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Abstract

Identifying the number of classes in Bayesian finite mixture models is a challenging problem.

Several criteria have been proposed, such as adaptations of the deviance information crite-

rion, marginal likelihoods, Bayes factors, and reversible jump MCMC techniques. It was

recently shown that in overfitted mixture models, the overfitted latent classes will asymptoti-

cally become empty under specific conditions for the prior of the class proportions. This

result may be used to construct a criterion for finding the true number of latent classes,

based on the removal of latent classes that have negligible proportions. Unlike some alter-

native criteria, this criterion can easily be implemented in complex statistical models such as

latent class mixed-effects models and multivariate mixture models using standard Bayesian

software. We performed an extensive simulation study to develop practical guidelines to

determine the appropriate number of latent classes based on the posterior distribution of the

class proportions, and to compare this criterion with alternative criteria. The performance of

the proposed criterion is illustrated using a data set of repeatedly measured hemoglobin val-

ues of blood donors.

Introduction

Finite mixture models can be used to capture unobserved heterogeneity in the population by

assuming that the population consists of K homogeneous subgroups. These models also allow

to represent non-standard distributions by an appropriate mixture of standard distributions.

However, identifying the number of latent classes (K) remains a challenging problem [1–4].

Several criteria exist for choosing the number of latent classes in mixture models in both the

frequentist and the Bayesian setting. Whereas information criteria such as the Akaike informa-

tion criterion (AIC) [5] and the Bayesian information criterion (BIC) [6] seem to be the most

popular criteria in a frequentist setting [7–9], no clear consensus on the optimal criterion in a

Bayesian setting has yet emerged. Although the deviance information criterion (DIC) [10] is

a well-established criterion for comparing different Bayesian models, unfortunately this
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criterion is not suited to the case of mixture models [7]. Several adaptations of this criterion to

mixture models have been proposed [11]. Alternatively, models with different numbers of

latent classes can be compared by computing marginal likelihoods, Bayes factors, or by using

reversible jump Markov chain Monte Carlo (RJMCMC) techniques [12].

The appropriate number of latent classes is obtained by optimizing one of the criteria by fit-

ting several mixture models with different numbers of classes. However, this procedure is

often not easy to apply, as estimating a finite mixture model for different numbers of classes

can be time consuming. Furthermore, some of these criteria cannot be calculated using stan-

dard software for Bayesian analyses such as WinBUGS, JAGS, or Stan, so that the researcher

often has to compute the criteria outside these software packages. RJMCMC sampling is

another approach with its own drawbacks. In this algorithm the Markov chain moves between

mixture models with different numbers of classes based on carefully selected proposal densities

[13, 14]. It can be difficult to derive appropriate proposal densities, especially for complex hier-

archical models. Alternative choices such as marginal likelihood approaches, which are gener-

ally not available in closed form in mixture models, also yield challenging numerical issues

even for mixture models with a moderate number of classes [13].

Rousseau and Mengersen [4] (hereafter R&M) showed that in overfitted mixture models

(i.e. a mixture model fitted with more latent classes than present in the data), the superfluous

latent classes will asymptotically become empty if the Dirichlet prior on the class proportions

is sufficiently vague. Rousseau and Mengersen [4, 15] indicated that their result may lead to a

criterion for finding the true number of latent classes by simply excluding latent classes that

are negligible in proportion. A subsequent study by Malsiner-Walli et al. [16] proposed a spe-

cific implementation of this criterion, and used simulated data to investigate its performance

in finding the true number of latent classes. In their implementation, the mixture model is first

estimated with a relatively large number of latent classes. The true number of latent classes is

then estimated as the mode of the number of non-empty classes, where a class is defined as

empty if no subject is assigned to it in a specific MCMC iteration. The advantage of R&M

criterion is that it is simple to implement using standard Bayesian software, even for complex

statistical models, because the latent class proportions are an automatic byproduct of the

estimation.

In this study, we use a criterion that resembles the criterion used by Malsiner-Walli et al.

[16]. However, we relax the rather conservative criterion used by Malsiner-Walli et al. [16]

that a class is only empty if it contains zero observations, and instead assess the effects of differ-

ent cut-offs for the proportions in a class. This is more logical, because Rousseau and Menger-

sen [4] only showed that the class proportions converge to 0 if the sample size approaches

infinity, not that they should be 0 with any data set of finite size. The simulation study of Malsi-

ner-Walli et al. only used data sets with well-separated latent classes and did not compare the

criterion with alternative methods for choosing the number of latent classes. In our simulation

study, we considered various scenarios with different degrees of separation between latent clas-

ses as well as longitudinal data, to assess how this criterion performs in a more realistic setting.

We also compared the R&M criterion with alternative criteria for estimating the number of

latent classes.

We show that both the prior for the class-specific parameters as well as the hyperparameter

of the Dirichlet prior distribution for the class proportions have to be chosen carefully to

ensure a good performance of this method. We use the simulation results to provide recom-

mended settings, and apply these settings in the analysis of longitudinal hemoglobin (Hb) val-

ues of blood donors.

In the next section, background on finite mixture models is presented including a discus-

sion of priors for mixture models. Then methods for choosing the appropriate number of
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classes in this study are presented. Section ‘simulation studies’ deals with the simulation study

in both a univariate and a longitudinal setting. In Section ‘hemoglobin longitudinal data’, a

practical example of longitudinal mixture modeling is presented. Finally, the results are dis-

cussed and practical recommendations are given in ‘discussion’ section.

Background on finite mixture models

Definition of mixture models

A finite mixture model is defined as:

f ðyjλ; y; gÞ ¼
XK

j¼1

ljfjðyjyj; gÞ; ð1Þ

where f(y|λ, θ, γ) is the density of the observed data, fj(y|θj, γ) is the density of the observed

data in latent class j, K is the true number of latent classes and the vector λ represents the class

proportions, which are non-negative and sum to 1. θj is a vector of parameters for the distribu-

tion of the data in class j, and γ is a vector of parameters common to all classes. The observed

data y can be either univariate or multivariate, and fj(y|θ, γ) may correspond to e.g. a simple

Gaussian model or a complex hierarchical model.

Since we use a Bayesian setting, priors need to be chosen for λj, θj (j = 1, . . ., K), and γ. A

challenging issue that arises in Bayesian mixture models is the nonidentifiability of the latent

classes. The problem is caused by the invariance of the posterior distribution with respect to

permutations of class labeling under symmetric priors and likelihood [14]. This leads to so-

called label switching in the MCMC output, and the posterior distributions of class-specific

parameters θj will be identical and thus useless for inference [17].

Priors for mixture models

If no relevant prior information for the parameters is available, many researchers prefer to use

vague prior distributions whose impact on the posterior distribution of the model parameters

is minimal. The most commonly used prior for the class proportions, λj, is a symmetric Dirich-

let distribution, i.e. λ|K * Dirichlet(α1, . . ., αK), and αk = α for k = 1, . . ., K. Smaller values of

α correspond with a less informative prior. A flat prior distribution is obtained with α = 1,

whereas setting α = 0 leads to an improper Dirichlet distribution, and also to an improper pos-

terior result.

The choice of α is important, as its value can strongly affect the posterior results. Although

large values of α lead to informative prior distributions, some researchers have suggested to

use values larger than 1 (e.g., α = 4 or α = 10) to avoid solutions with empty classes [18]. When

using the marginal likelihood as a criterion (i.e. choosing the number of latent classes that

yields the highest value of the marginal likelihood), it has been shown that more informative

Dirichlet distributions lead to a lower probability of overestimating the number of latent clas-

ses in the data [19, 20].

