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Summary

Non-invasive mapping of brain functional connectivity
(FC) has played a fundamental role in neuroscience,
and numerous scientists have been fascinated by its
ability to reveal the brain’s intricate morphology and
functional properties. In recent years, two different tech-
niques have been developed that are able to explore FC
in pathophysiological conditions and to provide simple
and non-invasive biomarkers for the detection of dis-
ease onset, severity and progression. These techniques
are independent component analysis, which allows a
network-based functional exploration of the brain, and
graph theory, which provides a quantitative characteri-
zation of the whole-brain FC. In this paper we provide an
overview of these two techniques and some examples
of their clinical applications in the most common neu-
rodegenerative disorders associated with cognitive de-
cline, including mild cognitive impairment, Alzheimer’s
disease, Parkinson’s disease, dementia with Lewy Bod-
ies and behavioral variant frontotemporal dementia.

KEY WORDS: brain functional connectivity, graph theo-
retical methods, independent component analysis, neu-
rodegenerative disorders, resting state networks. 

Introduction

The human brain is probably the most complex organ to
study and comprehend. Its neuronal mechanisms are
able to produce movement, perception, thought, speech,
learning and emotions. Non-invasive mapping of brain
functional connectivity (FC) has played a fundamental
role in neuroscience research, and numerous scientists
have been fascinated by its ability to reveal the brain’s in-

tricate morphology and functional properties. Further-
more, the complex brain disruption phenomena that occur
in disease are the focus of a growing body of research.
Brain connectivity is a concept that embraces several
different and interrelated aspects of brain organization
(Horwitz, 2003) and can refer to anatomical links such
as fiber pathways (anatomical connectivity) (Sporns,
2013), statistical relationships between dynamics occur-
ring in different locations in the brain (functional connec-
tivity, FC) (Smith, 2012), or causal interactions (effective
connectivity) (Friston, 2011; Valdes-Sosa et al., 2011). It
is investigated, mainly by means of in vivo and non-in-
vasive neuroimaging techniques, at both microscopic
and macroscopic levels, from that of neuronal popula-
tions to that of the anatomically segregated brain re-
gions within the nervous system (Sporns et al., 2005). 
This review focuses, in particular, on brain FC investi-
gated by means of resting state functional MRI (rfMRI),
which is currently the most widely used method for
studying brain activity during rest. The rfMRI technique
is based on the acquisition of T2*-sensitive MR images
that record the low-frequency (<0.1 Hz) blood oxygen
level-dependent (BOLD) signal fluctuations of the meas-
ured cerebral hemodynamic. The BOLD signal, record-
ed while subjects lie idle in the MRI scanner, is believed
to characterize the neuronal baseline activity of the hu-
man brain in the absence of external stimuli. In this con-
dition, interregional correlations of these fluctuations
can be estimated, and these quantitative estimates pro-
vide measures of FC (Friston et al., 1993), defined as
the temporal relationship between neuronal activation
patterns of distinct and anatomically distant brain re-
gions. FC is typically expressed through measures of
correlation, covariance, or spectral coherence among
gray matter voxels or regions and it reflects statistical
dependencies between them (Lang et al., 2012).
The simplest method for studying FC between gray mat-
ter regions is to extract the signal from a voxel or a re-
gion of interest (ROI) and correlate it with the other gray
matter voxels. The result is a correlation map spanning
the whole brain (Smith et al., 2013): brain regions show-
ing a high degree of positive correlation with the seed
are assumed to play an integrative role in combining
neural activity and are said to be functionally coupled
with it; regions that are negatively correlated with each
other are thought to belong to networks that serve op-
posite goals (Fox et al., 2005). FC was first investigated
in rfMRI studies by means of seed-based analysis, us-
ing either a sphere centered in a ROI or an anatomical
mask to extract the average BOLD signal of the ROI and
correlate it with the time series of all the other voxels.
Seed-based analysis has also been used to investigate
multiple ROIs within spatially distributed, large-scale
networks (Fox et al., 2005), called resting state networks
(RSNs), which slowly activate and deactivate even in



