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Extinction as New Learning Versus Unlearning:
Considerations from a Computer Simulation
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Like many forms of Pavlovian conditioning, eyelid conditioning displays robust extinction. We used a computer
simulation of the cerebellum as a tool to consider the widely accepted view that extinction involves new, inhibitory
learning rather than unlearning of acquisition. Previously, this simulation suggested basic mechanistic features of
extinction and savings in eyelid conditioning, with predictions born out by experiments. We review previous work
showing that the simulation reproduces behavioral phenomena and lesion effects generally taken as evidence that
extinction does not reverse acquisition, even though its plasticity is bidirectional with no site dedicated to inhibitory
learning per se. In contrast, we show that even though the sites of plasticity are, in general, affected in opposite
directions by acquisition and extinction training, most synapses do not return to their naive state after acquisition
followed by extinction. These results suggest caution in interpreting a range of observations as necessarily supporting
extinction as unlearning or extinction as new inhibitory learning. We argue that the question “is extinction reversal
of acquisition or new inhibitory learning?” is therefore not well posed because the answer may depend on factors
such as the brain system in question or the level of analysis considered.

Pavlovian eyelid conditioning is robustly bidirectional. Condi-
tioned responses that are acquired via training that pairs a con-
ditioned stimulus (CS) with an unconditioned stimulus (US) can
be rapidly extinguished with CS-alone training or unpaired CS–
US training (Gormezano et al. 1983; Napier et al. 1992; Macrae
and Kehoe 1999; Kehoe and Macrae 2002; Kehoe and White
2002; Weidemann and Kehoe 2003). Whether extinction in-
volves unlearning or separate inhibitory learning that suppresses
conditioned response expression remains an important issue for
both behavioral theories and for investigations of underlying
neural mechanisms (Pavlov 1927; Hull 1943; Konorski 1948,
1967; Rescorla and Wagner 1972; Mackintosh 1974; Rescorla
1979; Bouton 1993, 2002; Falls 1998; Myers and Davis 2002;
Kehoe and White 2002). Here, we addressed this issue using a
computer simulation of the cerebellum that is capable of emu-
lating many aspects of eyelid conditioning. Although simulation
results cannot resolve such issues, several aspects of the simula-
tion’s behavior are instructive. Even though the sites of plasticity
are, in general, affected in opposite directions by acquisition and
extinction training, the simulation can emulate several behav-
ioral phenomena that are generally taken as evidence that ex-
tinction does not involve unlearning. Moreover, we found that
the strengths of most synapses are quite different from their na-
ive state following acquisition and then extinction. Independent
of the overall biological accuracy of this simulation, these results
highlight a variety of implications for ongoing debates about the
roles of unlearning versus new learning in extinction.

A combination of factors makes it possible to analyze the
neural basis of eyelid conditioning in detail, and to build and test
computer simulations of its cerebellar mechanisms (Medina and
Mauk 2000). Foremost among these is the close association be-
tween eyelid conditioning and the cerebellum (Thompson 1986;
Raymond et al. 1996; Mauk and Donegan 1997). Previous studies

from several labs have shown that (1) cerebellar output drives the
motor pathways that produce the conditioned responses (Mc-
Cormick and Thompson 1984), (2) presentation of a CS is con-
veyed to the cerebellum via activation of certain of its mossy fiber
inputs (Steinmetz et al. 1986; Hesslow et al. 1999), and (3) pre-
sentation of the US is conveyed via activation of certain climbing
fiber inputs to the cerebellum (Fig. 1A; Mauk et al. 1986). These
factors are complemented by the extent to which the synaptic
organization and physiology of the cerebellum are known (Eccles
et al. 1967; Ito 1984), as are the behavioral properties of eyelid
conditioning (Gormezano et al. 1983; Kehoe and Macrae 2002).
These advantages combine with the speed of current computers
to make possible the construction of biologically detailed and
large-scale computer simulations of the cerebellum that can then
be thoroughly tested using standard eyelid conditioning proto-
cols (Medina et al. 2000, 2001, 2002; Medina and Mauk 1999,
2000).

