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Abstract: In age-related macular degeneration (AMD), the quantification of drusen is important
because it is correlated with the evolution of the disease to an advanced stage. Therefore, we
propose an algorithm based on a multi-surface framework for the segmentation of the limiting
boundaries of drusen: the inner boundary of the retinal pigment epithelium + drusen complex
(IRPEDC) and the Bruch’s membrane (BM). Several segmentation methods have been consider-
ably successful in segmenting retinal layers of healthy retinas in optical coherence tomography
(OCT) images. These methods are successful because they incorporate prior information and
regularization. Nonetheless, these factors tend to hinder the segmentation for diseased retinas.
The proposed algorithm takes into account the presence of drusen and geographic atrophy
(GA) related to AMD by excluding prior information and regularization just valid for healthy
regions. However, even with this algorithm, prior information and regularization still cause the
oversmoothing of drusen in some locations. Thus, we propose the integration of local shape
prior in the form of a sparse high order potentials (SHOPs) into the algorithm to reduce the
oversmoothing of drusen. The proposed algorithm was evaluated in a public database. The
mean unsigned errors, relative to the average of two experts, for the inner limiting membrane
(ILM), IRPEDC and BM were 2.94±2.69, 5.53±5.66 and 4.00±4.00 µm, respectively. Drusen
areas measurements were evaluated, relative to the average of two expert graders, by the mean
absolute area difference and overlap ratio, which were 1579.7 ± 2106.8 µm2 and 0.78 ± 0.11,
respectively.
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1. Introduction

AMD causes progressive degeneration of the central vision, being aging its main risk factor [1].
In 2010, it was estimated as the leading cause of visual impairment in developed countries [2].
With aging, the appearance of a few drusen is normal [3]. Nonetheless, an abnormal quantity of
drusen is the earliest clinical feature of AMD [3], being drusen quantity and size correlated with
the risk of progression of AMD to an advanced stage [4].

Drusen are extracellular deposits of material (e.g., lipids and proteins) accumulated between
the retinal pigment epithelium (RPE) and the BM (Fig. 1) [5]. These lesions can have quite
different shape, size, composition, color and border definition [1]. Subretinal drusen are also
indicative of progression of AMD and composed of the same material as regular drusen, the
main difference is the accumulation of extracellular material in the inner side of RPE [6]. In
this paper, we will consider the limits of drusen as the IRPEDC and BM boundaries (Fig. 1)
because these encompass both types of drusen and clinical features related to AMD, such as
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hyperreflective foci or drusen remnants over GA [7].
To visualize drusen, retinography is currently the gold standard technique [8]. More re-

cently, OCT appeared as an alternative imaging modality (Fig. 1). The OCT operating
principle is based on the measurement of delay and magnitude of backscattered infrared
light. Concerning drusen visualization, OCT presents some advantages over retinogra-
phy, namely: better contour definition, higher number of visible drusen, higher sensitiv-
ity to size change (in follow-up exams) and no interference from eye fundus pigmenta-
tion [4, 8–10]. With these reasons in mind, OCT was the modality selected for this work.

ILM

IS-OS

IRPEDC

BM

OS

Vitreous

Retina

RPEDC

Choroid

Fig. 1. Automatic segmentation with the proposed method of an OCT frame in the fovea
region with the presence large drusen. IS-OS represents the boundary between the inner
segment (IS) and the outer segment (OS) of the photoreceptor layer, while retina layer refers
to the neurosensory retina, which excludes the RPEDC.

Presently, drusen evaluation by visual inspection is the common clinical practice. This is
a subjective method that may allow changes to pass unnoticed. Alternatively, drusen can be
segmented manually by an expert grader, which is a time-consuming task. To address this issue,
some automatic segmentation algorithms have been proposed in the literature.

Farsiu et al. [11] were among the first to develop a fully automated drusen segmentation
algorithm. Initially, this method detects the ILM through a peak search in the vertical gradient;
this operation is necessary because ILM and RPE have similar intensities. Then, it obtains a
preliminary outer RPE (ORPE) segmentation from the image intensity, which is used as the
initial shape in an active contours framework based on gradient flow. The ORPE boundary is
then fitted to a 2nd or 4th order polynomial to estimate the BM. The distance between the ORPE
and BM corresponds to the drusen volume.

Algorithms such as [10, 12, 13] use a similar structure, i.e., ILM segmentation, coarse and
fine segmentation of one of the RPE boundaries and BM estimation through smoothing. These
algorithms also use similar methods, such as thresholding, gradient peak detection and polynomial
fitting.

Chiu et al. [7] suggested a distinct approach based on graph theory and dynamic programming,
particularly the Dijkstra’s shortest path algorithm. The algorithm segments ILM, BM and
IRPEDC sequentially. All of the segmentations use the vertical gradient to compute the weights
of the graphs. The weights for the segmentations of IRPEDC adn BM use adittional sources of
information. The graph network of each boundary is limited by the previous segmentation to
reduce the computation time and to avoid interference of other boundaries.

Li et al. [14] proposed a graph-based method for segmenting multiple surfaces in layered
tissues, which was later applied by Garvin et al. [15] to retinal OCT images. This method searches
for the minimum cost surface, while being constrained with hard smoothness and interaction
priors. The smoothness prior limits local variations of the surface, while the interaction prior
restricts the distance between two surfaces.

Afterwards, this framework was extended by adding soft constraints [16, 17]. Song et al. [16]
proposed the soft smoothness constraint, which allows to control the rigidity of the surface. While
Dufour et al. [17] later added the soft interaction constraint, which can be seen as a force that
adjusts the distance of two surfaces to a specific value. This extended framework was tested in
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retinas with drusen by Dufour et al. [17]. They indicate that the algorithm fails to segment large
drusen, pointing out as the main cause the attraction of the BM surface to the ORPE boundary.
These two boundaries are indistinguishable in healthy regions, however, in drusen regions, these
are disconnected due to the presence of drusen material.

The main goal of this work is to improve the segmentation of the IRPEDC and BM boundaries
in regions with drusen for retinas of intermediate AMD patients and to that end, we make
two contributions. The first is an algorithm capable of handling the variability of images of
patients with intermediate AMD based on the framework proposed by Dufour et al. [17]. Our
proposal takes into account the presence of clinical features related with intermediate AMD,
such as drusen and GA, by excluding prior information and regularization valid just for healthy
regions. Even when using this algorithm, prior information and regularization can still cause
oversmoothing of drusen. To address this issue, our second contribution is the addition of local
shape priors in the form of SHOPs to the framework.