In contrast, Rousseau and Mengersen [4] have suggested to use smaller values of α, with

α< d/2, where d is the number of class-specific parameters, i.e. θj. This recommendation is

based on a mathematical proof showing that with a sufficiently vague Dirichlet prior distribu-

tion, the proportions of overfitted latent classes will converge to zero as the sample size

increases. For α greater than d/2, the class proportions of overfitted classes will asymptotically

converge to nonnegligible values, even if the data are homogeneous. Although the proof given

by R&M does not explicitly mention the possibility of parameters that do not vary between

classes (i.e. the parameters γ), in this paper we will apply the mathematical result also in models

Bayesian Criteria for Number of Latent Classes
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with such parameters. However, in all cases the value of d is chosen as the dimension of θj, i.e.

the number of class-specific parameters. This is one of the few examples in Bayesian statistics

where less informative priors lead to better results [4], as the more informative Dirichlet distri-

butions will overestimate the number of latent classes. Rousseau and Mengersen [4] further

argued that with α< d/2, the posterior distribution of the class proportions has a much more

stable behavior than the maximum likelihood estimator. Another disadvantage of using infor-

mative Dirichlet priors is that the posterior distributions of the class proportions may be

biased, especially in small data sets.

An alternative approach to fixing α in advance would be to let the data determine the

optimal value for alpha, which means to use a hyperprior specification for α, so that α is an

unknown parameter that is estimated using the data. The prior for α could for example be a

gamma prior, with α* Γ(�1, �2) [16, 21], where �1 and �2 are the shape and rate parameters of

the gamma distribution, respectively.

Priors must also be chosen for the class-specific parameters θj. In many cases, there is no

relevant prior information available for the class-specific parameters, so that the use of vague

priors seems appropriate. However, it is generally not possible to use improper priors for the

class-specific parameters in finite mixture models, because there is a nonzero posterior proba-

bility that at least one of the classes is empty, leading to improper posteriors for the class-spe-

cific parameters [22]. Instead one can use minimally informative but diffuse proper priors

which lead to diffuse posterior distributions of the class-specific parameters, but the posterior

results may be sensitive to the spread of the prior [22].

Data-dependent priors, which are prior distributions that are a function of the observed

data, have been proposed instead [3, 22, 23]. Wasserman [22] showed that these prior distribu-

tions may have better frequentist properties.

Another approach would be to use a hierarchical prior. For example in a mixture model

one can specify a hierarchical prior for the class-specific means as μk|b0 * N(b0, B0), where

b0 * N(m0, M0). The aim of these hierarchical priors is to minimize the impact of the prior on

the posterior. In many finite mixture models the distribution within each class is assumed to

be normal, conditional on the observed covariates. Different priors have been proposed in the

literature for the class-specific parameters, namely the priors proposed by Nobile et.al [24],

and the normal-gamma prior [25] for class-specific means used in Malsiner-Walli et al. [16]

combined with the approach of Rousseau and Mengersen [4]. Previous literature showed that

the choice of prior has a strong effect on choosing the number of latent classes in mixture

models [17].

Methods for choosing the number of classes

Various approaches have been proposed in the literature for choosing the number of latent

classes in mixture models, in both frequentist and Bayesian settings. However, no consensus

has emerged regarding which of these methods performs best. In this study we compare a

number of well-known Bayesian approaches for choosing the number of latent classes in mix-

ture models. These approaches are described below.

Deviance information criterion (DIC)

The deviance information criterion (DIC) is a well-known Bayesian criterion for the assess-

ment and comparison of different Bayesian models [10]. The DIC involves a trade-off between

goodness of fit (deviance) and model complexity (the effective number of parameters pD), and

Bayesian Criteria for Number of Latent Classes
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can be calculated as follows:

DðyÞ ¼ � 2 log f ðyjyÞ þ 2 log hðyÞ;

where h(y) is a standardizing term that is a function of the data alone. Then the estimated

effective number of parameters is defined as:

pD ¼ DðyÞ � DðŷÞ;

where DðyÞ is the posterior mean deviance and ŷ ¼ E½yjy� is the posterior mean of the model

parameters. DIC is then defined as:

DIC ¼ � 4Ey½ log f ðyjyÞjy� þ 2 log f ðyjŷÞ; ð2Þ

ŷ ¼ E½yjy� ensures that pD is positive when the density is log-concave in θ, but it is not appro-

priate for discrete parameters θ [10, 11]. In mixture models, the parameters θ are not identifi-

able if the prior and likelihood are invariant with respect to the labeling of classes. Therefore,

ŷ ¼ E½yjy� can be a very poor estimator and pD may become negative [11]. A more relevant

choice for ŷ would be the mode of the posterior distribution [11]. Several adaptations of this

criterion were proposed by Celeux et al. for mixture models [11], such as DIC3 and DIC4.

Namely,

DIC3 ¼ � 4Ey½ log f ðyjyÞjy� þ 2 log f̂ ðyÞ; ð3Þ

where f̂ ðyÞ ¼
Qn

i¼1
f̂ ðyiÞ, f̂ ðyiÞ ¼

1

M

PM
m¼1

PK
j¼1

l
m
j fjðyjy

m
j Þ, M denotes the number of MCMC

iterations, l
m
j and y

m
j are the results of the mth MCMC iteration, and

DIC4 ¼ � 4Ey;Z½ log f ðy;ZjyÞjy� þ 2EZ½ log f ðy;ZjEy½yjy;Z�jy�; ð4Þ

where Z = (z1, . . ., zn) is the class assignment vector of observations (individuals). To compute

DIC4, it is necessary to calculate the posterior expectation for each possible value of z. Among

various DICs studied by Celeux et al., these two DICs were found to be the most reliable crite-

ria by the authors [11].

Reversible jump MCMC algorithm

Another fully Bayesian approach is the reversible jump MCMC algorithm (RJMCMC), as

introduced by Richardson and Green [12], which is an extension of the standard MCMC.

RJMCMC allows sampling of the posterior distribution on spaces of varying dimensions. In

this algorithm the Markov chain moves between finite mixture models with different number

of classes based on carefully selected degenerated proposal densities, but which are in general

not easy to design [14, 26].

Rousseau and Mengersen’s criterion

Rousseau and Mengersen (R&M) [4] proved that the posterior behavior of an overfitted mix-

ture model depends on the chosen prior on the proportions λj. They showed that an overfitted

mixture model converges to the true mixture, if the Dirichlet-parameters αj of the prior are

smaller than d/2 (d is the dimension of the class-specific parameters). This result can be used

to define a criterion for choosing the true number of latent classes in a mixture model. Basi-

cally, a deliberately overfitted mixture model with Kmax (Kmax > K) latent classes is fitted to the

data. A sparse prior (Dirichlet distribution with αj < d/2) on the proportions is then assumed

to empty the superfluous classes (Kmax − K) during MCMC sampling.

