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SUMMARY	 –	This paper aimed to construct a Bayesian network-based decision support system 
to differentiate glioblastomas from solitary metastases, based on multimodality MR examination.
We enrolled 51 patients with solitary brain tumors (26 with glioblastomas and 25 with solitary 
brain metastases). These patients underwent contrast-enhanced T1-weighted magnetic resonance 
(MR) examination, diffusion tensor imaging (DTI), dynamic susceptibility contrast (DSC) MRI, 
and fluid-attenuated inversion recovery (FLAIR). We generated a set of MR biomarkers, including 
relative cerebral blood volume in the enhancing region, and fractional anisotropy measured in the 
immediate peritumoral area. We then generated a Bayesian network model to represent associations 
among these imaging-derived predictors, and the group membership variable, (glioblastoma or soli-
tary metastasis). This Bayesian network can be used to classify new patients’ tumors based on their 
MR appearance. The Bayesian network model accurately differentiated glioblastomas from solitary 
metastases. Prediction accuracy was 0.94 (sensitivity = 0.96, specificity = 0.92) based on leave-one-
out cross-validation. The area under the receiver operating characteristic curve was 0.90. A Baye-
sian network-based decision support system accurately differentiates glioblastomas from solitary 
metastases, based on MR-derived biomarkers.

A	Bayesian	Diagnostic	System	to	Differentiate
Glioblastomas	from	Solitary	Brain	Metastases

R.	CHEN1,	S.	WANG2,	H.	POPTANI2,	E.R.	MELHEM1,	E.H.	HERSKOVITS1

1	Department	of	Diagnostic	Radiology	and	Nuclear	Medicine,	University	of	Maryland	Medical	Center;	Baltimore,	MD,	USA
2	Department	of	Radiology,	University	of	Pennsylvania,	Philadelphia,	PA,	USA

Key	words:	magnetic	resonance	imaging,	glioblastoma,	brain	metastasis,	Bayesian	network

Introduction

Glioblastomas	 (GBM)	 and	 brain	 metas-
tases,	 the	 two	most	 common	 brain	 neoplasms	
in	adults,	are	associated	with	significant	mor-
bidity	 and	 mortality.	 Management	 strategies	
and	 clinical	 outcomes	 differ	 for	 these	 two	 en-
tities	1.	Differentiation	of	 these	 two	neoplasms	
is	 critical	 for	 choosing	care	plans;	 in	addition,	
preoperative	diagnosis	may	affect	 the	surgical	
approach.
To	this	end,	researchers	have	sought	to	find	

a	set	of	biomarkers	that	differentiate	glioblas-
tomas	from	brain	metastases.	Some	investiga-
tors	have	used	clinical	history	and	the	presence	
of	more	 than	 one	 enhancing	mass	 to	differen-
tiate	 these	 two	 neoplasms	 2.	 However,	 differ-
entiation	 between	 glioblastoma	 and	 solitary	
brain	 metastasis	 is	 challenging	 because	 both	
display	similar	signal	 intensity	characteristics	
and	contrast	enhancement	patterns	on	conven-
tional	magnetic	resonance	(MR)	examination	3.

Given	 these	 similarities	 on	 conventional	
MR,	 investigators	 have	 applied	 advanced	MR	
sequences	 to	 differentiate	 metastases	 from	
glioblastoma	 4,5,6,7,8.	 Some	 of	 these	 techniques	
arose	 from	 the	 observation	 that	 high-grade	
gliomas	 tend	 to	 infiltrate	 the	 peritumoral	 re-
gion,	whereas	metastases	are	 often	better	 cir-
cumscribed.	Law	et	al.	found	that	relative	cer-
ebral	 blood	 volume	 (rCBV)	measurements	 (as	
measured	by	perfusion	MR)	in	the	peritumoral	
region	 of	 high-grade	 gliomas	 to	 be	 different	
from	 those	 in	 solitary	 metastases	 6.	 Ishimaru	
et	 al.	 used	 single-voxel	 proton	 MR	 spectros-
copy	 to	 differentiate	 these	 two	 neoplasms	 5.	
Lu	 et	 al.	 used	 diffusion	 tensor	 imaging	 (DTI)	
to	analyze	high-grade	gliomas	and	metastases	
7;	 they	 found	the	peritumoral	mean	diffusivity	
of	metastatic	 lesions	was	 significantly	greater	
than	that	of	gliomas.	
It	 is	 well	 recognized	 that	 combining	 infor-

mation	 from	 several	 imaging	 modalities	 may	
improve	diagnostic	accuracy	9.	However,	select-
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based	 on	 probability	 theory,	 BNs	may	 still	 be	
applied	when	some	data	are	missing.