The remainder of this article is organized as follows. The next section presents the multi-surface
segmentation framework, as well as the proposed extension using SHOPs. Each energy term will
be described in detail. Afterwards, the proposed algorithm is outlined. Section 3 describes the
experimental methods. It starts with the database used for evaluating the proposed method. Then,
it explains how the parameters were defined and how we implemented the algorithms proposed
by Dufour et al. [17] for comparing results. In section 4, the results of the proposed method are
presented and discussed. The last section presents the concluding remarks.

2. Methods

Segmenting retinal boundaries can be posed as a problem of multiple surface segmentation,
which consists in searching the minimum cost surface under some regularizing constraints and
spatial priors [15]. The search for a minimum cost surface can be converted into a problem of
optimizing the minimum closed set of a graph that in turn can be transformed into a minimum
s-t cut problem [14] and solved efficiently by methods such as the quadratic pseudo-boolean
optimization (QPBO) [18].

2.1. Multi-surface segmentation framework

The multi-surface segmentation with SHOPs can be represented by the minimization of the
following energy function:

E(S) =
n

∑
i=1

(Ebound(Si)+Esmooth(Si))+
n−1

∑
i=1

n

∑
j=i+1

Einter(Si,S j)+
n

∑
i=1

∑
L∈Li

ESHOP(Si,L), (1)

where the set of n surfaces is designated by S and the set Li is composed by all SHOPs favored
labelings of surface Si, each of them designated by L.

Some of the parameters of the smoothness (Esmooth) and interaction (Einter) constraints can be
calculated from a prior model [15]. This model is composed of height values from the manual
segmentations of a training set.

For multi-surface segmentation, it is necessary to define a graph Vi as the search space of
surface Si (Fig. 2). Each node of the graph will be represented by Vi(x,y,z), having a one-to-one
correspondence to the voxels of the volumetric image I(x,y,z). By considering the image I to
be composed by columns perpendicular to the xy plane, a surface can be defined as a height
function fi(x,y) that passes exactly once through each column at (x,y, fi(x,y)), as exemplified in
Fig. 2. The next subsections will explain how each energy term operates, but for implementation
details we refer the reader to [14–17].
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x

z

y

Fig. 2. Representation of the surface Si as a height function fi(x,y) = x in graph Vi. Nodes in
red represent the closed set and its top nodes of each (x,y) column represent surface Si. The
nodes of each (x,y) column are connected by a gray line. The grid structure corresponds to
the volumetric image I.

2.1.1. External boundary energy

Ebound(Si) is the external boundary energy term that pushes each surface Si to prominent features
of the image. This corresponds to searching the surface with minimum sum of weights γi, which
are inversely proportional to the probability of the node belonging to the surface. Frequently,
these weights depend on the image information (e.g., gradient).

2.1.2. Smoothness energy

The smoothness energy term Esmooth(Si) is composed by hard and soft constraints that regularize
surface Si.

The hard constraints set the maximum (∆max
x (x,y)) and minimum (∆min

x (x,y)) limits of height
variation (i.e., variation in the z axis) from one column to next in the x direction. The limits can
be defined to include confidence interval assuming a Gaussian distribution [15]:

∆
max
x (x,y) = ∆xhi

µ(x,y)+β ·∆xhi
σ (x,y), (2)

∆
min
x (x,y) = ∆xhi

µ(x,y)−β ·∆xhi
σ (x,y), (3)

where β controls the confidence level, ∆xhi
µ(x,y) and ∆xhi

σ (x,y) are, respectively, the mean and
standard deviation of surface’s Si height derivative observed in the prior model in the x direction.
For the y direction, analogous limits can be calculated.

The soft constraints impose a linear penalization to height derivatives deviating from a mean
height derivative value (∆xhi

µ ) [17]:

Esmooth(Si) = ∑
x∈X ,y∈Y

(
λix

∣∣∣∣∆ fi(x,y)
∆x

−∆xhi
µ(x,y)

∣∣∣∣) , (4)

where λix is the weight that controls the penalization and ∆ fi(x,y)/∆x is the height derivative of
surface Si in the x direction. For the y direction, the same approach can be followed.

2.1.3. Interaction energy

The interaction energy Einter(Si,S j) is also composed by hard and soft constraints.
The hard constraints limit the maximum (δ i, j

l (x,y)) and minimum distances (δ i, j
u (x,y)) be-

tween surfaces Si and S j. These can be defined to include a confidence interval assuming a
Gaussian distribution [15]:

δ
i, j
u (x,y) = di, j

µ (x,y)−β ·di, j
σ (x,y), (5)

δ
i, j
l (x,y) = di, j

µ (x,y)+β ·di, j
σ (x,y), (6)
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where β controls the confidence level; di, j
µ (x,y) and di, j

σ (x,y) refer, respectively, to the mean and
standard deviation of the distances between surfaces Si and S j in column (x,y) observed in the
prior model.

The soft interaction constraints penalize linearly the deviation of the distance between surfaces
Si and S j (di, j) in relation to a mean distance value (di, j

µ ) [17]:

Einter(Si,S j) = ∑
x∈X ,y∈Y

αi j

di, j
σ (x,y)

∣∣∣di, j(x,y)−di, j
µ (x,y)

∣∣∣ , (7)

where αi j is the weight that controls the linear penalization.

2.1.4. SHOP energy

Higher order potentials have been used successfully for low level vision problems. Yet, the
application in higher level problems (e.g., segmentation) is still limited due to the lack of
efficiency in the optimization of higher order potentials [19]. To address this issue, Rother et
al. [19] proposed a transformation of SHOPs to non-submodular pairwise potentials, which can
be efficiently solved through the addition of a single auxiliary variable.

