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Abstract

Abnormalities in the signaling of the N-methyl-D-aspartate subtype of the glutamate receptor 

(NMDAR) within cortical and limbic brain regions are thought to underlie many of the complex 

cognitive and affective symptoms observed in individuals with schizophrenia. The M1 muscarinic 

acetylcholine receptor (mAChR) subtype is a closely coupled signaling partner of the NMDAR. 

Accumulating evidence suggests that development of selective positive allosteric modulators 

(PAMs) of the M1 receptor represent an important treatment strategy for the potential 

normalization of disruptions in NMDAR signaling in patients with schizophrenia. In the present 

studies, we evaluated the effects of the novel and highly potent M1 PAM, VU6004256, in 

ameliorating selective prefrontal cortical (PFC)-mediated physiologic and cognitive abnormalities 
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in a genetic mouse model of global reduction in the NR1 subunit of the NMDAR (NR1 

knockdown [KD]). Using slice-based extracellular field potential recordings, deficits in muscarinic 

agonist-induced long-term depression (LTD) in layer V of the PFC in the NR1 KD mice were 

normalized with bath application of VU6004256. Systemic administration of VU6004256 also 

reduced excessive pyramidal neuron firing in layer V PFC neurons in awake, freely moving NR1 

KD mice. Moreover, selective potentiation of M1 by VU6004256 reversed the performance 

impairments of NR1 KD mice observed in two preclinical models of PFC-mediated learning, 

specifically the novel object recognition and cue-mediated fear conditioning tasks. VU6004256 

also produced a robust, dose-dependent reduction in the hyperlocomotor activity of NR1 KD mice. 

Taken together, the current findings provide further support for M1 PAMs as a novel therapeutic 

approach for the PFC-mediated impairments in schizophrenia.
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INTRODUCTION

Multiple lines of evidence suggest that disruptions in the normal signaling of the N-methyl-

D-aspartate subtype of the glutamate receptor (NMDAR) may underlie many of the 

symptoms associated with schizophrenia, particularly the cognitive impairments.1–3 

Previous studies have demonstrated that acute or chronic administration of noncompetitive 

NMDAR antagonists, including phencyclidine (PCP) and ketamine, induce psychotic-like 

symptoms and cognitive impairments in animals and healthy individuals and exacerbate 

symptoms in patients with schizophrenia (see reviews by refs 1,4). Recent copy number 

variation analysis studies have identified numerous de novo mutations in genes encoding the 

NMDAR and other proteins within the glutamatergic postsynaptic density associated with 

increased risk of schizophrenia.5–7 Post-mortem studies have also revealed reductions in the 

mRNA and protein expression of the NR1 subunit of the NMDAR in the prefrontal cortex 

(PFC) of individuals with schizophrenia.8 Moreover, animal studies with cell-specific 

deletion or global knockdown (KD) of the GluN1 subunit of the NMDAR have reported 

abnormalities in various physiologic measures, including changes in gamma band 

oscillations, and impairments in social and cognitive performance that are considered 

endophenotypes of schizophrenia symptoms.9–14 Taken together, targeting abnormalities in 
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NMDAR function represents a critical strategy for the treatment of the complex symptoms 

associated with schizophrenia.

Development of ligands that selectively target the M1 muscarinic acetylcholine receptor 

(mAChR) subtype represents an important approach for modulating NMDAR function and 

could lead to potential therapeutic interventions for schizophrenia.15 The M1 mAChR 

subtype is one of the five different mAChR subtypes, termed M1–M5,16,17 which are G-

protein-coupled receptors (GPCRs) activated by the neurotransmitter acetylcholine (ACh). 

M1 is highly expressed across many forebrain regions implicated in the pathophysiology of 

schizophrenia, including the striatal complex, all layers of the cortex, and postsynaptically 

on the dendrites and cell bodies of hippocampal granule cells and pyramidal neurons.18–22 

Post-mortem studies have reported that M1 mAChR expression is reduced in the PFC, 

hippocampus, and other forebrain regions of a subset of patients with schizophrenia.23–25 

More importantly, previous studies have shown that M1 is both physically and functionally 

coupled to NMDARs and activation of M1 potentiates NMDAR currents in cortical and 

hippocampal pyramidal cells, increases excitatory postsynaptic currents in PFC neurons, and 

enhances performance in several preclinical learning and memory tasks.15,26–31 Conversely, 