Bayesian Criteria for Number of Latent Classes
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Various criteria can be used for a class to be declared empty. For instance, one could declare

a class empty if the number of observations assigned to that class is smaller than a certain pro-

portion of the observations in the data set (e.g. ψ). In other words, the (assumed) true number

of non-empty classes (K) could be computed in each MCMC iteration as:

KðmÞ ¼ Kmax �
XKmax

j¼1

If
NðmÞj

N � cg; ð5Þ

where K(m) is the number of non-empty classes in iteration m of MCMC sampling, NðmÞj is the

number of observations allocated to class j at iteration m, N is the total number of observations

and I denotes the indicator function. ψ can be set to a predefined value, e.g. 0, 0.01, 0.02, or

0.05. Then one can derive the number of non-empty classes based on the posterior mode of

the number of non-empty classes based on all MCMC iterations.

Bayesian information criterion

The Bayesian information criterion (BIC) [6] is a well-known frequentist criterion, which has

been shown to be consistent for choosing the number of latent classes in mixture models [9].

BIC is defined as follows:

BIC ¼ � 2½ log f ðyjŷÞ� þ g log ðnÞ; ð6Þ

where ŷ is the maximum-likelihood estimate of the parameter θ, g is the number of free

parameters in the model, and n is the number of observations in the data.

Simulation studies

To investigate the performance of the criterion proposed by R&M compared to other well-

known approaches, we set up two simulation studies with different scenarios. The first simula-

tion study is based on one-dimensional data, whereas the second simulation study uses longi-

tudinal data.

Simulation study A: univariate Gaussian mixture

In this simulation study, we consider a univariate Gaussian mixture, i.e. a location-scale mix-

ture of univariate normal distributions:

f ðyijλ;m; s2Þ ¼
XK

j¼1

ljNðyijmj; s
2

j Þ; ð7Þ

where f(yi|λ, μ, σ2) is the density of the observed data yi (i = 1, . . ., n), n is the number of inde-

pendent observations, Nðyijmj; s
2
j Þ is the density of the normal distribution with mean μj and

variance s2
j , K is the true number of latent classes and λj is the proportion of latent class j.

We simulate data from this model using n = 500 observations with different numbers of

latent classes, and different degrees of separation (i.e. “low”, “moderate”, and “high” separa-

tion). Our definition of “low”, “moderate”, and “high” separation is somewhat subjective, and

is based on the percentage of variation in the data that can be explained by the clustering struc-

ture, i.e. s2
EðY jZÞ=s2

Y where s2
Y denotes the marginal variance of the data, Z is an indicator vari-

able for the latent class, and s2
EðYjZÞ is the between-class variance. We also assessed the degree of

separation between latent classes using the overlapping coefficient (OVL), which is the area

Bayesian Criteria for Number of Latent Classes
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under the probability density functions simultaneously [27]. The following four scenarios were

considered:

• Scenario A1: No clustering structure: K = 1 class with μ1 = 1 and σ1 = 0.25, see Fig 1(a).

• Scenario A2: High separation (s2
EðY jZÞ=s2

Y ¼ 0:80, OVL = 0.06): K = 3 classes with μ1 = 1,

μ2 = 2, μ3 = 3, and σ1 = σ2 = σ3 = 0.25, see Fig 1(b).

• Scenario A3: Moderate separation (s2
EðY jZÞ=s2

Y ¼ 0:70, OVL = 0.29): K = 3 classes with

μ1 = 1, μ2 = 2, μ3 = 3, and σ1 = σ2 = σ3 = 0.4, see Fig 1(c).

• Scenario A4: Low separation (s2
EðY jZÞ=s2

Y ¼ 0:60, OVL = 0.74): K = 3 classes with μ1 = 1,

μ2 = 2, μ3 = 3, and σ1 = σ2 = σ3 = 0.7, see Fig 1(d).

In the base-case analysis, the data are simulated using equal class proportions (i.e. λj = 1/K
for each class j). The histograms of these simulated data for a randomly selected data set are

displayed in Fig 1, together with the true marginal densities. Separation decreases from Fig 1(b)

to 1(d), to end in a unimodal distribution.

We implemented the criterion proposed by R&M, and we compared this criterion with the

results of RJMCMC [12], DIC3 and DIC4 [11], and BIC. To establish whether a class is empty

under the R&M criterion we used different values for the cut-off (ψ) i.e., 0, 0.01, 0.02, and 0.05

of observations in the sample, and the maximum number of latent classes was set to Kmax = 10.

The prior for the class proportions λ was chosen to be a symmetric Dirichlet distribution

with hyper-parameter equal to α = 0.00001, 0.001, 0.01, 0.05, 0.1, 0.3, 0.5, 0.9.

Fig 1. Univariate simulated data study. Histograms of randomly selected generated data sets. The solid lines represent

the true marginal densities.

doi:10.1371/journal.pone.0168838.g001
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For the priors of the class-specific means, we considered both a normal-gamma prior and

a vague prior. The vague prior was μj * N(0, 1000). The normal-gamma prior is a hierarchi-

cal data-dependent prior that places a normal prior on the prior mean and a shrinkage prior

on the prior variance [16]. This prior for a univariate mixture model can be defined as fol-

lows:

mkjl ; b0 � Nðb0; Z R2Þ;

where η* Γ(ν1, ν2) and b0 * N(m0, M0), m0 and R are the median and range of the data,

respectively. M� 1
0

is set to 0 (since this is not possible in practice here we set M� 1
0
¼ 10� 7).

The hyper-parameters ν1 and ν2 are set to 0.5 to allow considerable shrinkage of the prior

variance of class means [16].

For the priors of the class-specific variance, we also considered a hierarchical data-depen-

dent prior and a vague prior. The hierarchical data-dependent prior on the class-specific vari-

ances was implemented by Malsiner-Walli et al. [16] in a multivariate mixture model, and is

given by:

1=s2
k � Gðb1 ¼ 1:25;b2 ¼ 1=ð2C0ÞÞ;

where C0 * Γ(�1 = 0.25, �2 = 20/R2). The vague prior on the class-specific variances was

s2
j � Uð0; 10Þ.

We used a full factorial design to vary a) the number of latent classes and the degree of sepa-

ration (using the four scenarios described above), b) the criterion for determining the number

of latent classes (i.e. the R&M criterion with different cut-off values, RJMCMC, DIC3, DIC4,

and BIC), and c) the value of α in the Dirichlet distribution (i.e. α = 0.00001, 0.001, 0.01, 0.05,

0.1, 0.3, 0.5, or 0.9).

Three additional factors were varied in sensitivity analyses. In these sensitivity analyses,

only the scenario with high separation between classes was simulated, but the other factors in

the full factorial design were not fixed.

Two sensitivity analyses consisted of a) changing the sample size of the data set (i.e. to 100

and 1000 observations) and b) simulating data with unequal proportions of the latent classes,

including one small class, using λ1 = 0.475, λ2 = 0.475, λ3 = 0.05. Furthermore, we investigated

the sensitivity of the criteria to outlying values, by running Scenario A1 with two extreme val-

ues added at each tail of the distribution. Finally, we also performed a sensitivity analysis for

the number of latent classes, with K ranging from K = 1 to K = 6, with n = 100 × K and means

chosen as μj = j for j = 1, . . ., K and σj = 0.25 and also σj = 0.40.

We generated 50 data sets for each setting in the base-case analysis and the sensitivity analy-

ses, except for the sensitivity analyses with varying number of classes, which used only 20 data

sets. The low number of simulated data sets for these sensitivity analyses was necessary to limit

the total computation time. MCMC sampling is run for each data set for 50,000 iterations after

discarding the first 5,000 iterations (burn-in). Computations were performed using the follow-

ing packages in R: rjags for the R&M criterion (see S1 and S2 Figs in Supplementary Material

Section), Rmixmod and lcmm for calculating BIC in a frequentist setting, and mixAK for

the RJMCMC technique. To be able to compute DIC3 and DIC4, an MCMC sampler for the

model parameters and the class assignments in the univariate mixture model was programmed

in R. The programs of the simulation studies can be obtained by contacting the corresponding

author.