Materials

This	study	included	51	patients	with	solitary	
brain	 tumors.	 Based	 on	 pathologic	 examina-
tion,	26	patients	had	glioblastomas	(mean	age	
(standard	deviation)	57	(SD	15),	14	males	and	
12	females),	and	25	patients	had	solitary	brain	
metastases	(mean	age	59	(SD	12),	14	males	and	
11	 females).	 Exclusion	 criteria	 included	 more	
than	one	mass,	non-enhancing	tumor,	or	clini-
cal	 history	 of	 any	 prior	 therapy	 to	 the	 brain.	
The	 study	 was	 approved	 by	 our	 institutional	
review	board.
These	patients	underwent	contrast-enhanced	

T1-weighted	MR,	DTI,	DSC	MRI,	and	FLAIR.	
MR	examination	was	performed	on	a	Siemens	
Tim	 Trio	 3.0T	 whole-body	 scanner	 (Siemens,	
Erlangen,	Germany).	The	imaging	parameters	
of	 T1-weighted	 3D	 magnetization	 prepared	
rapid	 acquisition	 gradient-echo	 (MPRAGE)	
were	Time	to	Repetition	 (TR)/	Time	Delay	be-
tween	 excitation	 and	 Echo	 Maximum	 (TE)	 =	
1760/3.1	ms,	192	×	256	matrix	size,	1	mm	slice	
thickness.	Post-contrast	T1-weighted	MPRAGE	
images	 were	 obtained	 after	 administration	 of	
a	standard	dose	 (0.1	mmol/kg)	of	gadodiamide	
(Omniscan,	GE	Healthcare,	Oslo,	Norway)	with	
a	power	injector.	The	DTI	sequence	parameters	
were	TR/TE=4900/83	ms,	number	of	excitations	
=	6,	 field	 of	 view	 (FOV)	=	22	×	22	 cm2,	 3	mm	
slice	 thickness,	 128	 ×	 128	 matrix,	 b	 =	 0	 and	
1000	 s/mm2	 and	 40	 slices	 covering	 the	 entire	
brain.	 To	 reduce	 the	 effect	 of	 contrast-agent	
leakage	on	rCBV	measurements,	DSC	MR	was	
performed	 five	 minutes	 after	 a	 3	 ml	 preload-
ing	dose	of	 intravenous	gadodiamide.	DSC	se-
quence	 parameters	 included	 TR/TE	 2000/45	
ms,	FOV	22	×	22	cm2,	in-plane	resolution	1.72	
×	1.72	×	3	mm3,	and	20	slices.	FLAIR	sequence	
parameters	were	TR/TE/TI	9420/141/2500	ms,	
3	mm	slice	thickness.	

Methods

Constructing	 a	 decision	 support	 system	 in-
volves	 three	steps:	biomarker	selection,	model	
generation,	 and	 model	 evaluation.	 In	 the	 bi-
omarker	 selection	 step,	we	 process	 the	 source	
raw	data	and	 extract	potential	 predictor	 vari-
ables.	Then,	we	build	a	classification	model	us-
ing	machine-learning	 algorithms	 or	 statistical	

ing	 the	 optimal	 diagnostic	 combination	 from	
among	 the	 plethora	 of	 potential	 biomarkers	
is	 a	 difficult	 problem.	 Statistical	 and/or	 data-
mining	 techniques	 have	 the	 potential	 to	 se-
lect	 the	 combination	 of	 biomarkers	 that	 yield	
optimal	 differentiation.	 A	 typical	 process	 for	
constructing	 a	 classification	model	 consists	 of	
three	steps:	first,	we	extract	(potential)	predic-
tor	 variables,	 such	 as	 peritumoral	 mean	 dif-
fusivity;	 we	 then	 build	 a	 classification	model,	
or	 classifier,	 using	 data	mining	 algorithms	 or	
statistical	approaches;	finally,	we	evaluate	and	
validate	the	resulting	diagnostic	model.		
However,	 there	 are	 several	 obstacles	 we	