A SHOP is simply a potential ψ applied to a clique c that favors a specific labeling L over all
of the others:

ψc(lc,L) =

{
θ0, if lc = L
θmax, otherwise,

or ψc(lc,L) =

{
0, if lc = L
θ , otherwise,

(8)

if θ = θmax−θ0 and θ > 0. By superimposing SHOPs, more than one labeling can be favored
with the downside of an increase of auxiliary variables. Labelings that differ slightly from
L should have penalties similar to θ in practical applications [19]. Consequently, Rother et
al. [19] proposed a compact representation of SHOPs that penalizes labelings according to
their Hamming distance from L, using a deviation function g. This results in a different type of
potential ψ

g
c (lc):

g(lc,L) = θ ∑
v∈c
|wv| 1lc(v),L(v), (9)

ψ
g
c (lc,L) = min{g(lc,L),θ}, (10)

where wv controls the cost of vertex v ∈ c having a different label in relation to the preferred
labeling L(v). The deviation function g assigns a cost proportional to the Hamming distance
between lc and L.

The compact representation of SHOPs proposed by Rother et al. [18] is defined by θ and
wv, making it unpractical to define coherent penalties for labelings of different sizes (or clique
order |c|). Thus, we propose a different formulation to parameter θ to cope with this limitation,
namely, we define:

θ = p|c| , wv =

{
1/|c|, if L(v) = 0
−1/|c|, if L(v) = 1.

(11)

With this alteration, SHOPs also present a linear penalization:

ψ
g
c (lc,L) =∑

v∈c
p 1lc(v),L(v), (12)

where p is the penalty increment for each element lc(v) that differs from L(v) (see example in
Fig. 3). Therefore, the deviating costs for labelings of different sizes are standardized and the
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maximum penalty remains as θ , which is higher for larger |c|. The term ESHOP is related to ψ
g
c

as follows:

ESHOP(S,L) = ψ
g
c (lc,L), if lc =Ω(S), (13)

where function Ω converts surface S (height values) to a binary labeling and restricts it to the
region where the ψ

g
c is applied, i.e. clique c. In the binary label, the pixels above the surface have

label 0 and the pixels on the surface itself and the pixels below it have label 1. Furthermore, if a
column only has pixels with label 1, then the surface is at the top of the image for that column.
Thus, the surface is composed by the first pixels with label 1 of each column when scanning
downwards in vertical direction. Labelings can also be converted to surfaces using the inverse
procedure, thus, applying a SHOP with a preferred labeling L means encouraging the surface
that is encoded in L.

(a). Labeling L. (b). HD = 1; Cost = 5. (c). HD = 3; Cost = 15. (d). HD = 9; Cost = 45.
Fig. 3. Example of a SHOP with compact representation. Labeling L is presented in (a). The
Hamming distances (HD) relative to (a) and costs of segmentations (b), (c) and (d) consider
that p = 5, leading to θ = 45.

2.2. Algorithm

We propose an algorithm that segments IRPEDC and BM in the presence of lesions related to
AMD, such as drusen and GA. ILM and the IS-OS are used as auxiliary boundaries.

The result of each step of the algorithm is used to restrict the search spaces of the follow-
ing ones. This reduces computational complexity and avoids undesired interactions between
boundaries. The proposed algorithm is described in more detail in the next subsections.

2.2.1. Step 1: image denoising

To attenuate speckle noise, a median filter was applied to each slice. The vertical gradients of
the denoised images are used as weights of the Ebound energy term (subsection 2.1.1). In a few
exceptions, explicitly mentioned in the next subsections, a Gaussian filter was used instead.

2.2.2. Step 2: flattening

In this step, a joint segmentation of ILM and IRPEDC is performed. The IRPEDC segmentation
is used to flatten the image and restrict the segmentation of the next step.

The joint segmentation only used hard constraints to reduce the computational complexity.
The hard constraints (Eqs. 2, 3, 5 and 6) assume a Gaussian distribution for each slice (or y
position), implying that all columns within a frame will have the same hard constraints limits.
The hard constraints are defined in this manner because the position of the fovea is not yet known,
thus the manual segmentations cannot be aligned to create a meaningful prior model for each x
position. After the joint segmentation, a 2nd order polynomial fit of the segmentation of IRPEDC
is used to flatten each slice. The flattening is accomplished by moving columns up and down
until the fitted boundary is horizontal.

2.2.3. Step 3: ILM segmentation

After the flattening, the fovea is detected as the lowest point in the smoothed ILM boundary
of the central B-scan. This information is then used to align the manual segmentations and
recalculate the prior model.
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Dufour et al. [17], defined the search space of most of the segmentations using a previously
segmented boundary and the hard interaction constraints limits between that boundary and the
boundary to segment (δ i, j

u and δ
i, j
l from Eqs. 5 and 6). This algorithm employs the same strategy.

The reference for the search space of ILM boundary is the flattened version of IRPEDC from the
previous step. This boundary might include segments of the IS-OS boundary, due to the proximity
of IRPEDC to IS-OS and the lack of soft constraints in the segmentation of the previous step
(subsection 2.2.2). To handle this issue, the top limit of the search space of ILM is calculated
using maximum distance between IRPEDC and ILM (δ IRPEDC,ILM

l ), while the bottom limit
uses the minimum distance between IS-OS and ILM (δ IS−OS,ILM

u ), both assuming a Gaussian
distribution and a particular confidence interval (controlled by β ).

2.2.4. Step 4: IRPEDC preliminary segmentation

Following the same strategy as in the previous step, the search space for the individual segmenta-
tion of BM could be obtained by using ILM as reference and the hard interaction constraints
limits between ILM and BM (δ ILM,BM

u and δ
ILM,BM
l ). However, this approach has the limitation

of often including in the search space sharp light-to-dark transitions from within the OS (Fig. 1),
which would interfere with the segmentation of BM.

Hence, a preliminary joint segmentation of IRPEDC and BM is performed with the aim of
acquiring a preliminary segmentation of the IRPEDC. This boundary can be used as the top limit
of the search space for the individual segmentation of BM of the next step.

The search space for the joint segmentation of IRPEDC and BM is determined by using ILM
as reference in conjunction with the minimum distance between ILM and IRPEDC (δ ILM,IRPEDC

u )
and the maximum distance between ILM and BM (δ ILM,BM

l ), according to the hard interaction
constraints. To avoid interference from the sharp dark-to-light transitions of IS-OS and light-
to-dark transitions from inside the OS, the segmentation is carried out in an image obtained by
applying a 1D Gaussian filter in the vertical direction.

2.2.5. Step 5: BM segmentation

After the joint segmentation of the previous step, the BM can be segmented individually. The top
limit of the search space is the preliminary segmentation of IRPEDC with an unitary downward
offset, while the bottom limit is the same as in the previous step.