Bayesian Criteria for Number of Latent Classes
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Simulation study A: results

Table 1 shows the simulation results of Scenario A1. This table presents the success rate (the

percentage of data sets in which the true number of clusters was obtained) of the different

approaches, the mode of the estimated number of classes is presented in parentheses. The cri-

terion of Rousseau and Mengersen is denoted as R&MNG if hierarchical priors are used for

both the class-specific mean and the class-specific variance, and as R&MNI if the vague priors

are used for both the class-specific mean and the class-specific variance, with the cut-off value

for defining a class to be empty as a subscript. For example, R&MNI
0:02

represents the Rousseau

and Mengersen criterion with the vague priors for both the class-specific mean and the class-

specific variance where ψ = 0.02.

In this scenario, the models cannot underestimate the number of classes. Small values for α
for both a normal-gamma prior and a vague prior in the R&M criterion result in a better esti-

mation of the true number of latent classes. However, the R&M criterion with a normal-

gamma prior requires much lower values of α (i.e. α< 0.1) to obtain adequate results com-

pared to the R&M criterion with the vague prior, in which any value of α below 0.5 leads to

good results. The other approaches (i.e. RJMCMC, DIC3, and DIC4) show better results with

larger values for α. In case of a very low value of α, the convergence of the MCMC sampler in

the RJMCMC method was poor and therefore no results are reported in the tables for this

method with α = 0.00001.

Table 2 shows the simulation results of Scenario A2 (high separation), Scenario A3 (moder-

ate separation), and Scenario A4 (low separation). In Scenario A2, small values for α (i.e. α<
0.05) in the R&M criterion result in a perfect estimation of the true number of latent classes.

The number of classes is overestimated by the R&M criterion with the normal-gamma prior

for higher values of α. No such overestimation is observed for the vague prior. Similar results

were obtained in the sensitivity analysis for the number of latent classes (see S1 and S2 Tables).

In that sensitivity analysis, the normal-gamma prior yielded good results with values of α<
0.1, but the vague only gave good results for larger values of α, with α> 0.05. RJMCMC and

DIC3 gave the best results with larger values for α (α> 0.1). The performance of DIC4 does

not seem to depend on the value of α, but it is not very good, with the probability of finding

the true number of latent classes ranging from 50 to 70%. In the sensitivity analysis for the

sample size, the number of classes is underestimated in case a low value of α is used with a

small sample size of 100 observations, but it is estimated accurately in the other situations (see

S3 Table).

Table 1. The results of Scenario A1. Percentage of data sets in which the true number of clusters was found, with the mode of the estimated number of clas-

ses in parentheses.

α RJMCMC R&M
NG

0
R&M

NG

0:01
R&M

NG

0:02
R&M

NG

0:05
R&M

NI

0
R&M

NI

0:01
R&M

NI

0:02
R&M

NI

0:05
DIC3 DIC4

0.00001 — 100%(1) 100%(1) 100%(1) 100%(1) 100%(1) 100%(1) 100%(1) 100%(1) 0%(5) 0%(5)

0.001 18%(10) 100%(1) 100%(1) 100%(1) 100%(1) 100%(1) 100%(1) 100%(1) 100%(1) 0%(3) 0%(3)

0.01 28%(1) 98%(1) 98%(1) 98%(1) 98%(1) 100%(1) 100%(1) 100%(1) 100%(1) 100%(1) 20%(5)

0.05 90%(1) 22%(2) 80%(1) 84%(1) 92%(1) 100%(1) 100%(1) 100%(1) 100%(1) 100%(1) 72%(1)

0.1 98%(1) 2%(4) 10%(3) 18%(2) 40%(2) 100%(1) 100%(1) 100%(1) 100%(1) 100%(1) 100%(1)

0.3 98%(1) 0%(8) 0%(6) 0%(5) 0%(3) 98%(1) 100%(1) 100%(1) 100%(1) 98%(1) 100%(1)

0.5 98%(1) 0%(9) 0%(7) 0%(6) 0%(5) 96%(1) 98%(1) 98%(1) 100%(1) 96%(1) 100%(1)

0.9 98%(1) 0%(10) 0%(9) 0%(8) 0%(6) 96%(1) 98%(1) 98%(1) 100%(1) 94%(1) 100%(1)

The success rate of BIC using a frequentist approach was 100%.

doi:10.1371/journal.pone.0168838.t001
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When looking at Scenario A3 (moderate separation) and Scenario A4 (low separation), a

different picture emerges. These results show that the R&M criterion may underestimate the

true number of latent classes for low values of α. Namely, the R&M criterion with the normal-

gamma prior underestimates the number of classes with low values of α and overestimates this

number with high values of α. There is a narrow range around values of α = 0.05 in which the

performance of this criterion is good, and this range seems to depend on the cut-off for defin-

ing a class to be empty. On the other hand, the R&M criterion with the vague prior almost

always underestimates the number of latent classes in Scenario A3 and Scenario A4. Underes-

timation rarely occurs with higher values of α, but a large value for αmay result in overestimat-

ing the true number of latent classes. In Scenario A4, in which the distribution of the data

looks unimodal, all approaches except R&MNI
0:02

and R&MNI
0:05

perform poorly, and most meth-

ods detect only a single class.

As a sensitivity analysis, we simulated a heterogeneous population with three unequal pro-

portions, i.e. λ1 = 0.475, λ2 = 0.475, λ3 = 0.05, μ1 = 1, μ2 = 2, μ3 = 3 and σ1 = σ2 = σ3 = 0.25 (high

separation), see Table 3 for the results. Here we performed the R&M criterion only with the

vague prior. These results are consistent with the results of Scenario A2. The performance of

the R&M criterion is quite good except for R&MNI
0:05

since the smallest class proportion is 5%,

the cut-off defined for a class to be empty. Finally, in case a few outlying values were added to

Table 2. The results of Scenario A2–A4. Percentage of data sets in which the true number of clusters was found, with the mode of the estimated number of

classes in parentheses.

Scenario α RJMCMC R&M
NG

0
R&M

NG

0:01
R&M

NG

0:02
R&M

NG

0:05
R&M

NI

0
R&M

NI

0:01
R&M

NI

0:02
R&M

NI

0:05
DIC3 DIC4

Scenario A2

(high separation)

0.00001 — 100%(3) 100%(3) 100%(3) 100%(3) 100%(3) 100%(3) 100%(3) 100%(3) 8%(5) 68%(3)

0.001 6%(8) 100%(3) 100%(3) 100%(3) 100%(3) 100%(3) 100%(3) 100%(3) 100%(3) 6%(5) 68%(3)

0.01 16%(4) 100%(3) 100%(3) 100%(3) 100%(3) 100%(3) 100%(3) 100%(3) 100%(3) 24%(5) 54%(3)

0.05 54%(3) 0%(4) 84%(3) 98%(3) 100%(3) 100%(3) 100%(3) 100%(3) 100%(3) 94%(3) 52%(3)

0.1 94%(3) 0%(5) 0%(4) 12%(4) 86%(3) 100%(3) 100%(3) 100%(3) 100%(3) 100%(3) 68%(3)