The present results are more easily appreciated with a brief
review of previous studies (Medina et al. 2000, 2001, 2002) show-
ing how the simulation emulates acquisition, extinction, and
savings during reacquisition. These phenomena are shown for
the simulation in the three panels of Figure 1B. The underlying
essential elements can be summarized briefly. Presentation of a
CS activates subsets of granule cells, and these subsets change
somewhat over the duration of the CS. Paired training induces
long-term depression (LTD) at CS-activated granule-to-Purkinje
synapses that are activated when the US is presented. This leads
to a learned and well timed decrease in the activity of Purkinje
cells during the CS (Hesslow and Ivarsson 1994), which leads to
the induction of long-term potentiation (LTP) at mossy fiber-to-
nucleus synapses activated by the CS. As this plasticity develops,
nucleus cells encounter during the CS strong excitation com-
bined with release from inhibition and therefore discharge ro-
bustly, thereby driving the expression of conditioned responses
(McCormick and Thompson 1984). These steps suggest that
learning first occurs in the cerebellar cortex, before robust con-
ditioned responses are seen. We have observed evidence for this
latent learning in cerebellar cortex (Ohyama and Mauk 2001).
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During extinction, CS-activated granule-to-Purkinje syn-
apses undergo LTP because their activation occurs in the absence
of climbing fiber activity. The essential suppression of climbing
fiber activity below the typical level of 1 Hz is produced by
inhibition from cerebellar output (Sears and Steinmetz 1991;
Hesslow and Ivarsson 1996; Kenyon et al. 1998a,b; Miall et al.
1998), which is robust during the expression of conditioned re-
sponses. This prediction of the simulation is supported by obser-
vations that blocking inhibition of climbing fibers prevents ex-
tinction (Medina et al. 2002).

We have shown previously that savings during reacquisition
results, at least in part, from plasticity in the cerebellar deep

nucleus that is relatively resistant to extinc-
tion (Medina et al. 2001). The strengths of
the CS-activated mossy fiber-to-nucleus
synapses in the simulation are shown in
Figure 1C for acquisition, extinction, and
reacquisition. Because learned pauses in
Purkinje cell activity are still present early in
extinction training, the strengths of CS-
activated mossy fiber-to-nucleus synapses
continue to increase. Once conditioned re-
sponses are fully extinguished, due to the
restoration of robust Purkinje cell activity
during the CS via the induction of LTP at
CS-activated granule-to-Purkinje synapses,
then CS-activated mossy fiber-to-nucleus
synapses begin to undergo LTD and de-
crease in strength. The rate at which these
synapses decrease in strength with addi-
tional extinction training depends on un-
known factors such as the level of Purkinje
activity required for induction of LTD.
These results show in principle, however,
that plasticity in the cerebellar cortex is suf-
ficient to extinguish conditioned responses,
and that a network displaying fully extin-
guished conditioned responses can still
contain strengthened mossy fiber-to-nu-
cleus synapses. In the simulation, savings
occur largely because this residual plasticity
in the cerebellar nucleus enhances the con-
ditioned responses produced by the relearn-
ing of decreased activity in the Purkinje
cells. In support, we have shown in rabbits
that plasticity in the cerebellar nucleus per-
sists following extinction, and that a mea-
sure of the magnitude of this residual plas-
ticity correlates with the rate of reacquisi-
tion (Medina et al. 2001).

Here, we used the mechanisms of ex-
tinction in this simulation to stimulate dis-
cussion regarding the issue of extinction as
unlearning versus extinction as new learn-
ing.