must	overcome.	First,	when	we	aggregate	pre-
dictor	 variables	 obtained	 from	different	 imag-
ing	 modalities,	 the	 number	 of	 predictor	 vari-
ables	in	the	diagnostic	model	increases	rapidly.	
In	this	case,	we	have	a	limited	number	of	sam-
ples	 (i.e.,	 brain	 tumors)	 and	 a	 large	 number	
of	 predictor	 variables	 (i.e.,	MR	 sequences	 and	
other	 information	for	each	patient),	 leading	to	
severe	undersampling.	The	resulting	classifica-
tion	model	may	not	generalize	beyond	the	pa-
tients	used	to	create	the	model	if	we	don’t	take	
additional	steps,	such	as	regularization,	to	pre-
vent	 over-fitting.	 Second,	 some	 sophisticated	
data-mining	 methods,	 such	 as	 support	 vector	
machines,	 can	 achieve	 high	 accuracy,	 but	 the	
classification	 models	 generated	 by	 these	 ap-
proaches	 are	 hard	 for	 people	 to	 understand.	
Third,	 some	 machine-learning	 methods	 gen-
erate	 classification	models	 with	 limited	 infer-
ence	capability.	Were	investigators	to	use	these	
methods	 to	generate	a	classification	model	 for	
differentiating	glioblastomas	from	solitary	me-
tastases	based	on	age,	perfusion	MR	and	DTI,	
they	 could	 use	 the	 resulting	 classifier	 only	 in	
its	 original	 form:	 if	 the	 DTI	 biomarkers	 were	
not	 available,	 the	 investigators	 could	 not	 use	
the	model.
This	 study	 aimed	 to	 build	 a	 Bayesian	 Net-

work	 (BN)-based	 system	 to	 differentiate	 gliob-
lastomas	 from	 solitary	 metastases,	 based	 on	
multimodality	 imaging.	 Imaging	 techniques	
include	T1-weighted	MR,	DTI,	dynamic	suscep-
tibility	 contrast	 (DSC)	MRI,	 and	 fluid	 attenu-
ation	 inversion	 recovery	 (FLAIR).	A	BN-based	
decision	 support	 system	offers	 five	advantages	
over	 alternative	 modeling	 approaches.	 1)	 BNs	
are	declarative,	and	tend	to	be	simple	for	people	
to	 comprehend;	2)	BNs	have	very	powerful	 in-
ference	capabilities;	3)	BNs	rest	upon	a	formal	
mathematical	foundation	for	generating	models	
under	uncertainty;	4)	expert	domain	knowledge	
can	be	easily	incorporated;	and	5)	since	they	are	



177

www.centauro.it	 The	Neuroradiology	Journal	26:	175-183,	2013

independence	statements	about	variables.	A	di-
rected	 edge	 in	G	 is	 a	 link	 from	a	 parent	 node	
to	 a	 child	node,	 and	 corresponds	 to	 a	 probabi-
listic	 association	 between	 two	 variables.	 An	
advantage	of	BNs,	 in	 contrast	 to	 certain	other	
approaches	such	as	support	vector	machines,	is	
that	BNs	are	declarative;	that	is,	statistical	de-
pendence	 and	 independence	 are	 explicitly	 rep-
resented,	and	are	interpretable	by	people.
Each	 variable	 in	 a	BN	 is	 associated	with	 a	

conditional-probability	 distribution.	 Let	pa(Xi)	
represent	 the	 parent	 set	 of	 node	Xi;	 The	 con-

models.	In	the	model	evaluation	step,	for	a	new	
subject,	we	predict	the	subject’s	group	member-
ship	(glioblastomas	or	solitary	metastases)	us-
ing	the	generated	classification	model.

Bayesian networks

Let	V={X1, …, Xp}	denote	the	variables	(nodes)	
in	the	problem	domain.	A	BN	model	B	consists	
of	two	components:	a	structure	G	and	parame-
ters	Θ.	B=(G,	Θ).	The	structure,	G,	is	a	directed	
acyclic	graph	and	encodes	a	set	of	 conditional-

Table	1		MR-derived	predictor	variables;	*	=	p-value	<	0.1.