2.2.6. Step 6: IRPEDC segmentation

The dark-to-light transitions of the IS-OS hinder the segmentation of IRPEDC (Fig. 4 (c)), thus
these boundaries need to be segmented in conjunction [17]. The search space is defined by
two references: the ILM and the BM, for the upper and lower limits, respectively. The hard
constraints limits used are δ

ILM,IS−OS
u and δ

BM,IRPEDC
l . This strategy is the same that Dufour et

al. [17] used for layers between ILM and IS-OS.

(a). (b). (c). (d).
Fig. 4. Segmentation of IRPEDC (green) without SHOPs [(a), (c)] and with SHOPs [(b, d)].
The SHOPs are presented in (a) and (c); the red and purple pixels represent labels 0 and 1
of the SHOPs, respectively. Boundaries ILM (orange), IS-OS (blue) and BM (yellow) are
presented in (b) and (d).
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2.2.7. Step 7: detection of oversmoothed areas

The IRPEDC boundary is resegmented without soft smoothness constraints and individually,
i.e., without interaction constraints of the IS-OS. This segmentation is less restricted to properly
segment regions where the OS is thin and large local height variations of the IRPEDC occur,
such as drusen regions (Fig. 4 [(a), (b)]) [5, 17]. This was inspired by the detection of pigment
epithelial detachments in [20]. The search space for this operation is particularly important
because the boundaries can be attracted to the IS-OS (Fig. 4 (c)) or even to random transitions
within the RPE layer. The upper bound is defined by using IS-OS with a slight offset. The offset
is determined for each column by using the intensity derivative to search for an extremum a few
pixels below the IS-OS. The extremum will correspond to either the maximum of the white band
of the OS or the minimum of the dark band of the OS. Either way, the top limit will be below
the IS-OS and above the IRPEDC. For the lower bound, the brightest pixels of the RPE are
segmented by modifying the weights of the Ebound term (section 2.1.1) to be dependent on the
intensity of the image after smoothing with a 1D Gaussian filter in the vertical direction, similar
to what was done in [7]. No soft constraints were used to avoid oversmoothing of drusen. The
lower bound corresponds approximately to the middle of the RPE layer. This limit excludes some
transitions inside the RPE related with noise or morphological changes related to AMD, which
could hinder the segmentation. Moreover, the lower bound uses intensity information, making it
more robust to regions that exhibit low contrast or foci of hyperreflective drusen material.

The difference of IRPEDC segmentation of this and the previous steps results in a binary
image (Fig. 5 [(b), (c)]). This image is composed by several objects whose limits are used to
define a rectangular neighborhood where the SHOPs are applied, i.e. the clique c (rectangles in
cyan of Fig. 5 (c)). Afterwards, the SHOPs are defined by converting the IRPEDC segmentation
of this step to a labeling and restricting it to the rectangular neighborhoods (Fig. 5 (d)).

(a). (b). (c). (d).
Fig. 5. Detection and application of SHOPs. The original image is presented in (a). In (b),
IRPEDC from subsection 2.2.6 is in green, while IRPEDC without soft constraints from
subsection 2.2.7 is in red. Image (c) refers to the difference between these two segmentations,
which is used to define the cliques for each SHOP (rectangles in cyan). Image (d) shows the
IRPEDC segmentation using SHOPs (subsection 2.2.8) after the post-processing in green
and the favored labelings (LIRPEDC) in red and purple for the labels 0 and 1, respectively.

2.2.8. Step 8: IRPEDC resegmentation with SHOPs

Rother et al. [19] used SHOPs for a problem of texture restoration, where they applied SHOPs
in every pixel with the labelings of the most repeated patterns. Consequently, the computation
complexity was considerably increased. In this case, we do not have an image with reoccurring
patterns anywhere in the image. Hence, we just need to apply each favored labeling (LIRPEDC) to
a single location. This implies that the number of SHOPs applied in each image is reduced and
that computational complexity is slightly increased relative to the framework without SHOPs.

SHOPs act as a local shape prior that encourages the boundary to follow the set of labelings
LIRPEDC (Fig. 4 and 5). SHOPs are applied in the form of compact representation, which
encourages labelings similar to each favored labeling LIRPEDC with slightly higher penalizations
(Fig. 3). Moreover, SHOPs penalties are standardized for different clique sizes, as explained in
section 2.1.4.

SHOPs contain non-submodular terms, which are not efficiently solvable by minimum s-t
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cuts algorithms. However, the optimization can be performed by QPBO [18], which solves a
generalization of the minimum s-t cut problem that includes non-submodular terms. On the
downside, QPBO does not guarantees an optimal solution in the presence of non-submodular
terms.

Apart from the use of SHOPs, this step is similar to the previous joint segmentation of IS-OS
and IRPEDC (section 2.2.6).

2.2.9. Step 9: Post-processing

Manual segmentations of boundaries tend to have a slight offset from the actual boundary [21–23].
Therefore, we learned these offsets from the manual segmentations of expert 1 of the training
set and correct them when testing. In the end, each boundary is smoothed with a mean filter to
approximate the smoothness observed in manual segmentations.

3. Experimental methods

3.1. Database

The proposed algorithm was evaluated in a publicly available database of 20 patients with
intermediate AMD [7]. The database is divided into 4 groups of patients: groups 1 and 2 present
drusen, respectively, with good and poor image quality, while patients in groups 3 and 4 exhibit
drusen and GA, respectively, with good and poor image quality. These volumes were acquired
by 4 SD-OCT imaging systems from Bioptigen, Inc. with a mean pixel size of 3.19 x 6.56 µm
in the axial and lateral directions, respectively. For each volume, 11 slices are available with a
mean distance between them that varies from 135 to 337.5 µm. The central B-scan is located
on the fovea. The database also includes manual segmentations of the ILM, IRPEDC and BM
boundaries performed by 2 expert graders. More detailed information may be found in [7]. To
evaluate results in drusen regions, we use a manual detection performed by an ophthalmologist
(author L.G.). The grader was asked to mark the limits of each drusen region in the x direction.

3.2. Evaluation

The unsigned error was the metric selected to evaluate the performance of the algorithms for
each individual boundary. For evaluation of drusen areas, we computed the overlap ratio (same
as in [13]) and the absolute area difference (AAD). The ADD is given by AAD = |Aman−Aauto|,
where Aman and Aauto are the drusen areas obtained from the manual segmentation and the
segmentation of an automated method, respectively. The automatic segmentations were evaluated
by considering the manual segmentations of each expert grader and the average of experts’
segmentations. The results of each A-scan were considered as a single observation for the errors,
implying that the mean and standard deviation of these metrics are relative to all A-scans of all
slices. For the drusen area metrics, each drusen was considered as a single observation.