RESULTS

Reversal and Nonreversal of
Granule-to-Purkinje Synapses
During Extinction
All of the novel results that we present re-
late to analysis of the strengths of granule-
to-Purkinje synapses in the simulation and
how they change during acquisition and ex-
tinction. At first glance, the mechanisms for

extinction in the simulation would seem to be fully consistent
with the notion that extinction reverses acquisition. We there-
fore asked with this analysis the extent to which granule-to-
Purkinje synapses are returned to their preacquisition state by
extinction training. The answer, illustrated in part by Figure 2, is
very few of them. Figure 2A plots along the abscissa the change in
strength of all 10,000 granule-to-Purkinje synapses in the simu-
lation produced by 1000 acquisition trials. The vertical line de-
notes no net change. Points to the left of this line show synapses
that underwent robust LTD, and points to the right show syn-
apses that underwent net LTP. The vertical position of each point
shows the change in strength of each synapse after additional

Figure 1 Emulation of eyelid conditioning in a computer simulation of the cerebellum. (A) A
schematic representation of the simulation and how it was trained using an eyelid conditioning-like
protocol. The output of the simulation comes from the summed activity of the six cerebellar deep
nucleus cells (blue box). The CS was conveyed to the simulation by phasic activation of 18 of the
600 mossy fibers and tonic activation of six mossy fibers (green box). The US was emulated by a
brief excitatory conductance applied to the single climbing fiber. The remainder of the simulation
consisted of 10,000 granule cells, 900 Golgi cells, 20 stellate/basket cells, and 20 Purkinje cells with
essentials of the connectivity as shown. (B) Acquisition, extinction, and savings by the simulation.
Each panel shows the equivalent of 10 d of acquisition (left panel), extinction (center), and reac-
quisition (right) training. Individual sweeps are averages of 10 trials, which are clustered together
to approximate the equivalent of one daily session of eyelid conditioning. These sessions are
numbered at the left, progressing from front to back. The blue portion of the sweeps denotes the
presence of the CS. (C) The strength of the mossy fiber-to-nucleus synapses in the simulation over
the three phases of training. The synapses that progressively increase in strength during acquisition
and reacquisition and decrease during extinction are the six that are tonically activated by the CS.
Note that extinction training only slowly and thus incompletely reverses the strengthened syn-
apses. Savings during reacquisition in the simulation is largely attributable to this residual plasticity.
The continued increase in the strength of these synapses does not produce a comparable increase
in response amplitude, rather, it reflects the tendency for the network to transfer plasticity from
cortex (pauses in Purkinje activity produced by LTD) to the nucleus (increased strength of mossy
fiber-to-nucleus synapses). How long this process continues depends on a number of unknown
factors.
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training with 1000 extinction trials. Points that fall on the purple
portion of the abscissa are synapses whose strength after acqui-
sition and extinction is the same as their original pre-training
strength. Many of the synapses that underwent LTD during ac-
quisition reversed only slightly during extinction. A small pro-
portion of the synapses showed close to a reversal amount of LTP,
and a smaller number of synapses showed much more LTP dur-
ing extinction than LTD during acquisition. This shows that a
small number of synapses absorbed the majority of the synaptic
changes required for extinction of the responses.

Figure 2B shows the same data with sampled peri-stimulus
histograms of the responses of representative granule cells. A
number of clear trends are apparent. First, most of the synapses
that increased strength during acquisition, and then changed
very little during extinction, were active only early in the CS.
Most of these were driven by mossy fibers activated phasically by
the CS (Fig. 2B, example B4). Not surprisingly, most of the syn-
apses that were relatively unaffected by training were those not
active during the CS (Fig. 2B, example B5). All of the synapses
that underwent robust LTD during acquisition training were ac-
tive late in the CS when the US was presented. The degree to
which each synapse then underwent LTP during extinction ap-
pears to have been influenced by two factors: their overall
amount of activity during the CS, and the specificity of their
activity at the end of the CS. The synapses that underwent the

most LTP during extinction, those that
reversed beyond their original level,
were the ones that showed the greatest
overall activity during the CS (Fig. 2B,
example B3). Synapses that underwent
an intermediate amount of LTP during
extinction, those that reversed to near
their original level, showed a little less
overall activity and their activity was
slightly more selective for the end of the
CS (Fig. 2B, example B2). The synapses
that showed the least reversal during ex-
tinction were those with the least CS-
evoked activity (Fig. 2B, example B1).