Name Modality Name Modality

T1	enhancing	part T1 T1	immediate	peritumoral	area T1

FLAIR	enhancing	part	* FLAIR FLAIR	immediate	peritumoral	area FLAIR

ADC	enhancing	part DTI ADC	immediate	peritumoral	area DTI

FA	enhancing	part	* DTI FA	immediate	peritumoral	area	* DTI

CL	enhancing	part	* DTI CL	immediate	peritumoral	area	* DTI

CP	enhancing	part	* DTI CP	immediate	peritumoral	area	* DTI

CS	enhancing	part	* DTI CS	immediate	peritumoral	area	* DTI

rCBV	enhancing	part	 DSC rCBV	immediate	peritumoral	area	* DSC

Maximum	rCBV	enhancing	part DSC Maximum	rCBV	immediate	peritumoral	area	* DSC

T1	central	part T1 T1	distant	peritumoral	area	 T1

FLAIR	central	part	* FLAIR FLAIR	distant	peritumoral	area FLAIR

ADC	central	part	 DTI ADC	distant	peritumoral	area DTI

FA	central	part	* DTI FA	distant	peritumoral	area DTI

CL	central	part	* DTI CL	distant	peritumoral	area DTI

CP	central	part	* DTI CP	distant	peritumoral	area	* DTI

CS	central	part	* DTI CS	distant	peritumoral	area DTI

rCBV	central	part	 DSC rCBV	distant	peritumoral	area DSC

Maximum	rCBV	central	part DSC Maximum	rCBV	distant	peritumoral	area	* DSC

Figure	 1	 	 An	 example	 of	 a	 Bayesian	 network.	 FA:	 factional	
anisotropy	in	the	enhancing	region;	CL:	the	linear	anisotropy	
coefficients	in	the	enhancing	region;	CS:	the	spherical	anisot-
ropy	coefficients	in	the	enhancing	region.
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certainty	 than	 if	 we	 had	 all	 the	 information.	
This	 feature	 is	 of	 great	 importance	 in	 clinical	
applications,	 in	 which	 some	 predictor	 vari-
ables	 are	 often	missing	 (e.g.,	 a	 particular	MR	
sequence	could	not	be	acquired,	or	the	patient’s	
weight	was	not	obtained).

Biomarker extraction

To	select	biomarkers,	we	first	generated	a	set	
of	 scalar	maps	 (FA,	 apparent	 diffusion	 coeffi-
cient	(ADC),	CL,	planar	anisotropy	coefficients	
(CP))	from	DTI	images,	and	rCBV	values	from	
DSC	 images.	 For	 each	 subject,	 we	 registered	
the	FLAIR,	FA,	ADC,	CL,	CP,	and	rCBV	maps	
to	that	subject’s	T1-weighted	image	volume	us-
ing	 a	 mutual	 information-based	 registration	
algorithm	11.
Based	 on	 T1-weighted	 MR	 and	 FLAIR	 im-

ages,	we	 divided	 each	 lesion	 into	 four	 sub-re-
gions:	 central,	 enhancing,	 immediate	 peritu-
moral,	and	distant	peritumoral.	We	delineated	
an	ROI	over	the	FLAIR	abnormality	to	create	a	
3D	mask.	We	created	another	mask	on	the	T1-
weighted	MR	volume	 to	 indicate	 contralateral	
normal	WM.	We	defined	the	enhancing	region	
to	 include	 enhancement	 greater	 than	 three	
standard	 deviations	 (SD)	 above	 the	 mean	 of	
WM	post-contrast	T1	 signal	 intensity.	We	 de-
fined	the	central	region	to	include	those	voxels	
within	the	enhancing	region	with	enhancement	
less	 than	 the	 mean	 +	 three	 SD	 post-contrast	
T1	signal	intensity.	We	defined	the	immediate	
peritumoral	region	as	a	4	mm	band	around	the	
enhancing	 region.	 Finally,	 we	 defined	 the	 re-
maining	region	of	FLAIR	abnormality,	outside	
the	 peritumoral	 region,	 as	 the	 distant	 peritu-
moral	region.			
For	 each	 of	 the	 four	 sub-regions,	 we	 calcu-

lated	 the	 average	 intensity	 for	 T1,	 FLAIR,	
ADC,	 FA,	 CL,	 CP,	 CS,	 rCBV,	 and	 maximal	
rCBV.	This	process	yielded	36	potential	predic-
tor	variables	(Table	1).	

Classifier generation

To	 generate	 a	 classifier	 based	 on	 multimo-
dality	 imaging,	 for	 the	 36	 imaging-derived	
variables,	we	used	the	Wilcoxon	rank-sum	test	
to	identify	variables	demonstrating	differences	
between	patients	with	glioblastomas	and	those	
with	 solitary	metastases,	 and	 set	 the	 p-value	
cutoff	to	0.1.	Thus,	if	the	p-value	of	a	variable	
was	 below	 0.1,	we	 considered	 this	 variable	 to	
be	predictive	of	C,	and	included	it	 in	the	clas-
sification	model.	We	did	not	set	a	stringent	p-

ditional	 probability	Θijk=P(Xi	 =	k	 |	pa(Xi)=j)	 is	
the	probability	 that	 variable	Xi	 assumes	 state	
k	when	the	parents	of	Xi,	pa(Xi),	assume	their	
j	 combination	 of	 states.	 If	Xi	 has	 no	 parents,	
then	 Θijk	 corresponds	 to	 the	 marginal	 prob-
ability	of	Xi.	Θ	 is	the	collection	of	Θijk;	Θ	speci-
fies	 the	conditional	probabilities	 that	quantify	
the	 associations	 among	 the	 variables	 Figure 
1	 depicts	 a	 hypothetical	 BN	 that	 represents	
the	probabilistic	associations	among	four	vari-
ables:	 factional	 anisotropy	 (FA)	 from	 the	 en-
hancing	 region,	 linear	 anisotropy	 coefficients	
(CL)	from	the	enhancing	region,	spherical	ani-
sotropy	 coefficients	 (CS)	 from	 the	 enhancing	
region,	 and	 the	 group	membership	 variable	C	
(glioblastoma	or	brain	metastasis).	In	this	BN,	
C	is	independent	of	FA,	given	CL	and	CS.	The	
conditional	probability	P(C	=	GBM	|	CL	=	low,	
CS	=	low)	=	0.9	indicates	that	probability	of	a	
subject’s	 having	 glioblastoma	when	CL	 is	 low	
and	CS	is	high	is	0.9.
The	concept	of	a	Markov	blanket	is	central	to	

