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Abstract: The choriocapillaris plays an important role in supporting the metabolic demands 
of the retina. Studies of the choriocapillaris in disease states with optical coherence 
tomography angiography (OCTA) have proven insightful. However, image artifacts 
complicate the identification and quantification of the choriocapillaris in degenerative 
diseases such as choroideremia. Here, we demonstrate a supervised machine learning 
approach to detect intact choriocapillaris based on training with results from an expert grader. 
We trained a random forest classifier to evaluate en face structural OCT and OCTA 
information along with spatial image features. Evaluation of the trained classifier using 
previously unseen data showed good agreement with manual grading. 
© 2016 Optical Society of America 
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1. Introduction 

The retinal pigment epithelium (RPE) and choroidal vascular network in the eye are 
responsible for supporting the metabolic demands of the photoreceptors, which convert light 
to neural signals. Loss of these structures in degenerative diseases leads to vision loss. To 
better understand the pathophysiology of retinal degeneration, we previously used a 
multimodal imaging approach to assess the integrity of photoreceptors, RPE, and 
choriocapillaris in cases of choroideremia [1], a rare hereditary chorioretinal disease 
characterized by poor night vision and progressive loss of peripheral vision. Optical 
coherence tomography (OCT) and its functional extension OCT angiography (OCTA) were 
two of the main tools. OCT is an interferometric imaging technique that is analogous to 
ultrasound. It uses backscattered light to create depth-resolved reflectance profiles of the 
structure of interest. OCTA identifies vasculature by detecting the blood flow-induced change 
in the OCT reflectance signal over time. When assessing the choriocapillaris using OCTA, we 
found that shadowing and projection artifacts [2, 3] made it challenging to identify and 
quantify intact choriocapillaris. 

Shadowing and projection artifacts are related, and the interplay between the two 
complicates the interpretation of choroidal angiograms derived from OCTA. Because red 
blood cells are highly scattering, flowing blood in vessels reduces light penetration deeper 
into the tissue and casts time-varying shadows which are also picked up by the OCTA 
algorithm as flow signal. This means that vessels in superficial layers project deeper and thus 
may also be seen in deeper layers. However, if shadowing reduces the OCT reflectance signal 
below the minimum threshold set by the OCTA algorithm to reduce noise, no flow signal will 
be detected. Furthermore, because of projection, larger choroidal vessels beneath the 
choriocapillaris are not observed when there is intact choriocapillaris. 

Because of these artifacts, manual grading of OCTA has sometimes been necessary [4–6]. 
Here, we explored using supervised machine learning to leverage manual grading in 
development of a more automated approach to assessing intact choriocapillaris. We 
developed a random forest classifier [7] which was trained to evaluate en face structural OCT 
and OCTA information along with spatial information derived from standard deviation and 
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Gabor directional filters [8, 9]. We then evaluated the trained classifier using a different group 
of scans. 

2. Methods 

2.1 Optical coherence tomography angiography 

Study participants with a clinical diagnosis of choroideremia were recruited at the Casey Eye 
Institute. The research protocols were approved by the Institutional Review Board/Ethics 
Committee at the Oregon Health & Science University and carried out in accordance with the 
tenets of the Declaration of Helsinki. Written informed consent was obtained from all 
participants or their legal guardians. 

Each participant received OCTA scans on a 70 kHz spectral domain OCT system 
(RTVue-XR Avanti, Optovue, Fremont, CA). The angiography scan protocol included two 
raster scans, each of which was comprised of two repeated cross-sectional B-scans at 304 
locations covering a 6 × 6 mm area. Each B-scan contained 304 A-scans. The fast scanning 
directions for the two raster scans were orthogonal. To detect flow, the previously described 
split-spectrum amplitude-decorrelation angiography (SSADA) algorithm was implemented 
[10, 11]. Finally, the two raster scans were registered and merged to correct for saccadic 
motion [12]. 

Custom software written in Matlab (v2014a, MathWorks, Natick, MA) was used to 
segment the inner limiting membrane (ILM), outer boundary of the outer plexiform layer 
(OPL), and Bruch’s membrane (BM) [13, 14]. An expert grader reviewed and corrected any 
segmentation errors. The inner retinal slab was defined as between ILM and the outer 
boundary of OPL. The choroidal slab was everything below BM. The en face inner retinal 
and choroidal angiograms were then generated as the maximum flow projection between the 
inner retinal and choroidal slabs, respectively. We also generated two en face structural OCT 
images to aid the classifier. These were the mean reflectance projection between ILM and 
BM and the reflectance values of the voxel projected for the choroidal angiogram. All images 
were smoothed with a Gaussian filter with a diameter of 5 pixels (100 µm) and a standard 
deviation of 0.75 to reduce noise. 