M1 knockout (KO) mice have impaired performance in medial PFC-dependent cognitive 

tasks and reduced hippocampal long-term potentiation (LTP).26,32–34 While clinical studies 

with selective M1 ligands have been limited, studies with the M1/M4-preferring mAChR 

agonist xanomeline produced robust efficacy in reversing psychotic symptoms and 

behavioral disturbances, with some modest effects on cognitive impairments, in both 

schizophrenia and Alzheimer’s disease patient populations.35–37 Unfortunately, xanomeline, 

similar to other orthosteric mAChR agonists, failed to progress in clinical development due 

to dose-limiting adverse effects from nonselective activation of other mAChR subtypes.38

Over the past decade, we and others have developed subtype-selective M1 mAChR ligands; 

these compounds do not target the orthosteric binding site of acetylcholine (ACh) that is 

highly conserved across all five mAChR subtypes, but rather, they act at more 

topographically distinct allosteric sites.15,30,31 In particular, our group and others have now 

reported the discovery and extensive optimization of multiple novel chemical series of 

highly selective M1 positive allosteric modulators (PAMs) which enhance the efficacy and/or 

affinity of the endogenous neurotransmitter ACh at the M1 mAChR.28,39–46 Earlier 

generation M1 PAMs served as important tool compounds for the in vitro characterization of 

the molecular and brain slice-based physiologic activity of selective M1 potentiation but 

provided limited utility for animal studies due to poor brain penetration.28,47–50 Using 

several second-generation M1 PAMs with more favorable pharmacokinetic (PK) properties 

for in vivo dosing, selective potentiation of M1 has been reported to reverse 

pharmacologically induced deficits and/or improve normal performance on many measures 

of learning, memory, and top-down prefrontal processing in rodents and nonhuman 

primates.26–28,44,46,51–56 For example, the M1 PAM BQCA ([1-(4-methoxybenzyl)-4-

oxo-1,4-dihy-droquinoline-3-carboxylic acid]) robustly enhanced the synaptic excitation of 

pyramidal cells in the PFC and improved PFC-mediated cognitive functions, including 

performance in attentional set shift tasks in rodents.28 More recently, we reported the 

discovery of the selective M1 PAM VU0453595, which enabled further characterization of 

the role of M1 on PFC-mediated synaptic plasticity, cognitive function, and social 
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interaction. Specifically, VU0453595 reversed chronic PCP-induced disruptions in 

muscarinic long-term depression (mLTD) in the PFC and corresponding deficits in novel 

object and social recognition tasks.27 However, to date the progress in understanding the role 

of M1 modulation in PFC-mediated physiology and behavior relevant to schizophrenia has 

been achieved using only acute and chronic NMDAR antagonist challenge approaches in 

adult animals.

Recent development of several genetic models of reduced NMDAR activity have provided 

important in vivo systems for studying changes in relevant cortical and limbic circuitry 

comparable to those observed in schizophrenia (see refs 1,9–11,13,57,58). While the null 

mutation of Grin1, the gene encoding the NR1 subunit of NMDARs, is lethal, a 

hypomorphic or partial loss-of-function mutation of Grin1 results in an NR1 subunit 

knockdown (NR1 KD) mouse that is still viable. These mice display only 10–15% of the 

wild-type levels of NMDARs and exhibits severe behavioral and physiologic impairments, 

many of which are consistent with those induced by acute and/or chronic NMDAR 

antagonist challenge.58 We and others have reported that NR1 KD mice display increased 

locomotor and stereotypic behaviors that can be reduced with antipsychotic drugs and a 

novel metabotropic glutamate receptor subtype 5 (mGlu5) PAM, as well as severe 

impairments in social interactions and cognition.14,58 In the present studies, we specifically 

evaluated PFC-mediated physiologic and cognitive functions in NR1 KD mice. First, using 

slice-based extracellular field potential recordings, we found deficient muscarinic agonist-

induced LTD in layer V of the PFC in NR1 KD mice. Using in vivo electrophysiological 

recordings in awake, freely moving NR1 KD mice, we report excessive pyramidal neuron 

firing in layer V PFC neurons. NR1 KD mice were also impaired in their responses in two 

preclinical models of PFC-mediated learning and memory, the novel object recognition and 

cue-mediated fear conditioning tasks. Importantly, we report the ability of the novel and 

highly potent M1 PAM VU6004256 to reverse these selective PFC-mediated abnormalities 

in synaptic plasticity, in vivo physiology, and behavior in NR1 KD mice.