the	BN	representation:	 the	Markov	blanket	of	
a	variable	X,	mb(X),	is	defined	as	the	minimum	
set	of	variables	 that	 render	 that	variable	 con-
ditionally	independent	of	the	other	variables	in	
the	 network	 10.	 For	 example,	 in	 Figure	 1,	 the	
Markov	 blanket	 of	C	 is	CL	 and	CS.	 That	 is,	
given	 knowledge	 of	 the	 status	 of	CL	 and	CS,	
the	status	of	FA	gives	us	no	additional	informa-
tion	about	the	probability	of	that	subject’s	hav-
ing	glioblastoma	or	brain	metastasis.	Formally,	
mb(X)	is	defined	as	the	union	of	X’s	parents,	its	
children,	and	the	parents	of	its	children.
One	of	the	advantages	of	the	BN	representa-

tion	 is	 its	powerful	 inference	 capability	10.	The	
inference	task	is	to	find	the	posterior	distribu-
tion	of	a	set	of	outcome	variables	given	values	
for	 evidence	 variables.	 A	 BN	 can	 be	 used	 to	
compute	any	such	probability.	For	example,	in	
Figure	 1,	 we	may	 be	 interested	 in	 the	 poste-
rior	 probability	 of	 a	 subject’s	 having	 glioblas-
toma,	 given	 that	 this	 subject’s	FA	 is	 high.	 In	
this	query,	the	outcome	variable	is	C,	and	the	
evidence	variable	is	FA.	To	compute	this	prob-
ability,	we	apply	a	standard	BN-inference	algo-
rithm	to	the	network	in	Figure	1,	obtaining	the	
value	0.42.	
Because	of	this	powerful	inference	capability,	

BN-based	decision	 support	 systems	 can	easily	
accommodate	missing	data,	without	having	 to	
modify	 the	 underlying	BN	model	 or	 inference	
algorithm.	If	we	construct	a	BN	that	predicts	C	
based	on	FA,	CL,	and	CS	(Figure	1),	for	a	new	
subject,	 even	 in	 the	 case	 that	CL	 and	CS	 are	
missing,	we	can	still	predict	C,	albeit	with	less	
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that	this	new	case	belongs	to	a	specific	group.	
This	step	is	referred	to	as	the	model	evaluation	
stage.	
We	 used	 leave-one-out	 cross	 validation	

(LOOCV)	to	evaluate	the	BN	classifier	that	we	
generated	in	the	previous	step.	In	LOOCV,	we	
partition	the	data	set	D	into	Ntotal	data	sets.	For	
each	data	set,	we	generate	a	BN	model	based	on		
Ntotal	 	 –	1	 subjects,	 and	we	determine	whether	
the	model	can	correctly	classify	the	remaining	
subject’s	tumor.	The	overall	performance	is	the	
average	across	all		Ntotal		data	sets.	
To	 assess	 predictive	 power,	 we	 computed	

prediction	accuracy,	defined	as	Ncorr/Ntotal,	where	
Ncorr	 and	 	Ntotal	 	 represent	 the	 number	 of	 cor-
rectly	 labeled	 subjects	 and	 the	 total	 number	
of	 subjects,	 respectively.	 Sensitivity	 is	 the	
fraction	of	 subjects	who	had	glioblastoma	and	
were	 labeled	 as	 having	 glioblastoma	 by	 the	

value	cutoff	value,	such	as	0.05	with	multiple-
comparison	 correction,	 because	 our	 goal	 was	
to	 detect	 variables	 that	 are	 predictive	 of	C	 to	
some	 degree,	 not	 to	 detect	 variables	 demon-
strating	 significant	 differences.	 Let	 F	 denote	
this	set	of	variables.
The	next	step	is	to	construct	a	BN	model	to	

represent	 probabilistic	 associations	 among	 F	
and	 C.	 We	 used	 a	 standard	 BN	 data-mining	
algorithm,	based	on	 the	Markov	Chain	Monte	
Carlo	 (MCMC)	 method	 12	 and	 the	 Bayesian	
Dirichlet	equivalent	(BDe)	score	13,	 to	generate	
the	BN	classifier.