the absence of tasks or stimuli. Although this method
has proven to be reliable, easily interpretable and effec-
tive in identifying the regions that are most strongly func-
tionally connected with the seed, some weaknesses
might significantly affect its results, such as its strong
dependency on the seed choice (Cole et al., 2010). In
fact, seeds are typically chosen based on the location of
activity during a task (Biswal et al., 1995), using stan-
dardized coordinates or anatomical images as a guide
(Di Martino et al., 2008). However, the anatomy of the
selected regions is likely to be subject-dependent and
might change depending on the presence of neurologi-
cal diseases or with aging. Hence, this approach might
lead to the inclusion of undesired voxels within the se-
lected ROI, or the exclusion of functionally relevant vox-
els. Another limitation is the impossibility of simultane-
ously investigating different ROIs or networks. In order
to overcome the limitations of this approach, two differ-
ent directions have been pursued. The first is to use da-
ta-reduction approaches such as independent compo-
nent analysis (ICA), which explores FC by decomposing
the signal in each voxel into a number of components,
each assigned to a specific functional network. The sec-
ond is to use graph-based methods, which, by using
high level graph theoretical metrics, provide a quantita-
tive characterization of the whole-brain FC.
This review provides an overview of these two tech-
niques, examining their advantages and disadvantages
and providing some examples of their clinical applica-
tions in the most common neurodegenerative disorders
associated with cognitive decline, including mild cogni-
tive impairment, Alzheimer’s disease, Parkinson’s dis-
ease, dementia with Lewy bodies, and behavioral vari-
ant frontotemporal dementia. rfMRI is particularly attrac-
tive for this area of study, as it requires minimal patient
compliance. This review is not intended to be compre-
hensive, but rather to illustrate some prototypical stud-
ies in which these techniques were applied.

Methods of analysis

Network-based connectivity: independent compo-
nent analysis

Independent component analysis (ICA) is a data-driven
approach able to decompose a signal into a number of
independent sources. The method was first applied to
rfMRI data by McKeown et al.  (1998) to look for FC pat-
terns across brain regions (Smith et al., 2009; Beck-
mann and Smith, 2004). ICA attempts to discover the
underlying and maximally independent source signals
only from the measured observations rather than im-
posing any a priori knowledge (Beckmann and Smith,
2004); in this sense it is thought of as model free. The
spatial independence of the independent components
obtained with the ICA approach is accepted on the ba-
sis of the assumption that brain areas that respond to a
particular task are distributed independently of brain ar-
eas affected by other sources of variability (Beckmann,
2012). This independence does not require that areas
belonging to different networks be completely non-over-
lapping, only that other sources of signal change are not
distributed in the same way. This means that knowledge

about the spatial distribution of a certain component
does not provide any information about the spatial dis-
tribution of the others (Beckmann, 2012). 
Both at single-subject level and at group level, one of the
main advantages of ICA is its ability to simultaneously
extract a variety of different coherent RSNs and noise
sources, such as those induced by head motion, physio-
logical confounds (e.g. cardiac pulsation or respiratory
cycle) and scanner-related noise (Damoiseaux et al.,
2006). For this reason, RSNs identified by ICA can be
less prone to artifactual effects than those identified us-
ing other techniques due to the ability of this method to
account for the existence of such structured noise effects
within non-RSN ICA components (Cole et al., 2010).
RSNs map a large variety of functional circuits, including
the motor network found in the first resting-state connec-
tivity experiment (Biswal et al., 1995), sensory systems in
visual and auditory cortices, and, of particular interest for
studying neurodegenerative or psychiatric disorders, net-
works involved in higher-level cognitive processes (Smith
et al., 2009; Beckmann, 2012; Biswal et al., 1995). Figure
1 shows some of the most common and most widely in-
vestigated RSNs extracted by ICA, including the primary-
medial and lateral visual networks; the executive/salience
network, implicated in executive control and salience pro-
cessing; the right- and left-lateralized frontoparietal net-
works; the ventral network; the cerebellum; the sensori-
motor network (SMN); the auditory network, which in-
volves auditory and other sensory association cortices;
and the default mode network (DMN).
This functional specificity is another advantage of ICA,
especially in the clinical context, as it makes it possible
to selectively focus on one or more RSNs thought to be
selectively affected by a certain neurological condition
or disease (Filippini et al., 2009; Greicius et al., 2004).
Many studies have taken advantage of this technique to
look for potential biomarkers for the diagnosis and study
of disease mechanisms. For example, one of the most
widely studied RSNs, due to its importance in many
pathologies, is the DMN, involved in episodic memory
processes and self-referential mental representations.
The DMN includes the precuneus and the posterior cin-
gulate cortex, as well as more frontal regions like the
medial frontal cortex and the inferior parietal regions
(Damoiseaux et al., 2006).
However, this approach also has some limitations. First,
it can be difficult to determine whether a component rep-
resents a true BOLD source or noise.  Second, decom-
position results can vary depending on the model order
choice, and reproducible patterns of RSNs are rarely
found in single-subject datasets. For these reasons, it is
necessary to define reference patterns at group level in
the first instance, and then to extract subject-specific fea-
tures by using dual regression (Filippini et al., 2009),
back projection (Calhoun et al., 2001), or similar ap-
proaches (Cole et al., 2010). Moreover, there is no gold
standard for model order selection at group level. In fact,
the model order can be chosen manually by the operator
or estimated using a sophisticated statistical criterion
based on the Laplace approximation to the Bayesian ev-
idence of the model order (Beckmann and Smith, 2004).
However, a wrong model order choice can generate un-
der-fitting, which means that the amount of explained da-
ta variance is insufficient to obtain good estimates of the
signals, or over-fitting, which leads to a fragmentation of
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Figure 1 - Some of the main and more investigated resting state networks identified by independent component analysis.