0.3 100%(3) 0%(8) 0%(6) 0%(5) 0%(4) 100%(3) 100%(3) 100%(3) 100%(3) 100%(3) 50%(3)

0.5 100%(3) 0%(9) 0%(8) 0%(6) 0%(5) 98%(3) 100%(3) 100%(3) 100%(3) 100%(3) 64%(3)

0.9 100%(3) 0%(10) 0%(9) 0%(8) 0%(6) 6%(4) 80%(3) 92%(3) 98%(3) 100%(3) 94%(3)

Scenario A3

(moderate separation)

0.00001 — 4%(2) 4%(2) 4%(2) 4%(2) 0%(2) 0%(2) 0%(2) 0%(2) 20%(5) 10%(1)

0.001 10%(10) 6%(2) 6%(2) 6%(2) 6%(2) 2%(2) 2%(2) 2%(2) 2%(2) 18%(5) 8%(1)

0.01 16%(2) 36%(2) 34%(2) 34%(2) 34%(2) 2%(2) 2%(2) 2%(2) 2%(2) 46%(3) 6%(1)

0.05 2%(2) 38%(4) 88%(3) 86%(3) 74%(3) 2%(2) 2%(2) 2%(2) 2%(2) 28%(2) 8%(1)

0.1 4%(2) 0%(5) 4%(4) 32%(3) 94%(3) 4%(2) 4%(2) 2%(2) 2%(2) 8%(2) 8%(1)

0.3 6%(2) 0%(8) 0%(6) 0%(4) 0%(4) 28%(2) 28%(2) 28%(2) 28%(2) 2%(2) 4%(2)

0.5 8%(2) 0%(9) 0%(8) 0%(7) 0%(5) 60%(3) 48%(2) 46%(2) 46%(2) 4%(2) 4%(5)

0.9 10%(2) 0%(10) 0%(9) 0%(8) 0%(6) 0%(4) 50%(3) 66%(3) 94%(3) 10%(2) 8%(2)

Scenario A3

(low separation)

0.00001 — 0%(1) 0%(1) 0%(1) 0%(1) 0%(1) 0%(1) 0%(1) 0%(1) 0%(5) 8%(5)

0.001 8%(1) 0%(1) 0%(1) 0%(1) 0%(1) 0%(1) 0%(1) 0%(1) 0%(1) 78%(3) 46%(3)

0.01 6%(1) 0%(1) 0%(1) 0%(1) 0%(1) 0%(1) 0%(1) 0%(1) 0%(1) 4%(1) 34%(3)

0.05 0%(1) 46%(3) 2%(2) 0%(2) 0%(2) 0%(1) 0%(1) 0%(1) 0%(1) 4%(1) 0%(1)

0.1 0%(1) 2%(4) 80%(3) 64%(3) 16%(2) 0%(1) 0%(1) 0%(1) 0%(1) 6%(1) 0%(1)

0.3 0%(1) 0%(8) 0%(6) 0%(5) 8%(4) 0%(2) 0%(1) 0%(1) 0%(1) 10%(1) 2%(1)

0.5 0%(1) 0%(9) 0%(7) 0%(6) 0%(5) 62%(3) 0%(2) 0%(2) 0%(2) 14%(1) 0%(1)

0.9 0%(1) 0%(10) 0%(9) 0%(8) 0%(6) 0%(5) 6%(4) 44%(4) 98%(3) 12%(2) 0%(1)

The success rates of BIC using a frequentist approach for high, moderate, and low levels of separation were 100%(3), 16%(2), and 0%(1), respectively.

doi:10.1371/journal.pone.0168838.t002
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the homogeneous data of Scenario A1, the outlying values were assigned to different classes

when the cut-off ψ was lower than 0.02 (see S4 Table).

Simulation study B: a longitudinal study with a mixture of Gaussian

random effects distributions

Simulation study A enabled us to compare different criteria in a simple setting. However, mix-

tures also appear in more complicated models, where it may be difficult to calculate some of

the criteria that were evaluated in Simulation study A. However, the calculation of the R&M

criterion should still be feasible in that case. To verify the performance of the R&M criterion

we tested its performance based on a simulation study for a mixture model with longitudinal

data.

In this simulation study we generate data from a growth mixture model, which is also

known as a latent class mixed effects model [28, 29] with a mixture model on the random

effects [29]. The density function in a Gaussian growth mixture model can be expressed as Eq

1, where fj(y) is the density function that describes the trajectory for class j. The vector θj repre-

sents the parameters that are associated with the trajectory of class j. The growth mixture

model for individuals that belong to latent class j can be expressed as:

yitjj ¼ yj0 þ bij0 þ ðyj1 þ bij1Þ timeit þ �it;

where yit|j is the tth observation of the ith individual, given that this individual is in latent class

j, respectively. θj0 and θj1 are the fixed intercept and slope of the jth latent class. bij0 and bij1 are

the random intercept and slope of the jth latent class that are assumed to be bivariate normally

distributed with mean zero and a class-specific variance-covariance structure. The residuals �it

are now assumed to be normally distributed, and independent of the random effects. Thus in

this model the class-specific parameters (i.e. θj in Eq 1) consist of the fixed intercept and slopes

and the variances and covariances of the random effects; the parameters common to all classes

(i.e. γ in Eq 1) consist only of the variance of �it.

In this simulation study we computed the R&M criterion and the BIC. To establish whether

a class is empty with the R&M criterion we used different values for the cut-off (ψ) as in Sec-

tion ‘simulation study A’ (i.e., 0, 0.01, 0.02, and 0.05 of observations in the sample), and the

maximum number of latent classes was also set to Kmax = 10. Here we considered a homoge-

neous population (K = 1) and a heterogeneous population (K = 3).

Table 3. Unequal proportions heterogeneous scenario; a heterogeneous population with three clusters. λ1 = 0.475, λ2 = 0.475, λ3 = 0.05, μ1 = 1, μ2 =

2, μ3 = 3 and σ1 = σ2 = σ3 = 0.25 (high separation). Percentage of data sets in which the true number of clusters was found, with the mode of the estimated

number of classes in parentheses.

α RJMCMC R&M
NI

0
R&M

NI

0:01
R&M

NI

0:02
R&M

NI

0:05
DIC3 DIC4

0.00001 — 100%(3) 100%(3) 100%(3) 48%(2) 0%(5) 14%(4)

0.001 6%(7) 98%(3) 98%(3) 98%(3) 48%(2) 2%(5) 14%(4)

0.01 36%(4) 98%(3) 98%(3) 98%(3) 50%(3) 40%(3) 24%(4)

0.05 70%(3) 100%(3) 100%(3) 100%(3) 50%(3) 78%(3) 16%(4)

0.1 98%(3) 100%(3) 100%(3) 100%(3) 50%(3) 98%(3) 20%(4)

0.3 100%(3) 100%(3) 100%(3) 100%(3) 54%(3) 98%(3) 28%(4)

0.5 100%(3) 100%(3) 100%(3) 100%(3) 56%(3) 100%(3) 44%(3)

0.9 100%(3) 20%(4) 88%(3) 96%(3) 80%(3) 100%(3) 92%(3)

The success rate of BIC using a frequentist approach was 98%(3).

doi:10.1371/journal.pone.0168838.t003
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• Scenario B1: (homogeneous data with a random intercept and slope): K = 1 class with θ10 =

2 and θ11 = −0.2, bi1 * N2(0, S), S ¼
0:252 0

0 0:0252

" #

and the residuals �it are normally

distributed with variance of 0.252, �it * N(0, 0.252), and independent of the random effects,

see Fig 2(a). The data were generated as

yitjj ¼ yj0 þ bij0 þ ðyj1 þ bij1Þ timeit þ �it;

and this model was also used for the analysis, with an unstructured random effects variance-

covariance matrix. The class-specific parameters thus consisted of the fixed intercept θj0 and

slope θj1, as well as 3 parameters for S, so that d = 5.