METHODS

Chemicals

VU6004256 (4,6-difluoro-N-(1S,2S)-2-hydroxycyclo-hexyl-1-((6-(1-methyl-1H-pyrazol-4-

yl)pyridine-3-yl)methyl)-1H-indole-3-carboxamide) and VU045359527,56 were synthesized 

in-house and dissolved in DMSO for slice physiology studies or 10% Tween 80 in sterile 

water for in vivo studies. Carbachol (Sigma, St. Louis, MO) stocks were prepared in water, 

and all other compound stocks were prepared in DMSO. For field recording experiments, all 

drugs were diluted in artificial cerebrospinal fluid (ACSF) (0.1% DMSO final conc.) and 

bath applied. All chemicals were obtained from Sigma (St. Louis, MO).

Animal Care and Housing

All in vivo studies were carried out using age-matched adult male NR1 KD mice with a 

C57B1/6J and 129 × 1/SvJ crossed background and wild-type littermate controls (described 

previously by refs 12–14). Animals were group-housed under a 12/12 h light-dark cycle 

(lights on at 6 AM) with food and water available ad libitum unless stated elsewhere. All 
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animal experiments were approved by the Animal Care and Use Committees of Vanderbilt 

University and University of Toronto, and experimental procedures conformed to guidelines 

established by the National Research Council Guide for the Care and Use of Laboratory 
Animals. All efforts were made to minimize animal suffering and the number of animals 

used.

Extracellular Field Potential Recordings

Eight to ten week old male wild-type or NR1 KD mice were anesthetized with isofluorane, 

and the brains were removed and submerged in ice-cold cutting solution (in mM: 230 

sucrose, 2.5 KCl, 8 MgSO4, 0.5 CaCl2, 1.25 NaH2PO4, 10 D-glucose, 26 NaHCO3). 

Coronal slices containing the prelimbic prefrontal cortex were cut at 400 μm using a 

compresstome (Precisionary Instruments, Greenville, NC). Slices were transferred to a 

holding chamber containing NMDG-HEPES recovery solution (in mM: 93 NMDG, 2.5 KCl, 

1.2 NaH2PO4, 30 NaHCO3, 20 HEPES, 25 D-glucose, 5 sodium ascorbate, 2 thiourea, 3 

sodium pyruvate, 10 MgSO4, 0.5 CaCl2, 12 N-acetyl-L-cysteine, pH 7.3, < 310 mOsm) for 

15 min at 32 °C. Slices were then transferred to a room-temperature holding chamber for at 

least 1 h containing ACSF (in mM: 126 NaCl, 1.25 NaH2PO4, 2.5 KCl, 10 D-glucose, 26 

NaHCO3, 2 CaCl2, 1 MgSO4) supplemented with 600 μM sodium ascorbate for slice 

viability. All buffers were continuously bubbled with 95% O2/5% CO2. Subsequently, slices 

were transferred to a 32 °C submersion recording chamber where they were perfused with 

ACSF at a rate of 2 mL/min. Borosilicate glass electrodes were pulled using a Flaming/

Brown micropipette puller (Sutter Instruments) and had a resistance of 2–4 MΩ when filled 

with ACSF. Field excitatory post synaptic potentials (fEPSP) were recorded from layer V of 

the prelimbic area of the mouse prefrontal cortex in response to electrical stimulation of 

superficial layer II/III. Input-output curves were generated to determine the stimulation 

intensity that produced 50–60% of the maximum response before each experiment, which 

was used as the baseline stimulation. A minimum of 10 min stable baseline was recorded 

before bath application of any drugs. 50 μM carbachol, a saturating concentration in wild-

type animals, was applied for 10 min to induce a form of muscarinic LTD in the prefrontal 

cortex. VU6004256 was applied alone for 10 min immediately followed by coapplication 

with carbachol. Sampled data was analyzed offline using Clampfit 10.2 (Molecular Devices, 

Sunnyvale, CA). The slopes from three sequential sweeps were averaged. All slopes 

calculated were normalized to the average slope calculated during the predrug period 

(percent of baseline). Data were digitized using a Multiclamp 700B, Digidata 1322A, and 

pClamp 10.3 software (Molecular Devices).

In Vivo Electrophysiology

A modified version of Walker et al.59 was used for the in vivo electrophysiology studies. 