3.3. Parameter definition

The hard constraints limits of the Esmooth and Einter terms are calculated from the prior model
once β is defined (Eqs. 2, 3, 5 and 6). Dufour et al. [17] set β to be always 2.6. This value results
in a confidence interval around 99%, which is reasonable for healthy patients. For our problem,
the 1% of the disregarded values are frequently related to abnormalities caused by large drusen.
Therefore, we set another confidence interval by defining β to be 3.5, which corresponds to a
confidence interval of 99.95%.

The parameters of the soft constraints of Esmooth and Einter terms were also calculated from the
prior model, except for the hyperparameters λix (Eq. (4)) and αi j (Eq. (7)). These were learned
using a Bayesian optimization algorithm [24]. The same procedure was followed to learn the
weight p of the SHOPs defined in Eq. (12).
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Soft constraints are often responsible for oversmoothing IS-OS or IRPEDC in drusen regions.
However, the proposed algorithm uses soft constraints because there is evidence that they improve
segmentation in both healthy and drusen regions [17]. The results are improved possibly because
the segmentation is more robust to noise, image artifacts and regions with poor contrast. Moreover,
soft constraints can be disabled by the Bayesian optimization algorithm [24], if the segmentation
is being impaired. In that case, the Bayesian optimization may set the hyperparameters λix
(smoothness) and αi j (interaction) to zero.

The Bayesian optimization algorithm [24] models the objective function as a Gaussian process.
According to a particular criterion, that model provides the best set of parameters for the next
iteration. This avoids a blind search of parameters, as it occurs in a grid search. In this case, the
criterion is the expected reduction in differential entropy [24].

The results of the proposed algorithm were evaluated using a 5-fold cross validation (4 for
training and 1 for testing). The training set was further divided into 4-fold cross validation (3
for training and 1 for validation) so that the Bayesian optimization [24] could be performed.
The search limits of the parameters were empirically selected. Nevertheless, it was taken into
account that the search space limits should not be too restrictive to avoid excluding the optimal
parameters. Furthermore, the maximum number of evaluations for each algorithm step were
also defined empirically by observing when the optimization loss function stabilized. The loss
function used was the mean error relative to expert 1.

3.4. Dufour et al. algorithms implementations

We have implemented the algorithms proposed in [17] for healthy retinas and retinas with drusen.
These algorithms were used to assess the importance of developing algorithm that takes into
account the presence of drusen and GA. For healthy retinas, the implementation has 3 steps:
flattening, ILM segmentation, joint segmentation of IS-OS, IRPEDC and BM. In the third step,
the original Dufour et al. [17] algorithm does not segment the IRPEDC, however we assume
that if it did, it would perform a joint segmentation of the 3 boundaries. The algorithm for
retinas with drusen has 5 steps: flattening, ILM segmentation, coarse segmentation of IS-OS and
BM, BM segmentation, joint segmentation of IS-OS and IRPEDC. The first two steps of both
implementations were performed exactly as the proposed algorithm to perform a fair comparison
of the IRPEDC and BM boundaries, which are the main focus of this work. The search spaces
were defined as in [17] and the confidence intervals of the hard constrains were 99% (β = 2.6)
for all steps [17], except the first two that were performed exactly as the proposed method.

4. Results and discussion

In this section, we performed several tests to evaluate the performance of the proposed algorithm.
First, we calculated the error for the whole database to obtain an overall performance measure.
Afterwards, we evaluated the performance in drusen and non-drusen regions. To evaluate drusen
areas measurements, two additional metrics were computed: area difference and overlap ratio.

The evaluations included 4 methods besides the proposed: the proposed method without
SHOPs, to evaluate the contribution of SHOPs, Dufour’s methods for healthy retinas and retinas
with drusen [17], to evaluate the segmentation of boundaries in a few steps instead of using a
joint segmentation, and Chiu’s method [7], to perform a fair comparison with a state of the art
method in a common public database [7].

We also included the results of a few more tests and some complementary information in [25].

4.1. Analysis of overall errors

The proposed method performs similarly to an expert grader for all boundaries, as can be verified
by comparing the error of the proposed method for expert 1 and 2 with the intergrader variability
(Table 1).
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Table 1. Overall mean unsigned error (± standard deviation) in µm. The lowest values of
mean and standard deviation for each expert are shown in bold. Statistically significant results
greater or lower than those of the proposed method are indicated by ↑ and ↓, respectively. The
absence of symbols signifies no statistical difference between results. Statistical significance
was determined by p-values < 0.05 computed with a two-sided Wilcoxon signed-ranked
test (for paired data).

Method Grader ILM IRPEDC BM
1 3.39 ± 2.93 ↑ 6.32 ± 6.91 ↓ 4.19 ± 4.48 ↑

Chiu et al. [7] 2 3.79 ± 3.56 ↓ 7.36 ± 7.41 ↑ 5.35 ± 4.98 ↑
avg 3.05 ± 2.60 ↑ 5.86 ± 6.25 ↑ 4.18 ± 4.12 ↑
1 3.26 ± 2.85 ↑ 8.33 ± 10.04 ↑ 4.96 ± 6.99 ↑

Dufour et al. [17] 2 3.93 ± 3.54 ↑ 8.60 ± 10.22 ↑ 6.02 ± 7.35 ↑
avg 2.94 ± 2.69 ↑ 7.50 ± 9.64 ↑ 4.79 ± 6.91 ↑
1 3.26 ± 2.85 ↑ 7.24 ± 7.92 ↑ 4.37 ± 5.47 ↑

Dufour et al. [17] 2 3.93 ± 3.54 ↑ 7.61 ± 8.06 ↑ 5.57 ± 6.04 ↓
for drusen avg 2.94 ± 2.69 ↑ 6.43 ± 7.25 ↑ 4.32 ± 5.34 ↑