• Scenario B2: (heterogeneous data with a random intercept): K = 3 classes with θ10 = 1, θ20 =

2, θ30 = 3 and β = −0.2, bij0 * N(0, 0.252), bij1 = 0 (a random intercept model) for j = 1, 2, 3

and the residuals �it are normally distributed with variance of 0.252, i.e., �it * N(0, 0.252),

and independent of the random effects, see Fig 2(b). The data were generated as

yitjj ¼ yj0 þ bij0 þ b timeit þ �it;

and this model was also used for the analysis. The class-specific parameters thus consisted of

the fixed intercept and the variance of the random intercept, so that d = 2.

• Scenario B3: (heterogeneous data with a random intercept and slope): K = 3 classes with θ10 =

1, θ20 = 2, θ30 = 3 and θ11 = −0.1, θ21 = −0.2, and θ31 = −0.3, bij0 * N(0, 0.252), bij * N2(0, S),

Fig 2. Longitudinal simulated data study. The left profile belongs to a homogeneous population with one class. The

middle one belongs to a population with three classes where classes differ only in intercept, and the right profile belongs to

a heterogeneous population with three classes where classes differ both in intercept and slope.

doi:10.1371/journal.pone.0168838.g002
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S ¼
0:252 0

0 0:0252

" #

for j = 1, 2, 3 and the residuals �it are normally distributed with vari-

ance of 0.252, �it * N(0, 0.252), and independent of the random effects, see Fig 2(c). The data

were generated as

yitjj ¼ yj0 þ bij0 þ ðyj1 þ bij1Þ timeit þ �it;

and this model was also used for the analysis, with an unstructured random effects variance-

covariance matrix. The class-specific parameters thus consisted of the fixed intercept θj0 and

slope θj1, as well as 3 parameters for S, so that d = 5.

Vague priors were specified for the class-specific parameters θj0 and θj1, i.e. N(0, 103). An

Γ−1(10−3, 10−3) was specified for the variance of the residuals (this prior also used for the vari-

ance of random intercept in Scenario B2). An Inv-Wishart(R, df) distribution was specified

for the variance-covariance structure of the random intercept and random slope. We set the

degrees of freedom, df, to 3 and the scale parameter matrix, R, to a diagonal matrix with small

values, i.e. 10−3 [30]. For the class membership probability a Dirichlet distribution with differ-

ent values (i.e., α = 0.00001, 0.001, 0.01, 0.05, 0.1, 0.3, 0.5, 1.0, 1.5, 2.0, and 2.5, where Kmax =

10) for the class proportions was specified. Larger values here were specified since in Scenario

B1 and Scenario B3 d = 5.

In this analysis, the data are simulated using equal class proportions (i.e. λj = 1/K for each

class j). Fig 2 shows a randomly selected generated data set for the three scenarios.

In a sensitivity analysis, we also fitted the random intercept and slope model to the data of

Scenario B2 (which were generated with only a random intercept). The purpose of this analysis

was to investigate the performance of the criteria in case the statistical model does not match

exactly with how the data were generated.

We generated 50 data sets for each setting consisting of 200 subjects and 6 observations per

subject. MCMC sampling is run for each data set for 50,000 iterations after discarding the first

5,000 iterations (burn-in).

Simulation study B: results

The simulation results of Scenario B1 (homogeneous data with a random intercept and slope)

show that the R&M criterion with the vague prior estimates the true number of classes per-

fectly. The results of this simulation are presented in S5 Table in Supplementary Material

Section.

Table 4 shows the simulation results of Scenario B2 (heterogeneous data with a random

intercept). In this scenario d = 2, therefore α should be smaller than 1 to make sure that over-

fitted classes become empty asymptotically [4]. In this scenario, large values for α (i.e. 0.1 < α
< 0.9) in the R&MNI criterion result in an accurate estimation of the true number of latent

classes. An underestimation of the number of classes is observed for the R&MNI criterion

when a lower value of α is used. In this scenario, different cut-offs lead to the same results.

Table 5 shows the simulation results of Scenario B3 (heterogeneous data with a random

intercept and slope). In this scenario d = 5, therefore α should be smaller than 2.5. In this sce-

nario, setting α = 2.0 in the R&MNI criterion yields the most precise estimation of the true

number of latent classes. Using this value for α, the result of the R&M criterion was better than

BIC. An underestimation of the number of classes is observed for the R&MNI criterion when a

lower value of α is used. Larger values for α lead to an overestimation of the true number of

latent classes.

Bayesian Criteria for Number of Latent Classes
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In the sensitivity analysis where a random intercept and slope model was fitted to data with

only random intercept, choosing α = 2 led to good results (see S6 Table), whereas in the analy-

sis with a random intercept model, values of α lower than 1 were necessary to prevent overesti-

mation of the number of latent classes. These results support setting the value of α slightly

lower than d/2, where d is the number of class-specific parameters of the model that is fitted to

the data.

Simulation study A and B: conclusions

Simulation study A shows how the prior for the class-specific parameters and the Dirichlet

prior for the class proportion interact to affect the selection of the correct number of latent

class models. Using a hierarchical prior (i.e. a normal-gamma prior) for the class-specific

means and variances, values for the Dirichlet hyperparameter α in the range 0.05–0.10 lead to

acceptable results with both moderate or high separation between classes. Higher values for α
may lead to an overestimation of the number of latent classes, even if α remains well below the

threshold value d/2 that was given in the proof of Rousseau and Mengersen [4]. For α< 0.05 a

good performance is observed in the high separation scenario, but the number of classes is

Table 5. The results of Scenario B3. Percentage of data sets in which the true number of clusters was

found, with the mode of the estimated number of classes in parentheses.

α R&M
NI

0
R&M

NI

0:01
R&M

NI

0:02
R&M

NI

0:05

0.00001 4%(2) 4%(2) 4%(2) 4%(2)

0.001 4%(2) 4%(2) 4%(2) 4%(2)

0.01 6%(2) 6%(2) 6%(2) 6%(2)

0.05 6%(2) 6%(2) 6%(2) 6%(2)

0.1 6%(2) 6%(2) 6%(2) 6%(2)

0.3 10%(2) 10%(2) 10%(2) 10%(2)

0.5 10%(2) 10%(2) 10%(2) 10%(2)

1.0 22%(2) 22%(2) 22%(2) 20%(2)

1.5 36%(2) 36%(2) 36%(2) 32%(2)

2.0 58%(3) 58%(3) 58%(3) 52%(3)

2.5 36%(3) 36%(3) 36%(3) 34%(4)

The success rate of BIC using a frequentist approach was 46%(3).

doi:10.1371/journal.pone.0168838.t005

Table 4. The results of Scenario B2. Percentage of data sets in which the true number of clusters was

found, with the mode of the estimated number of classes in parentheses.