Under isoflurane anesthesia, mice were secured in a stereotaxic apparatus and a craniotomy 

was performed at the following coordinates: AP (+1.7 mm) ML (+0.5 mm).60 The 2.5 mm 

long electrode bundle was composed of eight 25 μm Formvar-insulated stainless-steel wires 

for recording single units and two 50 μm uninsulated stainless-steel ground wires, one of 

which served as a depth reference electrode. Mice were allowed to recover for 5 to 7 days 

before being introduced to the recording arena. A wire harness attached to a headstage 

containing unity gain amplifiers was secured to the electrode array, and mice were allowed 
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to explore the chamber for 15 min prior to the initiation of baseline recording. Animals were 

placed in a chamber equipped with a Faraday cage and attached to an electric commutator 

which allowed for unrestricted movement during the in vivo recording. All recordings took 

place between 12 and 4 p.m.

Neuronal discharges were acquired by the Multichannel Acquisition Processor system 

following preamplification (Plexon Inc., Dallas, TX). To detect spiking activity, signals were 

bandpass filtered (154 Hz to 8.8 kHz) and digitized at a rate of 40 kHz. After establishing a 

voltage threshold ≥2.5 times background noise, waveforms were continuously collected, and 

principal component analysis was used to discriminate putative pyramidal neurons from fast-

spiking interneurons. All recording sessions lasted for 75 min. Baseline firing rate was 

assessed during the final 5 min of the baseline collection period (30 min), and the effects of 

vehicle (10% Tween 80, i.p.) or VU6004256 (10 mg/kg, i.p.) were assessed during the final 

5 min of the drug treatment period (45 min). Data are expressed as mean frequency during 

each period or as a percent of baseline, and significance is determined using a paired t test.

Novel Object Recognition Task

Mice were placed in a dark plexiglass arena (32 × 32 × 40 cm) and allowed to habituate for 

10 min for three consecutive days. On the following day, mice were injected with either 

vehicle (10% Tween 80, i.p.) or VU6004256 (3 mg/kg or 10 mg/kg, i.p.) and returned to 

their home cages for 5 min. Mice were then placed back in the arena with 2 identical objects 

for 10 min. Following the initial exposure, mice were placed in their home cages for 1 h. 

Upon completion of the 1 h period, mice were returned to the arena and one of the familiar 

objects was replaced with a novel object. Mice were recorded for 10 min, and data were 

scored by 2 observers blinded to experimental conditions. During both the familiarization 

(day 1) and the test phase (day 2), location of novel versus familiar object was 

counterbalanced. Exploration of objects was considered sniffing or investigatory behavior; 

time animals spent on top of the objects was excluded.61 Recognition index scores were 

calculated using the following equation: (seconds spent exploring novel object – seconds 

spent exploring familiar object)/total time exploring either object.

Cue-Dependent Fear Conditioning

Studies were conducted using conditioning chambers in sound attenuating cubicles equipped 

with a stainless steel grid floor for shock deliver and a video camera for recording freezing 

behavior, as previously described (MedAssociates, Allentown NJ, see ref 62). Wild-type and 

NR1 KD mice, 8–10 weeks old, were handled for 3 days prior to conditioning and injected 

with saline for 1 day prior to commencement of the study. On the conditioning day, mice 

were habituated for 1 h in an anteroom adjacent to the test room. Mice were pretreated with 

vehicle (10% Tween 80, i.p.) or a dose of VU6004256 (10 mg/kg i.p.) 5 min prior to 

conditioning. Mice were then placed into the chamber, scented with 1.0 mL of 10% vanilla 

extract and illuminated by a white house light, and exposed to the following events during an 

8 min session: 90 s habituation followed by four 30 s tone presentations (85 dB, 2500 Hz) 

coterminating with a shock (0.7 mA, 1 s) with an intertrial interval of 60 s, followed by a 90-

s interval without stimuli. Approximately 24 h after conditioning, mice were returned to the 

anteroom where they were habituated under infrared light for 60 min. The test room and 
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chamber were also illuminated by an infrared light only. The context of the chamber was 

altered with the addition of a white plexiglass floor on top of the shock grid, a black teepee 

to alter the shape/size of the chamber, and a 0.5 mL 10% Eucalyptus oil odor cue. Mice were 

exposed to the identical testing paradigm as on the conditioning day but without the shock 

stimuli. Freezing behavior was measured in the absence of any shock stimuli for 8 min. Data 

are presented as means ± SEM and analyzed by one-way ANOVA followed by Bonferroni’s 

test.