1 3.26 ± 2.85 7.62 ± 8.33 ↑ 4.07 ± 4.22
Proposed without SHOPs 2 3.93 ± 3.54 8.10 ± 8.40 ↑ 5.29 ± 4.89

avg 2.94 ± 2.69 6.90 ± 7.69 ↑ 4.00 ± 4.00
1 3.26 ± 2.85 6.39 ± 6.56 4.07 ± 4.22

Proposed 2 3.93 ± 3.54 6.86 ± 6.68 5.29 ± 4.89
avg 2.94 ± 2.69 5.53 ± 5.66 4.00 ± 4.00

Intergrader variability 4.09 ± 3.64 7.30 ± 6.87 5.03 ± 4.37

For the ILM, the proposed algorithm performs statistically significantly better than Chiu’s
method for expert 1 and the average of experts, but worse for expert 2 (Table 1). Chiu’s method
does not include any kind of regularization for segmentation of ILM, which could explain the
best result relative to expert 2. Our implementations of Dufour methods used the ILM segmented
by the proposed method. Consequently, the ILM results of our and Dufour’s methods are equal
(Table 1). This is done to avoid the interference of the ILM segmentation on the evaluation of the
results of the IRPEDC and BM, which are the main focus of this work.

The IRPEDC boundary seems to be the most difficult boundary to segment. This is supported
by the largest intergrader variability and algorithms’ errors of all boundaries (Table 1). For the
IRPEDC, the error of the proposed method is almost always significantly better than Dufour’s
and Chiu’s methods (Table 1). The only exception is for Chiu’s method relative to expert 1, in
which the error statistically significantly lower. Furthermore, SHOPs improved the segmentation
of IRPEDC of the proposed algorithm in a statistically significant manner (Table 1).

As for BM, the proposed method obtains an error statistically significantly lower than all other
methods, except when comparing with Dufour’s method for drusen and expert 2 is the reference,
in which case the proposed algorithm presents a statistically significant higher error (Table 1).

4.2. Analysis of errors in drusen and non-drusen regions

Drusen cause morphological changes in the retina, in particular for the IRPEDC and BM
boundaries. Empirically, we observed that those morphological changes hinder the segmentation
of both boundaries. Therefore, it is important to analyze the results in drusen and non-drusen
regions. These regions were defined with the manual markings of the limits of drusen in the x
direction (performed by author L.G.). The information of Table 2 suggests that IRPEDC and BM
are more difficult to segment in drusen regions than in non-drusen regions. This difference is
in fact statistically significant for all methods and for the intergrader variability. The statistical
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Table 2. Mean unsigned error (± standard deviation) in µm of drusen regions and non-drusen
regions. The lowest values of mean and standard deviation for each expert are shown in
bold. Statistically significant results greater or lower than those of the proposed method are
indicated by ↑ and ↓, respectively. The absence of symbols signifies no statistical difference
between results. Statistical significance was determined by p-values < 0.05 computed with
a two-sided Wilcoxon signed-ranked test (for paired data). G refers to the expert grader.

Drusen Non-drusen
Method G IRPEDC BM IRPEDC BM

1 9.04 ± 9.77 ↑ 5.07 ± 5.16 ↑ 5.71 ± 5.91 ↓ 3.99 ± 4.29
Chiu et al. 2 10.32 ± 9.84 ↑ 5.89 ± 5.24 6.69 ± 6.56 ↑ 5.22 ± 4.92 ↑
[7] avg 8.64 ± 8.94 ↑ 4.85 ± 4.49 ↑ 5.23 ± 5.25 ↑ 4.03 ± 4.01 ↑

1 13.36 ± 16.02 ↑ 6.01 ± 8.45 ↑ 7.18 ± 7.64 ↑ 4.72 ± 6.59 ↑
Dufour et al. 2 14.30 ± 15.97 ↑ 7.12 ± 8.84 ↑ 7.31 ± 7.83 ↑ 5.77 ± 6.94 ↑
[17] avg 12.85 ± 15.70 ↑ 5.87 ± 8.38 ↑ 6.29 ± 7.08 ↑ 4.55 ± 6.50 ↑

1 9.30 ± 10.65 ↑ 4.52 ± 4.69 6.77 ± 7.07 ↑ 4.33 ± 5.64 ↑
Dufour et al. 2 10.03 ± 10.22 ↑ 5.90 ± 5.23 7.06 ± 7.37 ↑ 5.49 ± 6.20 ↓
[17] (drusen) avg 8.57 ± 9.67 ↑ 4.53 ± 4.27 5.94 ± 6.48 ↑ 4.27 ± 5.55 ↑
Proposed 1 9.85 ± 10.72 ↑ 4.52 ± 4.57 7.11 ± 7.60 ↑ 3.97 ± 4.13
without 2 10.56 ± 10.50 ↑ 5.89 ± 5.14 7.55 ± 7.74 ↑ 5.15 ± 4.83
SHOPs avg 9.11 ± 9.91 ↑ 4.51 ± 4.16 6.40 ± 6.99 ↑ 3.89 ± 3.96

1 7.95 ± 8.75 4.52 ± 4.57 6.03 ± 5.89 3.97 ± 4.13
Proposed 2 8.83 ± 8.73 5.89 ± 5.14 6.42 ± 6.03 5.15 ± 4.83

avg 7.17 ± 7.73 4.51 ± 4.16 5.16 ± 5.00 3.89 ± 3.96
Intergrader 8.76 ± 8.13 5.66 ± 4.72 6.96 ± 6.51 4.89 ± 4.27variability

significance was based on p-values < 0.05 of a two-sided Wilcoxon ranked sum test (for unpaired
data).

4.2.1. Analysis of errors in drusen regions

Considering drusen regions, the segmentation of IRPEDC of the proposed method performs
statistically significantly better than all other methods (Table 2). As for the BM, the results
of the proposed method in drusen regions are significantly better than the other methods or at
least statistically indifferent (Table 2). The higher performance results from the algorithm being
specifically designed to handle drusen and GA and from the integration of SHOPs.