Figure 3 presents a more detailed
analysis of the relationship between the
type of response of a granule cell to the
CS and the corresponding changes in its
synapses onto Purkinje cells during ac-
quisition and extinction. Each panel
shows the change in strength of the
10,000 granule-to-Purkinje synapses
over training. The leftmost panels (Fig.
3A) show in gray the change in strength
of these synapses over 1000 acquisition
trials. The 36 synapses that showed the
fastest decreases in strength are shown
in blue, and the 36 that showed the larg-
est increases in strength are shown in
red. The corresponding peri-stimulus
histograms for these 72 granule cells are
shown below. They are color-coded ac-
cording to direction of change and
ranked left to right, top to bottom in
terms of magnitude of change. In gen-
eral, granule cells that were strongly ac-
tive toward the end of the CS showed
the fastest decreases in strength. The
synapses that showed the largest in-
creases in strength were generally those
selectively active in the early portions of

the CS. Panel A2 shows these same synapses over 1000 extinction
trials. In both cases there is a wide range in terms of the extent to
which reversal occurred. The rightmost two panels limit consid-
eration to the synapses that showed robust decreases in strength
during acquisition training. Here the 36 synapses that showed
the most reversal during extinction are shown in red and the 36
that showed the least reversal are shown in blue. The correspond-
ing peri-stimulus histograms are shown below. Again, the key
factor determining the level of reversal is overall amount of ac-
tivity during the CS. Granule cells that were especially active
during the CS were most likely to be the ones that reversed be-
yond their initial, prelearning levels.

DISCUSSION
These results do not prove or definitively demonstrate anything
about extinction, even extinction of conditioned eyelid re-
sponses. This would presume too much about the current sophis-
tication and biological accuracy of the simulations. Instead, we
see these results as an opportunity to think more concretely
about potential implications of plasticity mechanisms incorpo-
rated into a complex network. The main implication is a measure
of caution about oversimplified interpretations of empirical data
addressing the question of whether extinction involves unlearn-
ing or superimposed new learning that suppresses conditioned

Figure 2 Changes in granule to Purkinje synapses during simulated acquisition and extinction. (A) A
scatter plot of the strength of the 1,0000 granule-to-Purkinje (gr→Pkj) synapses in the simulation.
Points are distributed along the abscissa according to the change in synapse strength during 1000
acquisition training trials (strength after acquisition minus initial strength at the outset of training).
Points toward the left, therefore, are those that underwent net LTD during acquisition. Points are
distributed along the ordinate according to their total net change after acquisition and extinction
(strength after extinction minus initial strength). Thus, points on the blue diagonal line changed during
acquisition, but not during extinction. Points away from the ordinate, but on the abscissa, changed
during acquisition and reversed during extinction to yield no net change. The vast majority of synapses
showed little to no change in either phase of training, as indicated by the dense clustering around the
origin. Points in the upper right quadrant reveal that a small number of synapses increased in strength
during acquisition and then did not change further during extinction. The array of points well to the
left of the ordinate reveals the synapses that underwent net LTD during acquisition training. Of those,
all reversed at least a little during extinction, as indicated by the absence of points on the blue diagonal
in the lower left quadrant. The synapses on or near the purple portion of the abscissa are those that
decreased in strength during acquisition and then increased in strength by about the same amount
during extinction. Points in the upper left quadrant show synapses that decreased in strength during
acquisition and increased in strength even more during extinction. These synapses therefore reversed
beyond their original value to become stronger than they were before acquisition. (B) Peri-stimulus
histograms for representative granule cells are shown for the synapses indicated by the arrows. For
each histogram, the blue portion denotes the presence of the CS. (B1) Histograms representative of the
types that showed strong decreases in strength during acquisition but showed only slight reversal
during extinction. (B2) Two histograms representative of simulated granule cells that showed strong
decreases in strength during acquisition and strengthened during extinction to nearly reverse. (B3)
Histograms representative of cells that decreased in strength during acquisition but increased in
strength even more during extinction. (B4) Two examples of cells that increased in strength during
acquisition and were mostly unaffected during extinction. (B5) Example from the numerous granule
cells whose synapses were affected by neither acquisition nor extinction.
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response expression. This caution should extend in both direc-
tions. Even though the construction of this simulation is clearly
consistent with extinction as unlearning or reversal of acquisi-
tion, it displays behavioral properties usually interpreted as evi-
dence that extinction does not reverse acquisition.