2.2 Manual grading 

A trained grader used the freehand area selection tool in ImageJ to trace the region of intact 
choriocapillaris on the choroidal angiogram. This area was determined by the absence of deep 
choroidal vessels and corresponding presence of flow immediately beneath the RPE on cross-
sectional OCTA. The selected regions of intact choriocapillaris were then converted into a 
binary image. 

2.3 Features for evaluation 

The two en face structural OCT images along with the inner retinal and choroidal angiograms 
were four of the features for the random forest classifier to evaluate. The inner retinal 
angiogram was included to give the classifier a reference for potential projection artifacts. 
The en face structural OCT images were included to account for reflectance variation and 
shadowing from, for example, opacities in the ocular media [15]. 

Eight additional features were derived from the choroidal angiogram. We applied standard 
deviation and directional Gabor filters to the choroidal angiogram to better highlight the 
dense and nearly confluent appearance of intact choriocapillaris. The standard deviation filter 
calculates the standard deviation of the values within the specified filter size. The Gabor filter 
highlights objects in the image which are oriented towards a specific direction by convolving 
the image with a Gaussian kernel modulated by an oriented, complex sinusoid [8,9]. 
Furthermore, we applied these filters at multiple scales to give the classifier more information 
to work with. This helped to account for cases where, for example, a smaller filter would fall 
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within a large choroidal vessel and give a standard deviation value that is within the range for 
intact choriocapillaris (Fig. 1). 

Four different sizes of the standard deviation filter were used: 180 × 180, 300 × 300, 380 
× 380, 500 × 500 µm. Likewise, four different sizes of the Gabor filter were used: 200 × 200, 
320 × 320, 400 × 400, 520 × 520 µm. These dimensions were roughly double and quadruple 
the sizes of the larger retinal vessel projections and larger choroidal vessels. For each size of 
the Gabor filter, we generated 240 images based on different combinations of orientations 
(every 45°), standard deviations of the Gaussian envelope (5 to 25, steps of 5), and 
frequencies of the sinusoid (0.075 to 0.2, steps of 0.025). To reduce the number of features 
and thus reduce the time required for training the classifier, we summed and normalized the 
results for each Gabor filter size. Figure 1 shows an example of these features for an OCTA 
scan. 

 

Fig. 1. The 12 features for the random forest classifier. (A) Inner retinal angiogram. (B) En 
face structural OCT of the inner retina. (C) Choroidal angiogram with a V-shaped island of 
intact choriocapillaris. (D) Reflectance values of the voxel projected for the choroidal 
angiogram. (E-H) The choroidal angiogram after standard deviation filters of 180 × 180 µm 
(E), 300 × 300 µm (F), 380 × 380 µm (G), and 500 × 500 µm (H). Note the difference in 
appearance of a larger choroidal vessel after standard deviation filters of different sizes (green 
arrows). (I-L) The choroidal angiogram after Gabor directional filters of 200 × 200 µm (I), 320 
× 320 µm (J), 400 × 400 µm (K), and 520 × 520 µm (L). 

2.4 Random forest classifier 

The random forest classifier [7] is a popular and intuitive supervised machine learning tool 
which has previously been applied to OCT images for angle closure detection [16] and cyst 
identification [17] among others. It combines the results from multiple decision trees to make 
a classification, which in our case means determining whether a pixel on the choroidal 
angiogram represents intact choriocapillaris or not. We used the TreeBagger function in 
Matlab to generate a random forest classifier with 100 decision trees. A greater number of 
trees in the random forest results in improved performance, following an exponential decay 
curve, at the cost of additional training and processing time. Fifty or 100 trees are commonly 
used parameters. In this case, 100 trees showed a slight improvement, with a misclassification 
probability improvement of 2.6% for out-of-bag data (i.e., data not used for building the 
specific tree). The input into the TreeBagger function was an n × 12 matrix where each row in 
n is the same pixel on a set of 12 images corresponding to the 12 features and a binary vector 
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of length n with the corresponding manual grading of intact choriocapillaris. For example, if 
training was done with only a single OCTA scan, the input would be a 92,416 × 12 (3042 × 
12) matrix and a 92,416 × 1 vector. With 10 OCTA scans, the inputs would be a 924,160 × 12 
matrix and a 924,160 × 1 vector (Fig. 2(A)). 