Designing an algorithm that takes into account the presence of drusen and GA is very important
to properly segment IRPEDC and BM in volumes of patients with AMD. This is corroborated
by the worse results of Dufour’s et al. method for healthy retinas compared to their method for
drusen or our proposal without SHOPs (Table 2). Dufour’s method was developed to segment
boundaries in healthy retinas and does not take in account the presence of lesions that cause
severe morphological changes. Therefore, this method does not perform well for large drusen or
extensive GA regions (Fig. 6). This is a consequence of violations of some implicit assumptions
underlying the multi-surface framework. Namely, the framework assumes that boundaries are
smooth (smoothness constraints), approximately parallel and the distances between are roughly
constant (interactions constraints). Moreover, the multi-surface framework also assumes that
the number of boundaries is constant throughout the image. These characteristics are generally
observed in healthy retinas [26]. In diseased retinas, the morphological changes caused by lesions
frequently violate these assumptions [20]. For instance, large drusen disrupt the assumptions
of smoothness, near constant distance and parallelism of IRPEDC and BM. Thus, the joint
segmentation of IS-OS, IRPEDC and BM of Dufour’s method may cause oversmoothing of the
IRPEDC and the BM to follow the ORPE (Fig. 6 (b)) We incorporated this prior knowledge
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into the developed algorithm by segmenting IRPEDC and BM independently, to avoid the
assumptions of near constant distance and parallelism, and by setting β = 3.5, to allow a wider
range of height variations for the smoothness constraint. With this division, the segmentation
retains most of the prior knowledge useful for healthy regions and discards the prior information
detrimental for lesions, such as the near constant distance between IRPEDC and BM (Fig. 6
(b)). Other authors have also incorporated the prior knowledge of morphological changes related
with AMD by segregating segmentation of IS-OS, IRPEDC and BM into a few steps [7, 17, 20].
For instance, in images with drusen, Dufour et al. [17] divided the segmentation into 3 steps
(subsection 3.4). The authors justify this alteration mainly because the BM segmentation would
follow the ORPE in the cases of large drusen [17]. This is partially explained by the lack of
contrast of BM in those regions (Fig. 6 [(a), (b)]), as referred by Dufour et al. [17].

4.2.2. Analysis of errors in non-drusen regions

As for the non-drusen regions, the proposed method attains the lowest errors in most of the cases
(Table 2). The proposed algorithm takes into account the presence of GA lesions, which is the
main differentiating factor for other methods in these regions.

In the results of Dufour’s method for healthy retinas, we observed coarse errors in extensive
GA regions (Fig. 6 [(c), (d)]). This is to be expected because this algorithm was developed
without considering the presence of lesions [17]. In GA regions, the smoothness, parallelism
and near constant distance of the IRPEDC and BM boundaries are maintained (Fig. 6 [(c), (d)]).
However, the distance between the boundaries is severely reduced, which in conjunction with
the enhancement of the choroid contrast may lead to attraction of the boundaries to transitions
in the choroid (Fig. 6 (d)). Furthermore, IS-OS is often missing in GA lesions, which violates
the assumption of the multi-surface framework of a constant number of boundaries throughout
the image. As a consequence, Dufour’s method for healthy retinas segments incorrectly the
three boundaries — IRPEDC is segmented in the place of IS-OS and transitions of the choroid
are segmented instead of IRPEDC and BM (Fig. 6 (d)). To incorporate the information of
the lacking IS-OS, the preliminary segmentation of IRPEDC (subsection 2.2.4) is performed
by jointly segmenting just 2 boundaries: IRPEDC and BM. This preliminary segmentation is
used for determining the top limit of the search space for independent segmentation of BM.
Dufour’s method for drusen also performs a preliminary segmentation of BM using 2 boundaries:
IS-OS and BM (subsection 3.4). However, the search space for independent segmentation of
BM is a band around the preliminary segmentation of BM [17]. We verified that in GA regions,
this preliminary segmentation of BM was sometimes attracted to light-to-dark transition in the
choroid and the search space would be far from the BM and would not contain it as consequence.
This difference may explain the tendency for statistically significant better performance of the
proposed method over the Dufour’s method for drusen (Table 2).

(a). (b). (c). (d).
Fig. 6. Results of the proposed method without SHOPs [(a),(c)] and Dufour’s method for
healthy retinas [(b),(d)]. Images (a) and (b) refer to a case of large drusen, while (c) and (d)
to a GA region. Depicted boundaries are: ILM (orange), IS-OS (blue), IRPEDC (green) and
BM (yellow).
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4.2.3. Analysis of the effect of SHOPs

SHOPs improve the performance for the IRPEDC in both types of regions in a statistically
significant manner (Table 2). This supports what is observed empirically: SHOPs frequently
correct the oversmoothing of the IRPEDC boundary in drusen regions (Fig. 4 [(a), (b)] and 5).
As for non-drusen regions, SHOPs correct IRPEDC when it is attracted to the IS-OS (Fig. 4
[(c), (d)]), because the top limit of the search space for SHOPs definition excludes pixels that
compose the transition of IS-OS (subsection 2.2.7). Additionally, some transitions within the
RPE are also corrected by the SHOPs. This is mainly related with the lower limit for the SHOPs
definition (subsection 2.2.7), which depends on intensity information rather than the gradient,
granting robustness to the definition of SHOPs to situations of low IRPEDC contrast or foci of
hyperreflective drusen material.

The procedure to compute SHOPs sometimes provides incorrect labelings, which are mainly
related with the less constrained segmentation of IRPEDC (subsection 2.2.7). This segmentation
is sensitive to the presence of noise, artifacts and other strong image gradients (Fig. 7 (b)). SHOPs
can be interpreted as local soft shape prior, which can encourage the segmentation to follow
a predefined shape in a defined neighborhood without imposing it (Fig. 7). Hence, incorrectly
defined SHOPs are frequently not fully followed to avoid an increase in the cost of the other
constraints of the segmentation (Fig. 7 (d)). This behavior grants some immunity to the presence
of incorrectly defined SHOPs.

In sum, SHOPs have stronger modeling capabilities than the other constraints of the framework.
Nevertheless, SHOPs are also more complex to apply for two reasons. First, they require specific
knowledge about the context in which they are applied. For example, the flexibility that SHOPs
add to the segmentation may cause an undesired increase of sensitivity to noise or artifacts, so
combining them with a constrained segmentation can attenuate this issue. Second, acquiring the
favored labelings requires specific knowledge of the problem. If the labelings are not properly
defined, they may cause coarse errors that even a constrained segmentation cannot alleviate.

(a). (b). (c). (d).
Fig. 7. Detection and application of SHOPs in a case where SHOPs are incorrectly defined.
The original image is presented in (a). In (b), IRPEDC from subsection 2.2.6 is in green,
while IRPEDC without soft constraints from subsection 2.2.7 is in red. Image (c) refers
to the difference between these two segmentations, which is used to define the cliques for
each SHOP (rectangles in cyan). Image (d) shows the IRPEDC segmentation using SHOPs
(subsection 2.2.8) after the post-processing in green and the favored labelings (LIRPEDC) in
red and purple for the labels 0 and 1, respectively.