Locomotor Activity Studies in Mice

Spontaneous locomotor activity was assessed in 8–10 week old wild-type and NR1 KD 

mice. Animals were placed in an open field system (OFA-510, MedAssociates, St. Albans, 

VT) with three 16 × 16 arrays of infrared photobeams, as described previously.63 Mice were 

allowed to habituate in their home cage for 1 h prior to the start of the experiment. Following 

the habituation period, mice were injected with either vehicle (10% Tween 80, i.p.) or a dose 

of VU6004256 (1 mg/kg or 10 mg/kg, i.p.) and placed directly into the open field chambers. 

Spontaneous locomotor activity was recorded for 90 min. The time course of drug-induced 

changes in spontaneous locomotor activity is expressed as distance traveled (cm) per 5 min 

bin for the 90 min session. Total activity data represent the sum of all 5 min bins for the 

recording session. Data are represented as mean ± SEM and were analyzed using two-way 

ANOVA with Bonferroni’s post hoc test.

RESULTS AND DISCUSSION

VU6004256 Is a Highly Potent M1 PAM with Optimized Pharmacokinetic Properties Relative 
to the Previously Reported M1 PAM VU0453595

As shown in Figure 1, the structure of the novel M1 PAM 4,6-difluoro-N-(1S,2S)-2-

hydroxycyclohexyl-1-((6-(1-methyl-1H-pyrazol-4-yl)-pyridine-3-yl)methyl)-1H-indole-3-

carboxamide 2 (VU6004256) is compared side-by-side with previously published M1 PAM 

VU0453595, 1.27,64,65 VU6004256 is a potent potentiator of mouse M1 (EC50 = 155 nM, 

88% ACh Max) and is ~20-fold more potent than VU0453595. In addition, VU6004256 

displays a mouse brain:plasma partitioning (Kp) coefficient of 4.84 and an unbound 

brain:plasma coefficient (Kp,uu) of 2.6. In addition to selectivity for M1 (M2–5 EC50s > 30 

μM), VU6004256 also displayed no off-target pharmacology at over 68 GPCRs, ion 

channels and transporters in an ancillary pharmacology radioligand binding panel (% 

inhibition @ 10 μM < 50%). Therefore, VU6004256 represents a more potent and centrally 

penetrant M1 PAM compared to VU0453595 to explore efficacy in NR1 KD mice as a 

genetic model of NMDAR hypofunction.

Deficits in Carbachol-Induced LTD Can Be Rescued by VU6004256

Bath application of carbachol (50 μM) induced a robust muscarinic LTD response in layer V 

mPFC of wild-type mouse tissue (68.5% ± 7.0 of baseline; Figure 2A). This effect was 

dramatically blunted in NR1 KD mouse tissue (88.3% ± 5.1 of baseline; Figure 2B), but 

bath application of VU6004256 (1 μM) during the carbachol application resulted in 

normalization of the muscarinic LTD response (Figure 2C) to levels comparable to wild-type 

mouse tissue (65.3% ± 1.6, H = 10.41, p < 0.01; Figure 2D).
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VU6004256 Attenuates Excessive Pyramidal Cell Firing in the Prefrontal Cortex of NR1 KD 
Mice

In vivo electrophysiology recordings from the prelimbic cortex of awake, behaving mice 

revealed a significant increase in firing rate of pyramidal neurons in NR1 KD mice (1.44 Hz 

± 0.079) compared to wild-type littermate controls (1.090 Hz ± 0.0603)(t141 = 3.544, p < 

0.0005; see Figure 3B). Mice received either vehicle or 10 mg/kg VU6004256 following 30 

min of baseline recording (Figure 3A). Pyramidal cell firing rate was reduced in the NR1 

KD animals following VU6004256 administration (85.3% ± 4.1, t69 = 2.09, df = 69, p < 

0.05; Figure 3F), with no observed effect of vehicle dosing (105.8% ± 9.4; Figure 3F). 

Vehicle or VU6004256 administration did not affect firing rate in wild-type animals (101.8% 

± 5.1 and 88.7% ± 7.7, respectively; Figure 3C). Comparison of raw firing rates using a 

paired t-test revealed a strong postdose decrease in NR1 KD mice following VU6004256 

administration (t37= 3.76, p < 0.001; Figure 3H) but no effect in wild-type animals (Figure 

3E).

VU6004256 Administration Improves Performance in Novel Object Recognition

NR1 KD mice showed a marked, but statistically insignificant, reduction in recognition 

index compared to their wild-type littermate controls (−0.0085 ± 0.0156 vs 0.1150 ± 0.0563, 

respectively). Pretreatment with VU6004256 at either 3 mg/kg (0.1475 ± 0.0381) or 10 

mg/kg (0.1662 ± 0.0401) significantly improved recognition index in NR1 KD mice 

(Fdose(1,44) = 14.64, p < 0.05; Fgenotype(2,44) = 11.43, p < 0.05; Finteraction(2,44) = 0.056, n.s.), 

while the top dose of 10 mg/kg (0.3125 ± 0.0552) also improved performance in wild-type 

mice (Figure 4).