 

Fig. 2. Flowchart of the training (A) and testing (B) process. 

Each individual decision tree within the classifier was generated with a random sampling 
of half of the training data with replacement and is comprised of numerous nodes where a 
binary decision was made based on thresholding of a single feature. At each node, only three 
randomly selected features were considered. The randomness serves to reduce correlation 
between decision trees. The choice at each node and thus the decision tree itself was built by 
maximizing the information gain based on the Gini index [18]. Briefly, for a binary 
choriocapillaris (1) or not (0) decision, the Gini of a node n is 

 2 2( ) 1 ( ) (1 ( ))G n p n p n= − − −  (1) 

where p(n) is the relative frequency of the choriocapillaris classification in the node. The 
information gain I by splitting the parent node P into its children L and R based on 
thresholding of a feature is then 

 ( ) ( ) (1 ) ( )I G P qG L q G R= − − −  (2) 

where q is the fraction of the data split into the left path. The thresholded feature with the 
highest I was then chosen. If a node had a Gini of 0, that indicated a terminal, or leaf, node. 

3. Results 

A total of 30 eyes from 19 participants with choroideremia (age: 45 ± 19, range: 14-79) were 
included in the study. Of the 30 eyes, 10 were selected as the training set. These were not 
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selected randomly, but chosen such that they represent the spectrum of patterns that the 
classifier will be tasked with distinguishing. Figure 3 shows the choroidal angiogram and 
manual grading of intact choriocapillaris in 4 of the eyes. 

 

Fig. 3. The choroidal angiogram (top) and corresponding manual grading (bottom) of intact 
choriocapillaris in 4 (A to D) of the 10 training cases. In the graded images, white represents 
the selected intact choriocapillaris. All four choroidal angiograms are displayed on the same 
scale. 

Training the random forest classifier took approximately 12 minutes (Intel i7-4770 
3.4GHz CPU, without parallel processing). To test how well the classifier would perform 
(Fig. 2(B)), we used the remaining 20 eyes for cross-validation. The classifier output was the 
average result from the 100 decision trees. Each pixel of the output image has a value 
between 0 and 1, representing the likelihood that the pixel was intact choriocapillaris. Figure 
4 shows the choroidal angiogram, manual grading, and classifier output from 4 of the eyes. 

 

Fig. 4. The choroidal angiogram (top), corresponding manual grading (middle), and random 
forest classifier output of intact choriocapillaris in 4 (A to D) of the 20 test cases. All four of 
the choroidal angiograms are displayed on the same scale. 

To assess how well the classifier performed, we first used a 100 × 100 µm median filter 
on the classifier output to reduce noise and then binarized the image. Next, we compared the 
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binarized classifier output to manual grading using the Jaccard similarity index [19,20], 
defined as the ratio between the intersection and union of what was identified as intact 
choriocapillaris (Figs. 5(A) and 5(B)). The Jaccard coefficient was calculated as follows 

 RF M

RF M

C C
J

C C

∩
=

∪
 (3) 

where CRF is identified choriocapillaris from the random forest classifier and CM is the 
manually identified choriocapillaris. The coefficient will be between 0 and 1, where 0 means 
that the two were completely dissimilar and 1 denotes that the two were identical. Over the 
range of thresholds used to binarize the classifier output, we see a local maximum at a 
threshold of 0.35 and a Jaccard of 0.81 ± 0.12 (mean ± standard deviation) for the 20 test eyes 
(Fig. 5(C)). If we take the highest Jaccard for each case irrespective of the threshold, the 
average Jaccard was 0.83. In general, cases with more preserved choriocapillaris had higher 
Jaccard values (R = 0.59). 

 

Fig. 5. (A) The choroidal angiogram. (B) Evaluation of the classifier output after binarization 
with a threshold of 0.5. The areas in white are where the classifier and grader agreed on what 
was intact choriocapillaris. The areas in grey show disagreement. The Jaccard for this example 
was 0.86. (C) The Jaccard (mean ± standard deviation) for the 20 test eyes across different 
binarization thresholds. 