Classifier evaluation

After	generating	the	classification	model	for	
a	 new	 case,	we	 apply	 the	 classification	model	
to	 this	 new	 case	 and	 obtain	 the	 probability	

Table	2		Predictive	power	of	different	combinations	of	sub-regions.	*	=	no	significant	difference	between	AUC	of	this	variable	set	
and	that	of	the	full	set.	

Variable set Accuracy Sensitivity Specificity AUC

All 0.94 0.96 0.92 0.9031

ENH 0.82 1 0.64 0.8754	*

CEN 0.73 0.62 0.84 0.5831

IPR 0.75 0.92 0.56 0.6169

DPR 0.47 0.23 0.72 0.3446

ENH	+	CEN 0.82 0.96 0.68 0.8769	*

ENH	+	IPR 0.92 0.92 0.92 0.8846	*

CEN	+	IPR 0.75 0.69 0.80 0.7985

ENH	+	CEN	+	IPR 0.94 0.96 0.92 0.9031	*

Figure	2	 	Structure	 of	 the	Bayesian	network	gener-
ated	by	our	data-mining	algorithm.	Yellow	nodes	con-
stitute	 the	Markov	blanket	of	 the	outcome	variable.	
ENH:	 enhancing	 region;	 CEN:	 central	 region;	 IPR:	
immediate	 peritumoral	 region;	DPR:	 distant	 peritu-
moral	region.	
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tients	with	 solitary	brain	metastases,	 the	pri-
mary	 sites	 of	 cancer	were:	 lung	 (17	 patients),	
breast	(5	patients),	colon	(1	patient),	melanoma	
(1	patient),	and	sarcoma	(1	patient).

Variables included in the classification model

The	set	of	variables	with	p-values	below	0.1	
included	18	variables	(Table	1).	Those	variables,	
of	which	F	is	comprised,	were:	FLAIR,	FA,	CL,	
CP,	 and	 CS	 in	 the	 enhancing	 region;	 FLAIR,	
FA,	CL,	CP,	and	CS	in	the	central	region,	FA,	
CL,	CP,	CS,	rCBV,	and	maximum	rCBV	in	the	
immediate	 peritumoral	 region,	 CP	 and	 maxi-
mum	rCBV	in	the	distant	peritumoral	region.

The BN-based classification model

Figure	2	shows	the	structure	of	the	resulting	
BN	classifier.	The	Markov	blanket	of	C	(the	tu-
mor-type	 variable)	 included	 eight	 biomarkers:	

classification	model.	 Specificity	 is	 the	 fraction	
of	 subjects	 who	 had	 solitary	 metastases	 and	
were	labeled	as	solitary	metastases	by	the	BN	
model.	We	 also	 calculated	 the	 area	under	 the	
receiver	 operating	 characteristic	 (ROC)	 curve	
(AUC),	 using	 STATA	 (StataCorp	 LP,	 College	
Station,	 TX,	 USA).	 We	 tested	 the	 equality	 of	
two	or	more	AUCs,	obtained	from	applying	two	
or	more	test	modalities	to	the	same	sample	or	
to	 independent	 samples,	 using	 the	 roccomp 
procedure	in	STATA	14.

Results

Histopathologic analysis

Histopathologic	analysis	of	the	study	popula-
tion	defined	tumors	for	26	patients	to	be	gliob-
lastomas	 and	 those	 for	 an	 additional	 25	 pa-
tients	to	be	solitary	brain	metastases.	For	pa-

Figure	3		ROC	curves	of	different	combinations	of	sub-regions. Figure	4		ROC	curves	of	different	combinations	of	MR	sequences.

Table	3		Predictive	power	of	different	combinations	of	MR	sequences.	*	=	no	significant	difference	between	AUC	of	this	variable	
set	and	that	of	the	full	set.

Variable set Accuracy Sensitivity Specificity AUC

All 0.94 0.96 0.92 0.9031

FLAIR 0.73 0.81 0.64 0.5908

DTI 0.61 0.46 0.76 0.7692

DSC 0.63 0.42 0.84 0.4338

FLAIR	+	DTI 0.88 0.84 0.92 0.9015	*

FLAIR	+	DSC 0.71 0.77 0.64 0.7031

DTI	+	DSC 0.67 0.62 0.72 0.8277	*
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gions	versus	the	union	of	ENH	and	the	CEN,	
and	3)	all	sub-regions	versus	the	union	of	ENH	
and	the	IPR.
Table	3	 lists	 the	predictive	powers	of	differ-

ent	combinations	of	imaging	sequences;	Figure	
4	 shows	 the	 corresponding	 ROC	 curves.	 We	
found	 that	 each	 individual	 imaging	 sequence	
(FLAIR,	 DTI,	 or	 DSC)	 had	 poor	 predictive	
power	if	used	in	isolation	in	the	testing	stage.	
We	found	that	 there	was	no	significant	differ-
ence	between	AUCs	for	these	combinations	(p-
value	>	0.05):	1)	all	 imaging	sequences	versus	
the	union	of	FLAIR	and	DTI,	2)	all	imaging	se-
quences	versus	 the	union	of	DTI	and	DSC.	In	
other	words,	the	combination	of	DTI	and	either	
FLAIR	or	DSC	was	statistically	 indistinguish-
able	 from	 all	 sequences,	with	 respect	 to	 AUC	
obtained	via	cross	validation.