NR1 KD Mice Display Severe Deficits in Conditioned Freezing

Initial studies sought to characterize the ability of wild-type and NR1 KD mice to acquire 

contextual- (hippocampal-dependent) and cue-mediated (PFC/amygdala-dependent) fear 

conditioning responses (see Supporting Information for methods and graphical 

representation of these data (Supplementary Figure 1A,B)). Wild-type mice were able to 

acquire both contextual- and cue-mediated associative learning tasks (74.9 ± 6.0 and 17.4% 

± 2.9, respectively). NR1 KD mice showed a lack of freezing in both paradigms (4.6% ± 1.8 

and 1.5% ± 0.3, respectively; Supplementary Figure 1A,B) that was significantly lower than 

that of wild-type controls (context: t24 = 9.70, p < 0.0001; cue: t23 = 4.86). To specifically 

determine if potentiation of M1 mAChRs would normalize PFC-mediated cognitive 

impairments, the effects of VU6004256 on cue-mediated fear conditioning were examined 

in wild-type and NR1 KD animals. NR1 KD mice displayed severe deficits in cue-mediated 

fear conditioning compared to their wild-type littermate controls (1.2% ± 0.7 and 41.9% 

± 7.0, respectively; see Figure 5). Pretreatment with 10 mg/kg VU6004256 5 min before 

being placed in the chamber on the training day significantly improved performance on the 

test day in NR1 KD mice (12.3% ± 6.2, t14 = 1.762, p < 0.05).

VU6004256 Reverses Excessive Locomotor Activity in NR1 KD Mice

NR1 KD mice exhibit excessive spontaneous locomotor activity compared to their wild-type 

littermate controls (Fgenotype(5, 39) = 31.35, p < 0.0001; see Figure 6B). In NR1 KD mice, 
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pretreatment with 10 mg/kg VU6004256 produced a significant reduction in spontaneous 

locomotor activity that persisted for the duration of measurement (Fdose(5,612) = 331.9, p < 

0.001; Ftime(17,612) = 6.101, p < 0.001, Finteraction(85,612) = 0.46, n.s.; Figure 6A). No 

reduction in locomotor activity was observed at 1 mg/kg in NR1 KD mice. Additionally, 

pretreatment with VU6004256 at all doses did not alter spontaneous locomotor activity in 

wild-type mice. Spontaneous locomotor activity was also measured in response to the M1 

PAM VU0453595 (Supplementary Figure 2). VU0453595 was unable to significantly alter 

spontaneous locomotor activity in NR1 KD or wild-type mice (Fdose(9,2400) = 246.7, p < 

0.001; Ftime(23,2400) = 16.19, p < 0.001, Finteraction(207,2400) = 0.97, n.s.); though there was a 

strong downward trend at the 1 mg/kg dose (Supplementary Figure 2B).

In summary, potentiation of the M1 mAChR subtype represents an important indirect 

mechanism for the potential normalization of aberrant NMDAR signaling thought to 

underscore many of the symptoms observed in schizophrenia. In the present studies, we 

provide the first evidence of selective physiological dysfunction within the PFC and PFC-

related cognitive deficits in a genetic model of global, constitutive knockdown of the NR1 

subunit of the NMDAR. More importantly, selective potentiation of M1 using the optimized 

and highly potent M1 PAM VU6004256 resulted in a restoration of these deficits in PFC-

mediated synaptic plasticity, pyramidal cell firing, and corresponding measures of learning 

and memory.