These results highlight a number of ways in which debates
about extinction as unlearning versus new inhibitory learning
could benefit from being more concrete. The potential involve-
ment of more than one site of plasticity during acquisition, for
example, profoundly influences interpretation of key results. Ke-
hoe (1988) used a hypothetical network to suggest how a mecha-
nism involving two sites of plasticity can explain savings even
when the underlying plasticity for extinction involves reversing
(some of) the changes induced by acquisition. Medina et al.
(2001) showed empirically that savings in eyelid conditioning
follows this motif in that plasticity in the cerebellar nucleus ap-
pears to be resistant to extinction training. These experiments
represented tests of predictions made by a previous version of the
simulation employed here.

Results from this simulation also illustrate how the ability of
a lesion to selectively block extinction without affecting acqui-
sition or expression cannot safely be interpreted as evidence that
the plasticity for extinction is distinct from that involved in ac-
quisition. We have shown previously that with the present simu-
lation extinction can be prevented by blockade of GABAergic
inhibition of climbing fibers by projections from the cerebellum.
This prediction was confirmed with infusions of the GABA an-
tagonist picrotoxin into the inferior olive (Medina et al. 2002).

These results illustrate that because
pathways or brain systems can be in-
volved in the induction of the plastic-
ity that mediates extinction, selective
blockade of extinction does not neces-
sarily imply that the plasticity for acqui-
sition and extinction are not at the same
synapses or in the same brain locus.

The present simulation results also
illustrate how the level of detail consid-
ered can influence debates about mecha-
nisms of extinction. In both its architec-
ture and mechanisms of plasticity, our
simulation can be considered an in-
stance of extinction as reversal of acqui-
sition. In the simulation there are no
cells or sites of plasticity devoted specifi-
cally to extinction. Acquisition and ex-
tinction training are only able to affect
the same two sites of plasticity in oppo-
site directions. Even so, our results illus-
trate that in principle such a system does
not necessarily return to exactly its naive
state after acquisition training followed
by extinction training. In our simulation
of the cerebellum, this occurs in part be-
cause there are two sites of plasticity. We
have shown that in part it occurs be-
cause the eligibility of synapses to un-
dergo plasticity in each case can depend
on the responses of the presynaptic neu-
ron to the CS. Following extinction
training, some synapses have reversed,
some have not, and some have reversed
beyond their original values. Moreover,
the percentage of synapses that would
fall into these three categories would
quite likely depend on the amount and

type of training involved. Thus, whether the results from our
simulation support extinction as unlearning or extinction as new
learning is partly a matter of interpretation and level of detail
considered.

Finally, there are reasonably principled arguments contrary
to general notions that all forms of extinction are entirely a con-
sequence of unlearning or of distinct and superimposed inhibi-
tory learning. Firstly, there is the consideration that not all forms
of learning display the same behavioral properties or reflect ad-
aptation to the same demands. Learning mediated by the cer-
ebellum, such as eyelid conditioning and adaptation of the ves-
tibulo-ocular reflex, are readily reversible time and time again.
This may not be true for fear learning, for example. As a first
principle, then, we should not expect to be able to make broadly
general statements about the mechanisms for all instances of
extinction. It is at least possible, for example, that extinction in
cerebellar learning is a better example of unlearning whereas ex-
tinction in fear conditioning is more akin to new learning. Sec-
ondly, extinction entirely from new learning may seem reason-
able when considering an instance of acquisition followed by
extinction. Such ideas fail when consideration is expanded to
reacquisition, re-extinction, a third instance of acquisition, and
so on. At some point there must be some provision for extinction
to reverse some of the changes induced by acquisition and for
reacquisition to reverse some of the changes induced by extinc-
tion. We must otherwise posit the potential for many layers of
one type of learning superimposed over the previous type. There
may be limits to the number of acquisition-extinction iterations