Discussion	and	Conclusions

We	 demonstrated	 that	 a	 Bayesian	 network	
model	 (shown	 in	 Figure	 2)	 accurately	 differ-
entiates	 glioblastomas	 from	 solitary	 metas-
tases.	Prediction	accuracy	was	0.94	(sensitivity	
=	 0.96,	 specificity	 =	 0.92)	 and	AUC	was	 0.90,	
based	on	leave-one-out	cross-validation.	
The	 generated	 Bayesian	 network	 model	 is	

declarative.	 As	 shown	 in	 Figure	 2,	 interpret-
ing	 this	 model	 is	 relatively	 straightforward	
as	 there	 are	 eight	 variables	 that	 directly	 dis-
tinguish	 glioblastoma	 from	 metastasis.	 This	
feature	 is	 invaluable	 for	 understanding	 asso-
ciations	 among	 imaging	 biomarkers	 and	 the	
diagnosis	 variable	 C.	 Given	 knowledge	 of	 the	
states	 of	 these	 eight	 variables,	 the	 states	 of	
other	variables	give	us	no	additional	 informa-
tion	on	the	probability	that	a	particular	subject	
has	glioblastoma	or	brain	metastasis.	Of	these	
eight	 variables,	 six	 of	 them	 are	 derived	 from	
DTI,	two	from	DSC,	and	one	from	FLAIR.	This	
finding	suggests	that	DTI	is	critical	to	the	dif-
ferentiation	 between	 glioblastoma	 and	 brain	
metastasis,	and	is	consistent	with	other	results	
in	the	literature	7,8.
The	 generated	 BN	 classifier	 can	 predict	 C	

even	under	the	condition	that	only	a	subset	of	
imaging	 biomarkers	 is	 observable.	 For	 exam-
ple,	we	can	predict	C	when	only	DTI	data	are	
available,	 or	 when	 only	 the	 FLAIR	 sequence	
has	been	acquired.	In	general,	we	can	estimate	
the	 predictive	 power	 of	 any	 subset	 of	 vari-
ables,	 assuming	 that	 the	 other	 variables	 are	
unobservable	(i.e.,	unavailable)	when	using	the	
model	 for	 evaluation.	 Tables	 2	 and	 3	 list	 the	

FLAIR,	FA,	and	CS	from	the	enhancing	region,	
FA	from	the	central	region,	and	CP,	CS,	rCBV,	
and	maximum	rCBV	from	the	immediate	peri-
tumoral	 region.	 Classification	 accuracy	 based	
on	 LOOCV	 was	 0.94	 (sensitivity	 =	 0.96	 and	
specificity	=	0.92),	and	AUC	was	0.90.
As	we	noted	in	the	Introduction	section,	one	

of	 the	advantages	of	 the	BN	representation	 is	
its	ability	to	classify	new	subjects	based	on	par-
tially	 available	 data.	 There	 are	 two	 scenarios	
in	which	this	feature	is	critical:
Data	 are	 often	 missing	 for	 patients,	 possi-

bly	due	to	operator	error	(e.g.,	failure	to	record	
patient’s	weight	or	symptoms),	hardware	(e.g.,	
MR	 scanner)	 error,	 or	 a	 patient’s	 inability	 to	
submit	 to	 a	 lengthy	MR	 examination,	 among	
other	causes.
Different	 imaging	 sequences	 or	 hardware.	

Our	model	in	Figure	2	is	constructed	based	on	
T1-weighted	 MR,	 DTI,	 DSC,	 and	 FLAIR,	 yet	
other	medical	centers	may	employ	different	im-
aging	sequences.	These	physicians	can	still	use	
our	model,	as	long	as	their	imaging	sequences	
include	a	 subset	 of	 those	we	used	 to	 generate	
the	model.
For	a	subset	A	of	F,	we	can	evaluate	its	pre-