Discovery of highly selective and potent M1 PAMs allows for the investigation of 

antipsychotic-like effects that has been previously reported in preclinical and clinical studies 

with the M1/M4 preferring ligand, xanomeline.35–37,66 While dose-dependent reversal of 

psychostimulant-induced increases in locomotor activity has been observed previously with 

the M1 selective ligands, as demonstrated by the M1 allosteric agonist TBPB and the M1 

PAM BQCA, much of the antipsychotic-like efficacy of xanomeline was attributed to M4 

activation.30,44 In the current studies, we observed a significant reduction in elevated 

spontaneous locomotor activity of NR1 KD mice with a selective M1 PAM in a genetic 

model of NMDAR hypofunction that is consistent with acute psychostimulant challenge 

models. These data further the hypothesis that M1 modulation in cortical and limbic regions 

may contribute to antipsychotic-like effects observed with xanomeline. Interestingly, these 

effects are only observed with the more potent M1 PAM, VU6004256 (EC50 = 155 nM), and 

not with VU0453595 (EC50 = 3.22 μM) (Supplementary Figure 2), suggesting VU6004256 

may have efficacy in other behavioral models that less potent M1 ligands do not. These 

findings provide valuable insight into the importance of developing more potent M1ligands 

to assess additional aspects of M1-related antipsychotic-like efficacy.

Traditionally, acute or repeated dosing with a use-dependent open channel blocker of 

NMDARs is employed to produce NMDAR hypofunction in rodents that mimics 

neurochemical and behavioral changes observed in patients with schizophrenia.67,68 There is 

a potential liability when evaluating M1 PAMs in these models because M1 is a closely 

associated signaling partner of NMDARs and selective activation of M1 in cortical and 

hippocampal regions results in the downstream potentiation of NMDAR currents, which 

could exacerbate the effects of the NMDAR antagonist.20 Importantly, these data provide the 

first evidence supporting antipsychotic-like effects with an M1 PAM in a genetic model of 
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NMDAR hypofunction that does not rely on pharmacologic manipulation to induce 

behavioral disruptions. Because of the critical impact of NMDAR signaling in the 

modulation of normal cognition and neural circuitry hypothesized to be dysregulated in 

schizophrenia,20,69 ligands like the M1 PAM VU6004256 that selectively potentiate the 

response of ACh at M1 mAChRs may ameliorate many of the psychotic and cognitive 

impairments of schizophrenia through enhancement of NMDAR neurotransmission. 

Moreover, selective potentiation of M1 by VU6004256 provides indirect modulation of 

NMDAR function, which may produce therapeutic effects without the potential high risk of 

excitotoxicity connected with direct agonist activity at the NMDAR.

Previous reports indicate a crucial role for mAChRs in regulating synaptic plasticity in the 

PFC and suggest that deficits in cholinergic signaling may contribute to the 

electrophysiological and behavioral phenotypes associated with dysfunctional PFC 

plasticity. For example, nonselective activation of mAChRs is sufficient to convert transient 

depression into long-lasting LTD in the PFC following a subthreshold LTD protocol in 

rats.70 Importantly, acute coapplication of an NMDAR antagonist blocked this response, 

suggesting an integral role of glutamatergic activation in muscarinic-mediated cortical LTD. 

The effects of mAChRs on this form of plasticity in the PFC were further characterized in 

studies utilizing M1 knockout mice and the M1 PAM VU0453595, revealing that muscarinic 

LTD is dependent on M1 activation and can be potentiated by an M1 PAM in wild-type 

animals. Interestingly, synaptic depression was not observed following repeated NMDAR 

administration during early adolescent development, strengthening the importance of intact 

NMDA-M1 receptor signaling in cortical synaptic plasticity.27

Here we report the first electrophysiological analysis of spontaneous pyramidal cell activity 

in the layer V PFC of awake, free-moving NR1 KD mice in comparison with their wild-type 

littermate controls. Our findings revealed substantial information-processing deficits71 at the 

single-neuron level as denoted by a 25% increase in the firing rates in the NR1 KD mice. 

This disinhibition of PFC pyramidal cell firing in the NR1 KD mice is consistent with 

previous studies performed in rodents after acute administration of MK-801 or PCP.71 At 

present, the underlying mechanism(s) for this disinhibition of PFC activity in the NR1 KD 

mice remains unknown. However, based on NMDAR antagonist studies, one possible 

explanation may involve increased PFC activation resulting from dis-inhibition of 

hippocampal-PFC inputs,72–75 resulting in reduced LTD and enhanced LTP 

mechanisms.74,75 This interpretation is further supported by the observation that the novel 

M1 PAM VU6004256 decreased the firing rates in the NR1 KD mice. Alternatively, 

activation of M1 is known to increase excitability in GABAergic interneurons of the PFC76 

through an NMDAR-independent mechanism. Thus, another possible explanation for the 

effects of VU6004256 on pyramidal cell firing rates in NR1 KD mice may by through 

increased activity of GABAergic interneurons in the PFC, resulting in sustained reductions 

in PFC excitation. In future studies, it will also be important to further understand the 

relative contributions of M1 modulation to both NMDAR-dependent and -independent 

mechanisms of PFC circuitry disrupted in the mice with global NR1 KD.