4.3. Analysis of drusen areas measurements

The limits of drusen are the ORPE and BM boundaries. ORPE generally exhibits low contrast
when the drusen material is hiporeflective. Thus, a reliable segmentation is rather difficult.
Alternatively, we defined the limits of drusen areas to coincide with those of the RPEDC, namely
IRPEDC and BM. The RPEDC is composed by RPE layer, drusen material and other structures
related to AMD, such as subretinal drusen, hyperreflective foci and drusen remnants over GA [6].
Folgar et al. [6] presented strong evidence suggesting that the quantification of this layer in
drusen regions can be used as a biomarker for the progression of AMD. Hereinafter, the area of
RPEDC in drusen regions will be simply designated as drusen area.

Drusen areas were evaluated using two metrics: area difference and overlap ratio. The proposed
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Table 3. Average absolute area difference in µm2 and overlap ratio of drusen areas. The
best values of mean and standard deviation for each expert are shown in bold. Statistically
significant results greater or lower than those of the proposed method are indicated by ↑ and
↓, respectively. The absence of symbols signifies no statistical difference between results.
Statistical significance was determined by p-values < 0.05 computed with a two-sided
Wilcoxon signed-ranked test (for paired data).

Method Grader Area difference Overlap Ratio
1 1792.9 ± 2349.3 0.74 ± 0.14 ↓

Chiu et al. [7] 2 2196.0 ± 2834.0 0.71 ± 0.14 ↓
avg 1741.0 ± 2333.0 ↑ 0.75 ± 0.13 ↓
1 1820.8 ± 2294.0 ↑ 0.74 ± 0.15 ↓

Dufour et al. [17] 2 2261.0 ± 2817.8 ↑ 0.72 ± 0.15 ↓
for drusen avg 1821.8 ± 2275.1 ↑ 0.76 ± 0.15 ↓

1 2902.4 ± 5334.1 ↑ 0.70 ± 0.18 ↓
Dufour et al. [17] 2 3355.5 ± 5710.3 ↑ 0.68 ± 0.19 ↓

avg 2942.8 ± 5421.5 ↑ 0.71 ± 0.19 ↓
1 1933.6 ± 2373.2 ↑ 0.73 ± 0.14 ↓

Proposed without SHOPs 2 2256.4 ± 2882.6 ↑ 0.71 ± 0.15 ↓
avg 1855.8 ± 2371.2 ↑ 0.75 ± 0.14 ↓
1 1602.0 ± 2134.3 0.77 ± 0.12

Proposed 2 2016.7 ± 2670.1 0.74 ± 0.12
avg 1549.7 ± 2106.8 0.78 ± 0.11

Intergrader variability 1917.0 ± 2367.3 0.75 ± 0.10

algorithm was developed with the ultimate goal of improving the accuracy of drusen areas
measurements. This algorithm performed better than other methods in both metrics in terms of
mean values (Table 3). The results of the proposed algorithm are, in fact, statistically significantly
better than those of other methods, except when comparing area differences with Chiu’s method
using expert 1 and 2 as references (Table 3). In this case, the area differences values are
statistically indifferent, but the drusen area measurements obtained by the proposed method have
a higher degree of overlap with the segmentations of experts.

4.4. Analysis of signed errors

The global results in terms of mean signed error reveal that the boundaries present a slight offset
relative to the manual segmentation (Table 4). In particular, the IRPEDC exhibits considerable
offsets, which is to be expected because it also is the most difficult boundary to segment. As
mentioned in subsection 2.2.9, expert graders have the tendency to segment the boundary with
a small bias, which might explain the offsets observed in Table 4. To minimize this issue, the
mean offsets were learned from a training set and corrected at test time (all the previous results
include offset correction).

5. Conclusion

An algorithm for multi-surface segmentation with SHOPs was proposed with the goal of seg-
menting accurately boundaries that limit drusen, i.e., IRPEDC and BM, in intermediate AMD
volumes. The proposed algorithm also segmented ILM and IS-OS, which were used as auxiliary
boundaries. The ILM was correctly segmented and it can even be used for the retinal thickness
measures. The IS-OS does not have manual segmentation in the database used for evaluation
and, as such, its results were not evaluated.

The results demonstrated that the proposed algorithm segmented accurately IRPEDC and BM
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Table 4. Mean signed error (± standard deviation) in µm without any offset correction.

Method Grader ILM IRPEDC BM
1 1.87 ± 4.07 -1.61 ± 5.69 -1.39 ± 5.98

Chiu et al. 2 1.09 ± 5.08 -3.89 ± 9.70 -1.51 ± 7.15
avg 1.48 ± 3.72 -2.75 ± 8.11 -1.45 ± 5.69
1 -0.66 ± 4.35 -1.38 ± 9.16 -2.88 ± 5.82

Proposed 2 -1.44 ± 5.25 -3.65 ± 9.34 -3.00 ± 7.19
avg -1.05 ± 3.98 -2.51 ± 7.86 -2.94 ± 5.63

Intergrader variability -0.78 ± 5.42 -2.27 ± 9.76 -0.12 ± 6.66

boundaries and computed trustworthy measurements of drusen areas. Several factors played key
roles in achieving accurate results. One of them was the independent segmentation of IRPEDC
and BM. By doing so, the proposed algorithm avoids the detrimental effect of interaction
constraints in large drusen regions. Another factor was the exclusion of the IS-OS boundary from
the preliminary segmentation of IRPEDC, which allowed the correct segmentation of BM in GA
areas. The use of SHOPs was also very important for a successful segmentation of the IRPEDC
boundary. SHOPs corrected oversmoothing in drusen regions and incorrect segmentations in
non-drusen regions of IRPEDC when it was attracted to IS-OS.

In sum, we demonstrated how an algorithm based on a multi-surface framework can be
developed to avoid some of the implicit assumptions associated to the framework and accurately
segment IRPEDC and BM in volumes of patients of intermediate AMD. Furthermore, we
demonstrated how SHOPs can be used to correct some remaining issues of the multi-surface
framework, such as IRPEDC oversmoothing in drusen regions.
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