dictive	 power	 as	 follows.	 In	 the	 LOOCV	 step,	
we	generate	a	BN	model	based	on	F,	and	then	
apply	 that	 classifier	 to	 those	 cases	 that	 are	
not	 in	 the	 training	 set,	 using	 only	 variables	
in	A.	Note	 that	we	 do	 not	 have	 to	 follow	 this	
procedure	 to	 use	 the	model	 generated	 from	F	
for	patients	with	missing	data;	this	evaluation	
gives	us	a	basis	on	which	we	can	compare	the	
relative	predictive	power	of	various	subsets	of	
available	biomarkers.
Table	 2	 lists	 the	 predictive	 powers	 of	 dif-

ferent	 combinations	 of	 sub-regions.	 Figure	 3	
shows	the	corresponding	ROC	curves.	In	Table	
2,	 ENH	 is	 the	 enhancing	 region,	 CEN	 is	 the	
central	 region,	 IPR	 is	 the	 immediate	 peritu-
moral	 region,	 and	 DPR	 is	 the	 distant	 peritu-
moral	 region.	 In	 the	 LOOCV	 stage,	 we	 only	
used	 a	 subset	 of	 variables.	 For	 example,	 for	
the	 second	 row	 (ENH),	 when	 we	 applied	 the	
BN	classifier	to	those	cases	that	were	not	used	
to	generate	 the	model,	we	used	only	variables	
from	the	enhancing	region	to	evaluate	classifi-
cation	accuracy.	
We	 found	 that	 the	 AUC	 of	 variables	 from	

the	enhancing	 region,	 the	 central	 region,	and	
the	immediate	peritumoral	region,	was	identi-
cal	to	that	from	all	sub-regions.	We	found	that	
there	 was	 no	 significant	 difference	 for	 AUCs	
between	 these	 combinations	 (p-value	 >	 0.05):	
1)	 all	 sub-regions	 versus	 ENH,	 2)	 all	 sub-re-
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tomas	 are	 biologically	 aggressive	 tumors;	 they	
tend	to	grow	in	an	infiltrative	manner,	invading	
the	 surrounding	 tissues,	 especially	 the	 white-
matter	 tracts.	 Brain	 metastases,	 in	 contrast,	
tend	to	grow	into	brain	parenchyma	in	a	non-in-
filtrating,	advancing	pattern.	Therefore,	the	im-
mediate	peritumoral	region	may	have	a	higher	
degree	 of	 tumor	 infiltration	 in	 glioblastomas	7.	
It	 is	 noteworthy	 that	 no	measurements	 of	 the	
DPR	contributed	significantly	to	differentiation	
between	 glioblastoma	 and	 solitary	metastasis.
Based	 on	 Table	 3,	 variables	 from	 a	 single	

MR	 sequence	 (DTI,	 FLAIR,	 or	 DSC)	 did	 not	
have	 enough	 information	 to	 accurately	 pre-
dict	 C;	 when	 we	 combined	 different	 imaging	
sequences,	 predictive	 power	 improved	 signifi-
cantly.	We	found	that	there	was	no	significant	
AUC	 difference	 between	 the	 following	 combi-
nations:	1)	all	MR	sequences	versus	the	union	
of	 DTI	 and	 FLAIR,	 and	 2)	 all	 MR	 sequences	
versus	 the	 union	 of	 DTI	 and	DSC.	 This	 find-
ing	suggests	 the	 importance	of	multi-modality	
MR	in	the	differentiation	between	glioblastoma	
and	solitary	brain	metastasis.

predictive	power	metrics	of	different	combina-
tions	of	sub-regions	and	imaging	sequences.	
Based	on	Table	2,	variables	from	the	enhanc-

ing	part	provided	a	significant	amount	of	infor-
mation	on	the	state	of	C.	The	AUC	for	variables	
from	 the	 enhancing	 region	was	 0.88,	 which	 is	
not	statistically	different	 from	the	AUC	for	all	
36	variables.	For	most	glioblastomas	and	brain	
metastases,	 the	 enhancing	 region	 corresponds	
to	 the	 solid	 portion	 of	 the	 tumor.	 Glioblasto-
mas	usually	have	high	cellularity	compared	 to	
brain	 metastases	 15,	 which	 should	 cause	 diffu-
sion	restriction	in	the	enhancing	region	relative	
to	metastases.	 The	 importance	 of	 the	 enhanc-
ing	region	was	also	reported	in	8.	We	found	that	
variables	from	the	immediate	peritumoral	area	
provided	additional	predictive	power.	The	 spe-
cificity	 of	 models	 based	 on	 variables	 from	 the	
enhancing	region	and	those	from	the	immediate	
peritumoral	region	was	the	same	as	the	specifi-
city	for	the	model	based	on	all	variables.	How-
ever,	the	sensitivity	of	this	set	of	variables	was	
only	slightly	less	than	that	for	the	model	based	
on	 all	 variables	 (0.92	 versus	 0.96).	 Glioblas-
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