Genetic models of NMDAR hypofunction exhibit profound cognitive deficits as measured in 

radial arm maze performance, social and object recognition, and spatial and nonspatial 
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memory tasks.9,77,78 Consistent with these findings, we observed robust deficits in context- 

and cue-mediated fear conditioning in NR1 KD mice, similar to the deficits encountered in 

NR2C knockout mice.79 M1 PAM administration improved deficits of NR1 KD mice in 

novel object recognition and cue-mediated fear conditioning, both of which are thought to 

heavily rely on intact PFC signaling. These data, taken together with recent reports that M1 

PAMs are efficacious in similar behavioral tasks performed in a pharmacologic model of 

NMDAR hypofunction,27 suggest that M1 potentiation may have broad utility across several 

animal models of schizophrenia.

Collectively, the current studies provide important novel insights into the role of M1 

modulation of PFC-mediated physiologic and cognitive functions under conditions of 

chronic NMDAR hypofunction. These findings also confirm and extend accumulating 

evidence for the broader therapeutic utility for M1 PAMs in the treatment of affective and, 

more importantly, cognitive impairments observed in schizophrenia.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Structure, potency and pharmacokinetic properties of the novel M1 PAM 4,6-difluoro-N-(1S,

2S)-2-hydroxycyclohexyl-1-((6-(1-methyl-1H-pyrazol-4-yl)pyridine-3-yl)methyl)-1H-

indole-3-carboxa-mide (VU6004256) (right) in comparison with the previously published 

M1 PAM VU0453595 (left).
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Figure 2. 
Muscarinic LTD is deficient in NR1 KD animals but can be rescued by the M1 PAM 

VU6004256. (A) Carbachol (CCh) application (50 μM) induced LTD in layer V PFC in 

wild-type mice (WT, red circles, shaded gray area). (B) Carbachol-induced LTD is absent in 

NR1 KD animals, but treatment with VU6004256 (1 μM) before and during carbachol 

application resulted in significant induction of LTD (C) (blue circles, gray shaded area). (D) 

Graphical representation comparing minutes 55–60 from panels A–C (** p = 0.01, ANOVA, 

Kruskal–Wallis followed by Dunn’s post hoc test).
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Figure 3. 
M1 PAM administration results in reversal of excessive pyramidal cell firing in the PFC of 

awake, freely moving NR1 KD mice. (A) Schematic of recording paradigm with black boxes 

indicating periods where firing rate averages were assessed. (B) NR1 KD mice exhibit 

significantly increased firing rate compared to WT littermate controls. (C–E) VU6004256 

had no effect on pyramidal cell firing rate in WT littermate controls. (F–H) VU6004256 

significantly reduced pyramidal cell firing rate in NR1 KD mice. Data in panels C and F 

represent changes in frequency compared to the baseline recording period prior to drug 

administration. (B, C, and F) t test, * p < 0.05. (D, E, G, and H) Paired t test, *** p < 0.001. 

B: n = 71–72 cells, C–H: n = 33–41 cells.
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Figure 4. 
Novel object recognition deficit of NR1 KD mice is reversed by M1 PAM administration. 

NR1 KD animals showed no preference for the novel object when treated with vehicle. 

Pretreatment with VU6004256 resulted in dose-dependent increases in recognition index. 

Acute treatment with 10 mg/kg VU6004256 in WT animals resulted in an increase in 

recognition index (n = 8–10/treatment group, * p < 0.05, two-way ANOVA followed by 

Bonferroni’s post hoc test).

Grannan et al. Page 21

ACS Chem Neurosci. Author manuscript; available in PMC 2017 December 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 5. 
Pretreatment with VU6004256 on training day significantly improved performance on test 

day in cue-mediated conditioned freezing in NR1 KD but not WT mice (n = 8–10/group, t 
test, * p < 0.05).
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Figure 6. 
VU6004256 reduces hyperlocomotor activity in NR1 KD mice. Vehicle-treated NR1 KD 

mice showed excessive locomotor activity when compared to WT littermate controls. 

Pretreatment with VU6004256 (1–10 mg/kg) dose-dependently reduced locomotor activity 

in NR1 KD, but not in WT mice. (n = 7–9/treatment group, ** p < 0.01 vs NR1 KD vehicle, 

*** p < 0.001 vs WT vehicle, ANOVA followed by Bonferroni’s post hoc test).
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