signals across multiple component maps, reducing the
ability to identify the signals of interest.
An important limitation is that the ICA decomposition of
a given dataset into a set of 20–30 components, of
which approximately 8–13 are RSNs and the others
non-recognizable networks or noise, overlooks the fact
that any given brain region may share different connec-
tivity patterns with multiple networks over time. This vari-
ability of regional co-activations between network nodes
can be referred to as the “non-stationarity” of a given
area in terms of its connectivity with one or more RSNs
(Cole et al., 2010). Interestingly, this limit of the ICA ap-
proach can be overcome by RSN parcellation into sub-
networks through high-dimensional ICA (Smith et al.,
2015; Dipasquale et al., 2015). Specifically, high-dimen-
sional ICA is performed at group level by extracting a

greater number of independent components compared
to the standard procedure (typically 70 or more vs 20–
30 in low-dimensional ICA), in order to force the algo-
rithm to decompose the traditional RSNs into sub-net-
works. This technique is particularly advantageous to in-
vestigate possible FC alterations that do not involve the
whole network, e.g. in the early stages of pathology
when the damage is confined to specific areas of the
network. However, for a standard dataset (i.e. non-high-
quality rfMRI data and a low number of subjects), high-
dimensional ICA with a model order of 150–200 is not a
valid option due to the intrinsic constraints of this
method (Abou-Elseoud et al., 2010). Moreover, classifi-
cation of the sub-networks thus obtained is more chal-
lenging than classification performed at low dimension-
ality as the sub-networks might not exhibit their well-
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known spatial patterns, and for this reason it may be
necessary to use specific algorithms which classify each
component by comparing it in time and in space with the
RSNs obtained with low-dimensional ICA performed on
the same dataset (Dipasquale et al., 2015). 

Whole-brain connectomics: graph theoretical methods

The subdivision of brain activity patterns into functional
networks is extremely useful to investigate specific func-
tions and study the alterations occurring in pathological
conditions. Nevertheless, the brain can be described not
only as a set of functional networks with specific roles,
but also as one integrative circuit comprising all the
brain regions and forming a complex functional system
(de Reus and van den Heuvel, 2013). The ICA approach
can generally overlook this functional configuration giv-
en its assumption of independence between the compo-
nents (Lee et al., 2016). However, new advances in rest-
ing-state analysis techniques have opened up the pos-
sibility of examining the overall functional connectome
using graph theoretical methods. Application of these
methods to rfMRI data consists of modeling cortical and
sub-cortical regions as a set of nodes connected to each
other by edges that express the strength of the FC be-
tween node pairs. This information can easily be repre-
sented as an NxN matrix (connectivity matrix), where N
is the number of nodes, and each element of the matrix
corresponds to the pairwise measure of connectivity. 
The increasing use of graph theory approaches to study
brain connectivity has led neuroscientists to hypothesize
that the brain shows an efficient “small-world” functional
architecture (Achard et al., 2006); i.e. nodes have
greater local interconnections (edges) than would be ex-
pected for a random network, and smaller minimum path
lengths between node pairs than regular or lattice type
networks have (Watts and Strogatz, 1998). This func-
tional architecture affords a number of substantial bene-
fits: it reduces wiring cost and ensures a high degree of
robustness, i.e. preservation of network integrity follow-
ing random damage to a node or a connection. Such
networks are also characterized by a smaller number of
highly connected nodes, called hubs, and “high central-
ity” nodes that provide the shortest connection paths be-
tween many other node pairs. These nodes are crucial
to efficient communication (van den Heuvel et al., 2008)
but also vulnerable to targeted insults that can result in
a rapid reduction in the network efficiency and whole-
brain connectivity. In order to study these connectional
characteristics, so-called graph metrics are typically
used. These are higher-level indices that make it possi-
ble to investigate the topology of the whole-brain net-
work (Bullmore and Sporns, 2009; Rubinov and Sporns,
2010; van den Heuvel and Hulshoff Pol, 2010; van den
Heuvel et al., 2008). Examples of measures of interest
include the node degree, a measure of the number of
connections (edges) of each node with the other net-
work nodes; the average path length, a measure of
global connectedness which indicates the average
shortest connection length (i.e. the mean of the shortest
path length values recorded for all the single node
pairs); the clustering coefficient, which measures the
rate of existing edges between the nearest neighbors
versus possible connections and reflects the presence
of smaller subgraphs; the betweenness centrality, which