α R&M
NI

0
R&M

NI

0:01
R&M

NI

0:02
R&M

NI

0:05

0.00001 4%(1) 4%(1) 4%(1) 4%(1)

0.001 4%(2) 4%(2) 4%(2) 4%(2)

0.01 18%(2) 18%(2) 18%(2) 18%(2)

0.05 48%(2) 48%(2) 48%(2) 48%(2)

0.1 74%(3) 74%(3) 74%(3) 74%(3)

0.3 90%(3) 90%(3) 90%(3) 90%(3)

0.5 96%(3) 98%(3) 98%(3) 100%(3)

0.9 8%(4) 14%(4) 20%(4) 34%(4)

The success rate of BIC using a frequentist approach was 98(3)%.

doi:10.1371/journal.pone.0168838.t004
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underestimated in scenarios with a moderate or low amount of separation. This underestima-

tion of the number of latent classes with a low Dirichlet hyperparameter was not observed in a

previous simulation study, however that study simulated only data sets with well separated

latent classes [16].

With a vague prior for the class-specific means and variances, a perfect performance of the

R&M criterion is observed in well separated data sets, irrespective of the value of α. An under-

estimation of the number of classes is observed in the scenarios with a low or moderate separa-

tion, especially with low values for α. Setting α to a higher value, while still ensuring that α<
d/2, led to a considerable improvement in the selection of the number of latent classes in these

scenarios. In additional simulations (results not shown), we confirmed that setting α to a value

above the threshold (i.e. to α> d/2) results in an overestimation of the number of latent clas-

ses, as was predicted by the proof in Rousseau and Mengersen [4].

Using the normal-gamma prior, the performance of the R&M criterion seems quite sensi-

tive to the value of α. In addition, the optimal value of α (i.e. that leads to highest probability of

choosing the correct number of classes) depends on the separation between classes and the

true number of classes, which are typically not known in practice (see S7 Table). In contrast

the performance of the R&M criterion with a vague prior seems much more stable, as long as

the value of α is close to but below the threshold of d/2. Of the 4 possible values for the thresh-

old to determine whether a class is empty (i.e. ψ in Eq 5), we found the best performance using

a value of 0.01 in the scenario with a moderate separation (see S8 Table). In the other scenarios

there was no clear difference between the possible values of ψ. Therefore setting ψ = between

0.02 and 0.05 seems reasonable, and a value in this range should allow for the detection of rela-

tively small classes containing a few percent of the population.

Compared to alternative criteria for selecting the number of latent classes, the performance

of the R&M criterion was good. The performance of BIC was generally inferior to that of the

R&M criterion, especially in data sets with many latent classes and data sets with moderate or

low separation. The performance of DIC3, DIC4 and RJMCMC depends on the value of α.

Although in some scenarios specific values of α seem to lead to a good performance for these

criteria, there is no value of α that leads a good performance across all scenarios.

Simulation study B confirms the conclusions of simulation study A. It shows that the R&M

criterion can also be implemented in a more complex and realistic setting such as a growth

mixture model for longitudinal data. The R&M criterion using vague priors for the class-spe-

cific parameters and α smaller than but close to d/2 (e.g. between 0.8 and 0.9 d/2) yielded the

best results, and outperformed BIC. However, the results were generally less good in Scenario

B3, which has a more complex structure with random intercept and slope.

Hemoglobin longitudinal data

In this section, we apply the R&M criterion to a finite mixture model for hemoglobin (Hb) val-

ues of blood donors. Our motivating application is the trajectory of Hb values of blood donors

over successive donations. Blood donors experience a temporary reduction in their Hb value

after donation. Therefore, a minimum 8 week interval between two donations is set by the

blood bank, to allow the donor’s Hb value to recover to its pre-donation level. However, this

interval seems to be too short since on average there is a declining trajectory in the Hb values

for blood donors who donate regularly [31, 32]. Therefore, a considerable proportion of pro-

spective blood donors are temporarily deferred from donation each year due to low Hb values

[33]. A Hb value of 8.4 mmol/l (135 g/l) and 7.8 mmol/l (125 g/l) for men and women, respec-

tively, is widely accepted as the lower cut-off value of eligibility for donation to protect donors

from anemia [34]. The previous studies showed that some individuals have a fast recovery,
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which results in a relatively stable trajectory, whereas others have a slow recovery that yields a

declining trajectory in their Hb values [35, 36].

Here, we use a data set of longitudinally observed Hb values from 1 January 2005 to 31

December 2012 collected by Sanquin Blood Supply in the Netherlands. This data set is based

on a self-administered questionnaire study aimed at gaining insight into characteristics and

motivation of the Dutch donor population [37]. Here we randomly selected 200 new regis-

tered male blood donors who have at least 5 visits to blood bank. These data are part of the

Donor InSight study, for more details see [37]. The Donor InSight study was approved by

the Medical Ethical Committee Arnhem-Nijmegen in the Netherlands, and all participants

gave their written informed consent. These data are available in the Supporting Information

files (see S1 File).

A mixed-effects model with random intercept and slope may be able to capture the hetero-

geneity between individuals in these data. However previous studies suggested that describing

the total donor population using a single trajectory may oversimplify the complex growth pat-

terns of this population [35, 36]. Therefore, a growth mixture modeling approach, which

accounts for different subgroups of donors, seems to be a more appropriate method for captur-

ing differences in Hb trajectories between donors [35, 36]. Here we implemented the R&M cri-

terion with vague priors for the parameters. Different cut-offs (i.e. 0, 0.01, 0.02, and 0.05) were

used to define a class to be empty.

Several factors are known to be associated with Hb and hence may be used as predictors,

i.e., sex [38], season [39], age [38]. Here we model Hb trajectory based on number of donations

in last two years (NODY2), the season donation took place (a binary value for cold = 1 and

warm seasons = 0), time since previous donation (TSPD), and age of donor (years) at first

visit. The class-specific parameters are the intercept and the effect of NODY2. The aim of the

model is to assign each donor to one of j groups in such a way that donors with similar Hb tra-

jectories are in the same group, and that the groups are most different from each other in

terms of the Hb trajectory.

The growth mixture model for the trajectory of Hb levels of blood donors who belong to

latent class j can be expressed as:

Hbitjj ¼ yj0 þ bij0 þ g1Agei þ g2Seasonit þ g3TSPDit þ ðyj1 þ bij1ÞNODY2it þ �it;

where Hbit|j is the predicted Hb level at the tth observation of the ith individual, given that

this individual is in latent class j. θj0 and θj1 are the fixed intercept and slope (coefficients of

NODY2) of latent class j. bij0 and bij1 are the random intercept and slope of latent class j that

are assumed to be bivariate normally distributed with mean zero and a class-specific variance-

covariance structure. The residuals �it are assumed to be normally distributed, and indepen-

dent of the random effects.

Prior specification

The priors for the model parameters were chosen as follows. Vague priors were specified for

both the class-specific parameters θ’s and the non-class-specific parameters γ’s, i.e. N(0, 103).

An Γ−1(10−3, 10−3) was specified for the variance of the residuals. An Inv-Wishart(R, df) distri-

bution was specified for the variance-covariance structure of the random intercept and ran-

dom slope. We set the degrees of freedom, df, to 3 and the scale parameter matrix, R, to a

diagonal matrix with small values, i.e. 10−3 [30]. Since the number of class-specific parameters

d is 5, for the class membership probability a Dirichlet distribution with different values for

alpha (i.e., 1.0, 1.5, 2.0, and 2.5) was specified for the mixing proportions.
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To analyze these data, we chose the results with α = 2, in view of the results of Scenario B3.