4. Discussion 

OCTA is a new technique for assessing the choriocapillaris. Quantitative analysis of 
choriocapillaris in degenerative diseases may have important clinical implications. In this 
work, we developed a random forest classifier which could identify intact choriocapillaris 
amidst projection and shadowing artifacts in cases of choroideremia. The classifier was first 
trained on 10 eyes and then evaluated on 20 different eyes. A comparison of the classifier 
output to manual grading showed good agreement with an average Jaccard of 0.81. 

As expected, the features for the classifier to evaluate and the cases used for training are 
critical components in developing the classifier. When we excluded the standard deviation 
and Gabor filtered images of the choroidal angiogram as part of the features, the random 
forest classifier performed poorly. When we only included one of the two, the average 
Jaccard for the test eyes was reduced, to 0.72 without the standard deviation information and 
to 0.78 without the directional Gabor information. Closer inspection of the classifier output 
with both the standard deviation and Gabor information (Fig. 6(A)), without the standard 
deviation information (Fig. 6(B)), and without the Gabor information (Fig. 6(C)) for the case 
shown in the leftmost column of Fig. 4 was informative. We found that without the standard 
deviation information, there was more false positive signal in the regions without 
choriocapillaris. Without the Gabor information, we found that there was more false negative 
signal within the intact choriocapillaris. 
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Fig. 6. Example of the classifier output without select features. (A) Classifier output with all 
features. (B) Classifier output without standard deviation information. (C) Classifier output 
without Gabor information. 

We also assessed whether our choice of four different filter sizes for both the standard 
deviation and Gabor filters was necessary. If we only used the smallest or largest filter size, 
the average Jaccard was reduced by 0.02 and 0.01, respectively. If we removed the two 
middle filter sizes and used only the smallest and largest filter sizes, then the average Jaccard 
was reduced by 0.002. Adding two larger filter sizes for both the standard deviation (580 × 
580 µm and 700 × 700 µm) and Gabor filters (600 × 600 µm and 720 × 720 µm) improved 
the average Jaccard by 0.003. It appears some optimization is possible, but the improvements 
would be minor. 

Beyond the standard deviation and Gabor filters, we also explored the impact of including 
the retinal angiogram and structural OCT information as features. If we removed the retinal 
angiogram from the feature list, the average Jaccard was reduced by 0.003. This suggested 
that the retinal angiogram was mostly redundant and that the standard deviation and Gabor 
filters were enough for the classifier to identify vessel projections. When we removed the 
choroidal reflectance image instead, the average Jaccard dropped by 0.04 to 0.77. Removing 
the inner retinal and choroidal reflectance images resulted in the average Jaccard being 0.003 
lower than without only the choroidal reflectance information. On the classifier output image, 
the effect was similar to those images without the Gabor information, where there was more 
false negative signal within the intact choriocapillaris. 

Finally, with regards to the cases for training, it is important to have training cases that 
cover the spectrum of what the classifier will see. For example, if we did not include the cases 
shown in Figs. 3(C) and 3(D) as well as another similar case, then regions inside intact 
choriocapillaris where the flow signal was reduced were less likely to be properly classified 
(Fig. 7). 

 

Fig. 7. Example of the classifier output with less training cases. (A) The choroidal angiogram. 
(B) Classifier output if all 10 of the training cases were used. (C) Classifier output if only 7 of 
the 10 training cases were used, excluding the cases shown in Figs. 3(C) and 3(D) as well as 
another similar case. 
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Although our trained classifier performed well in cases of choroideremia with islands of 
remaining choriocapillaris, it had trouble in a couple cases like Fig. 3(A) where there was 
patchy loss within a large region of intact choriocapillaris. If including more training cases 
leads to little improvement, then additional features derived from the volumetric OCT and 
OCTA data will likely be needed. In training the classifier, we had reduced the three-
dimensional information using mean and maximum projection in depth. The projection was 
done over relatively large thickness. Perhaps using thinner slabs and more slabs may give the 
classifier additional descriptive information. Alternatively, instead of projecting, features 
could remain three-dimensional. This would increase the computational requirements 
significantly however. Finally, including variants of the described techniques for reducing 
image artifacts [21] may be valuable. 
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