measures the number of shortest paths that pass
through a node and indicates the importance of a node
for efficient communication and integration across a net-
work; efficiency, which indicates the information transfer
between nodes; in particular, the local efficiency of an
individual node is the inverse of the shortest path length
connecting all the neighbors of that node, while global
efficiency is the average of the local efficiency and in-
cludes all the nodes of the graph (Fig. 2).
Contrary to traditional low-dimensional ICA (20–30 com-
ponents extracted), by studying the brain as a whole it is
possible to take into account the fact that each area can
be functionally connected not only with the regions with-
in the same RSN, but also with other areas. However, a
challenge in this approach is the requirement for a par-
cellation of the gray matter into a set of ROIs (corre-
sponding to the nodes), which must be performed a pri-
ori. While a number of methods for data-driven parcella-
tion based on either anatomical or functional criteria
have been proposed (Glasser et al., 2016), the most
common approaches are based either on the use of a
priori ROIs from predefined anatomical templates (e.g.

Figure 2 - Graphical representation of some graph indices. 
Node degree: the red dot (node) represents a high degree node and
it is directly connected with six out of 11 nodes; the blue dot repre-
sents a low degree node and it is directly connected with only one
node. Clustering coefficient: quantification of the number of connec-
tions that exist between the nearest neighbors of the yellow node
(continuous lines) as a proportion of the maximum number of its
possible connections (dotted lines). Path length: the shortest con-
nection between the light-blue and the purple nodes corresponds to
the path length and is highlighted by green edges. Betweenness cen-
trality: on the left, nodes A, B, C, D, E and F are well connected and
maintain efficient network communication. Numbers in parentheses
refer to each node’s betweenness centrality, which indicates how
many of the shortest paths between all other node pairs in the network
pass through it. To reach node C (green dot) from node F (orange
dot), information flow is efficient and passes only through D. In the
graph on the right, some connections have been lost. To reach C from
F, information now has to go through more nodes (D, E and B).
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the Harvard-Oxford atlas and the Automated Anatomical
Labeling atlas), or on randomly generated templates
and voxel-based divisions. The choice of the nodes has
a non-negligible impact on the estimation of the topo-
logical and spatial features of the brain network (de
Reus and van den Heuvel, 2013; Wang et al., 2009; Mi-
nati et al., 2013). It is worth noting that even if the differ-
ent parcellation schemes cover the same gray matter
structures, differences between them could exist, such
as the number of extracted brain regions or the fact that
some areas might belong to the same ROI in a certain
atlas but to different ROIs in another (de Reus and van
den Heuvel, 2013). Hence, these differences inevitably
affect the comparability of published studies based on
different parcellation schemes.
Another problem with graph theory approaches is the
choice of the threshold for FC matrices, which tends to
be quite arbitrary. In order to minimize the inter-subject
variability, typically, FC matrices are not thresholded us-
ing a specific FC value, but using the wiring cost (K) (al-
so known as “density”), which corresponds to the num-
ber of existing edges over the maximum possible num-
ber of edges (Achard and Bullmore, 2007). However,
the choice of K can be equally arbitrary and bias the re-
sults, thus different K values are typically used to reduce
this bias and boost the robustness of the analysis (Liu et
al., 2012).

Clinical applications

The studies included in this section are also listed in
table I, where they are classified by type of pathology.
For each study, we have specified the number of sub-
jects included, the method used to perform the FC
analysis and the main findings.