Figure 3 A further breakdown of the different changes seen in the gr→Pkj synapses during simulated
acquisition and extinction. (A) The top panels show the changes in gr→Pkj synaptic strengths during
1000 acquisition (A1) and 1000 extinction (A2) trials. The gray traces show a random sampling of 10%
of the gr→Pkj synapses. The 36 synapses that decreased in strength the fastest during acquisition are
shown in blue. The 36 synapses that increased the most during acquisition are shown in red. The
peri-stimulus histograms for these 72 granule cells are shown color-coded below. These histograms are
rank-ordered reading from top left to lower right according to their speed of decrease during acquisition
(blue) and their magnitude of increase during acquisition (red). (B) A similar analysis limited to the
synapses that showed robust decreases in strength during acquisition. Of these, the 36 that reversed
in strength the least during extinction are shown in blue, and the 36 that reversed the most during
extinction are shown in red. Corresponding peri-stimulus histograms (rank-ordered) are shown color-
coded below.
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that particular forms of learning may show, and such an obser-
vation might be quite informative mechanistically. Thirdly, ex-
tinction entirely from reversing acquisition seems easy to reject
on first principles as well. The increasing examples of homeo-
static plasticity and meta-plasticity that have been identified il-
lustrate, even beyond the implications of our simulations, how
unlikely it is that a brain system could be returned to the naive
state by extinction training. Lastly, our results again suggest how
the mechanisms of extinction may not always cleanly parse be-
tween these two extremes.

MATERIALS AND METHODS
The simulation tested is based on the original simulations of
Buonomano and Mauk (1994) and has not changed significantly
from that employed previously (Medina et al. 2001, 2002). Be-
cause the precise biological relevance of the simulation is not
essential for the general points we consider, only the basic fea-
tures of the simulation will be outlined here. Interested readers
are referred to the previous papers for precise details.

The simulation is comprised of 11,727 cells and 144,921
synapses. Each cell is represented as a single-compartment inte-
grate-and-fire neuron. Input to the simulation is provided by
excitatory conductances applied to the 600 mossy fibers and the
one climbing fiber. There are 10,000 granule cells, 900 Golgi
cells, 200 cells that represent stellate and basket neurons, 20 Pur-
kinje cells, and six cells representing neurons of the cerebellar
deep nucleus. This approximates the numeric ratios found for
these cells within the cerebellum. Synaptic conductances are rep-
resented as step increases upon activation and exponential decay
with time constants based on observations from cerebellar slice
studies. When relevant (granule cells, for example), neurons have
separate representations of AMPA and NMDA glutamate-
activated synaptic conductances, as well as GABA-mediated in-
hibitory conductances. Synaptic and leak conductances are used
to update membrane potential with a time step of 1 msec. The
membrane potential calculations follow the general form:

�Vm = [gLeak (ELeak � Vm) + gE (EExcite � Vm) + gi (EInhibit � Vm)]/Cm

where �Vm = membrane potential, gLeak = leak conductance,
gE and gi = excitatory and inhibitory conductances, respectively,
ELeak, EExcite, and EInhibit = relevant equilibrium potentials, and Cm
= membrane capacitance.

