino et. al103
p23-2 0 0 1 2 0 0 1 2 SOL98,99
p10 0 0 0 1 0 2 0 3 Unknownb
p11 0 1 0 0 0 0 0 1 Unknown b
p12-1 0 0 0 0 0 0 0 0 Unknownb
p25-2 0 0 0 0 0 0 0 0 Elekit104
a

Dashed numbers denote alternate methods from the same group. Many participants submitted more than one set of predictions to compare different approaches and parameters.

b

Some participants were unable to provide details about their methods.