Therefore, donors can be assigned to four different classes (see Table 6). Based on the highest

posterior probability, individuals were assigned to the latent classes after solving the label

switching problem using the method suggested by Stephens [40]. This method was imple-

mented in the “label.switching” package in R [41]. The profiles of these different classes are

displayed in Fig 3. This figure shows how trajectories of Hb values for blood donors are differ-

ent. A group of donors have a low initial Hb value but relatively stable trajectory (Class I),

donors in Class II have a very high initial Hb value and a very sharply declining trajectory.

Donors in Class III have a high initial Hb value and a moderately declining trajectory, donors

in Class IV have moderate initial Hb value and relatively stable trajectory. The results of this

study regarding the number of latent classes and the interpretation of each class are supported

by a previous study [35].

Fig 3. Hb profiles for four different classes.

doi:10.1371/journal.pone.0168838.g003

Table 6. Number of latent classes in Hb data for different α and different cut-offs (ψ).

α R&M
NI

0
R&M

NI

0:01
R&M

NI

0:02
R&M

NI

0:05

0.5 1 1 1 1

1.0 1 1 1 1

1.5 2 2 2 2

2.0 4 4 4 3

2.5 4 4 4 3

BIC using a frequentist approach found 2 classes.

doi:10.1371/journal.pone.0168838.t006
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Fig 4 shows the posterior distribution of the number of non-empty classes (K) for different

cut-offs (ψ) using 50,000 MCMC iterations when α = 2. This figure shows how the posterior

mode of the number of nonempty classes may be affected by changing the ψ.

Discussion

The results of the simulation studies showed that the R&M criterion has a high probability of

estimating the correct number of latent classes, provided that the priors on the proportions

and the class-specific parameters are chosen carefully. Despite the simplicity of this criterion,

it performs at least as good as alternative selection criteria for the number of latent classes. The

application of the R&M criterion to longitudinal data of blood donors further illustrated the

practical usefulness of this method.

An important advantage of the R&M criterion is that this approach is straightforward to

implement, using MCMC sampling for a mixture model with a large number of latent classes.

The number of nonempty latent classes (i.e. classes with a proportion larger than the prede-

fined cutoff value) is then an automatic byproduct of the MCMC sampler. Therefore, this cri-

terion is easily implemented in standard Bayesian software such as WinBugs and JAGS, even

for complex statistical models such as latent class mixed-effects models and multivariate mix-

ture models. A further advantage of the R&M criterion is that it is not affected by label switch-

ing. Despite the fact that the R&M criterion is relatively easy to implement, this criterion

Fig 4. Posterior distribution of non-empty classes (K) for different cut-offs (ψ).

doi:10.1371/journal.pone.0168838.g004
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seems to perform better than alternative criteria at estimating the true number of classes.

Although only a limited set of statistical models was considered in the simulations, these

results suggest that the R&M criterion works well and may be considered for practical use in

Bayesian finite mixture models.

A strength of this study is that it is one of the first studies to compare different criteria for

selecting the number of latent classes in a Bayesian setting. Although the R&M criterion has

been implemented in simulated data previously [16], our study adds important insight into

how this criterion should be implemented, based on a more elaborate simulation study with

several scenarios. In a previous simulation study, it was shown that using a sufficiently low

value of α (e.g. α< 0.001) prevents overfitting of the number of latent classes, and that using

higher values of α, with α< d/2 can lead to overfitting [16]. In that study, no underestimation

of the number of latent classes was observed. In our simulation study we observed that with a

slightly lower amount of separation between classes than in the previous study, underestima-

tion of the number of classes often occurs, especially with low values of α. This shows that the

value of α should be chosen to provide a trade-off between the probability of overfitting and

the probability of underfitting the number of latent classes. Unfortunately, no theoretical result

is available on how the value of alpha affects the posterior distribution of the class sizes of clas-

ses that are not overfitted. Furthermore we observed that if vague priors were used for the

class-specific parameters, overfitting of the number of latent classes does not seem to occur,

provided that α< d/2.

Rousseau and Mengersen [4] proved that the class proportions converge to 0, not that they

should be 0 with any data set of finite size. We therefore used different cut-offs for the propor-

tions in a class to define a class to be empty. Using a cut-off of 0 may be sensitive to outlying

values in the data and did not perform well in the simulation studies (see S4 Table). In most

applications, a cut-off of between 0.02 and 0.05 should be sufficient to make the criterion

robust to outlying values, while being small enough to avoid the exclusion of real segments in

the population. Although choosing the value of the cut-off in the range 0.02–0.05 is supported

by results of the simulation studies, there are situations in which lower or higher values of the

cut-off may be warranted. First, the interest of finding classes with small proportion may

depend on the application and the research questions, and the value of the cut-off may be

adapted accordingly. Second, in some applications there can be relevant prior information

regarding the class sizes, e.g. if one suspects that there may be classes containing 1% of the pop-

ulation, the cut-off should be set lower than 0.01. Finally, due to the asymptotic nature of the

result of R&M, larger sample sizes would generally warrant lower values for the cut-off. How-

ever, it should be noted that the rate of convergence proven by R&M is relatively slow, and val-

ues of the cut-off between 0.02 and 0.05 seem to be realistic for a wide range of sample sizes. In

case of sample sizes much larger than used in our simulation study, the possibility of lower val-

ues of the cut-off may be considered. Therefore, in practice the value of the cut-off is to some

extent a subjective decision to be made by the researcher, guided by prior knowledge and the

level of interest in small subgroups.

Based on the results of the simulation studies, as discussed above, combined with the results

of the blood donor data set, we give the following recommendations:

• We recommend to consider the R&M criterion to choose the number of latent classes in

Bayesian finite mixture models. This criterion is easy to implement in practice, and its per-

formance compares favorably with alternative criteria.

• To implement the criterion, one should first estimate a mixture model with a large number

of classes (e.g. 10 classes), so that some classes will be overfitted.
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• The number of classes in the final finite mixture model is then chosen as the posterior mode

of the number of classes with a proportion larger than the predefined cut-off, which we rec-

ommend to set between 0.02–0.05. Lower values of the cut-off should be used if the

researcher is specifically interested in the classes with small proportions in the population.

• It seems best to use vague priors for the class-specific parameters, and the use of hierarchical

priors such as the normal-gamma prior is not recommended.

• The class proportions should be given a Dirichlet prior with α lower than d/2, i.e. the num-

ber of class-specific parameters divided by 2. A value of α slightly lower than d/2 (e.g.

between 0.8 and 0.9 d/2) seems to yield the best results.

A limitation of this study is that only finite mixtures of Gaussian distributions and growth

mixtures models were considered in the simulation study. Although the results of the simula-

tion study were similar in these two types of models, it is not certain that the performance of

the R&M will be similar in other types of models. Due to the large computation time associated

with simulation studies in a Bayesian setting, it was not feasible to consider additional statisti-

cal models. Another limitation is that only predefined settings were evaluated for the priors of

both class-specific parameters and the class proportions. It is possible that intermediate values

of α or ψ, or also other priors not considered here would lead to a better performance. We

further did not consider alternatives to the normal-gamma prior and the vague prior for the

class-specific parameters.

Conclusion

If appropriate priors are used for both the class-specific parameters and the class proportions,

it seems possible to effectively estimate the number of latent classes in a Bayesian finite mixture

model using the R&M criterion. This criterion compares favorably to alternative model selec-

tion criteria for the number of latent classes in terms of both performance and ease of

implementation.
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