Spikes occur on time steps where the membrane potential is
above threshold. Spikes produce a transient increase in thresh-
old, with exponential decay to baseline, in order to mimic abso-
lute and relative refractory periods. There are no axonal conduc-
tion delays. Spikes in each neuron increase synaptic conduc-
tances in their follower neurons on the next time step. This
representation provides a computationally efficient and rela-
tively accurate-looking representation of membrane potential
and spiking activity in the neurons. It is obviously an approxi-
mation that omits contributions of spatial processing within cells
and, for the time being, contributions from short-term plasticity.

Connectivity generally follows the geometric relationships
as well as divergence and convergence ratios of synaptic connec-
tions between cells types. The cells are assumed to be arranged in
a two-dimensional square grid. The granule cells, for example,
are arranged in a 100�100 array. The algorithm for determining
the connections of each cell type can be illustrated considering
the steps used for the connections of one granule cell onto the
Golgi cells as an example. Parameters specify the geometric ex-
tent over which the granule cell could conceivably make a syn-
apse with a Golgi cell. For granule synapses to Golgi cells, this is
a long, thin rectangle whose long side is determined by the long
length of granule cell axons (the parallel fibers) and whose short
side is determined by the diameter of Golgi cell dendritic trees.
The Golgi cells that fall within this rectangle are candidates for
connections. Some of these candidate Golgi cells are selected to
be a target based on the divergence ratio of granule-to-Golgi con-
nections. Each target Golgi cell is then double-checked to ensure

that such a connection would not exceed the convergence ratio
of granule-to-Golgi projections. For those candidate connections
that do, a different Golgi cell is randomly selected and the pro-
cess is repeated. Thus, by specifying the geometric range of con-
nections, divergence ratios, and convergence ratios, the entire
network can be wired following this algorithm.

Synaptic plasticity is represented at two classes of synapses.
The granule cell-to-Purkinje cell synapses undergo LTD and LTP
as controlled by climbing fibers. The mossy fiber-to-deep nucleus
synapses undergo LTP and LTD as controlled by Purkinje cells.
The former is well established (Ito 1984; Linden 1994; Lev-Ram et
al. 2002, 2003); the latter follows the hypothesis first proposed by
Miles and Lisberger (1981), and is more recently supported by
computational (Medina et al. 1999) and empirical findings (Saku-
rai 1987; Hirano 1990; Salin et al. 1996; Lev-Ram et al. 2002,
2003; I. Ohyama, W. Nores, and M. Mauk, unpubl.). Briefly, dur-
ing each time step, active granule-to-Purkinje synapses are de-
creased in strength if their activity falls within a 100-msec time
window preceding a climbing fiber input and are increased in
strength otherwise. Each active mossy fiber-to-nucleus synapse is
increased in strength if its activity occurs in a time window fol-
lowing an abrupt pause in Purkinje activity, and is decreased in
strength if its activity occurs during strong Purkinje activity.

Mossy fibers are assigned a range of average firing rates,
which then determine the frequency that noisy excitatory con-
ductances are activated. This gives the simulation a noisy and
varied background level of activity. Presentation of a CS is emu-
lated by changing the firing rate of 20 of the 600 mossy fibers.
Fifteen are made to fire phasically at the onset of the CS, and for
the remaining five their activity is increased tonically for the
duration of the CS. This 3:1 phasic to tonic ratio is based on
recordings from mossy fibers (Aitkin and Boyd 1978). Presenta-
tion of the US is emulated by applying a brief excitatory conduc-
tance to the climbing fiber. The spiking activity of the six nucleus
cells is integrated over a 20-msec time span to represent the out-
put of the simulation.

Before training procedures are applied, the simulation is run
with background mossy fiber inputs for at least five million time
steps (∼83 min of simulated time). This allows synaptic weights
and the activity of the network to come into equilibrium as de-
scribed below. Training trials were delivered the equivalent of
once every 5 sec. Trials were delivered continuously at that pace
with no temporal gaps to simulate breaks between training ses-
sions. The state of the network (synaptic weights, conductances,
etc.) could be saved at strategic points for subsequent analyses.
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