Mild cognitive impairment and Alzheimer’s disease

Alzheimer’s disease (AD) is currently the most common
cause of neurodegenerative dementia. The typical clini-
cal presentation of AD is characterized by an early and
prominent impairment of memory, followed by a pro-
gressive decline of all cognitive functions, eventually re-
sulting in dementia (Sunderland et al., 2006). In the ear-
ly stage, memory impairment is the prominent feature
because the pathology initiates near the medial tempo-
ral cortex. In the moderate stage, language problems or
visuospatial dysfunctions become conspicuous as the
pathology propagates to the other temporal and parietal
cortices (Förstl and Kurz, 1999). In the late stage of the
illness, most cognitive functions are severely impaired,
including frontal executive functions such as judgment,
abstract or logical reasoning, and planning (Braak and
Braak, 1991).
AD pathology (accumulation of beta-amyloid plaques
and neurofibrillary tangles) is believed to begin decades
before the clinical manifestations of the disease appear.
As a consequence, the diagnosis of AD is typically made
when it is too late to reverse, or even stop, the disease
process. To allow the early identification of subjects at
risk of developing AD, the concept of mild cognitive im-
pairment (MCI) was introduced (Petersen et al., 1999).
MCI is considered an intermediate stage between nor-
mal aging and dementia (Boyle et al., 2006), and it is

characterized by mild memory deterioration. Progres-
sion from MCI is hard to predict, as people diagnosed
with MCI can develop forms of dementia other than AD,
or even revert to normal cognition (Larrieu et al., 2002).
Different subtypes of MCI exist and amnestic MCI (aM-
CI) is considered a prodromal stage of AD, carrying a
high risk of progression to AD. 
AD and MCI have been extensively studied using rfMRI,
particularly after the first reports that highlighted a promi-
nent vulnerability of the DMN (Greicius et al., 2004). In
fact, many studies (mainly based on ICA) have shown
that DMN structures, involved in memory processes, are
particularly affected by atrophy and by deposition of the
amyloid protein, and generally show reduced glucose
metabolism (Buckner et al., 2005). Several studies re-
ported DMN FC alterations in patients with MCI (Esposi-
to et al., 2013; Gili et al., 2011) and in healthy subjects at
high risk of developing dementia (Filippini et al., 2009;
Hafkemeijer et al., 2012). Stronger evidence can be
found in AD studies, where decreased FC of the DMN in
AD subjects compared with healthy elderly has been
shown both in posterior areas, i.e. the precuneus
(Damoiseaux et al., 2012) and the posterior cingulate
cortex (Dipasquale et al., 2015; Griffanti et al., 2015), and
in the anterior cingulate and medial prefrontal cortex
(Hafkemeijer et al., 2012; Gili et al., 2011). Interestingly,
one study reported a counter trend with higher FC in the
precuneus and in the frontal pole found in early AD ver-
sus healthy subjects (Damoiseaux et al., 2012). This was
explained by the authors as a compensatory mechanism
that disappears with disease progression. However, oth-
er factors might be responsible for these findings. In par-
ticular, the cognitive reserve hypothesis (Stern, 2006)
postulates the existence of functional brain mechanisms,
developed as a result of lifestyle and cognitive stimuli,
that enable certain individuals to cope with cerebral dam-
age better than others. Within the DMN, it was shown
that education (a proxy of cognitive reserve) can modu-
late FC in the posterior cingulate cortex (Bozzali et al.,
2015). Overall, the existing literature suggests that
changes in FC of the precuneus within the DMN might be
a key feature in AD evolution. A recent longitudinal study
showed that this parameter measured at baseline is able
to classify patients as converters and con-converters (af-
ter 2 years) with higher sensitivity, specificity and accu-
racy than measures of atrophy (Serra et al., 2016).
Other networks have been investigated, and found to
show alterations from the early stages of the disease.
The SMN, which did not show altered signs in the study
performed by Damoiseaux and colleagues (2012), ex-
hibited a within-network FC loss (Dipasquale et al.,
2015) when a high-dimensional approach was used to
decompose the SMN into sub-networks. The executive
control network, which is typically anti-correlated with
the DMN, showed reduced FC in the superior frontal
lobule and in the prefrontal cortex in MCI compared with
healthy subjects (Sorg et al., 2007). In a longitudinal
study, Hafkemeijer and colleagues (2016) reported low-
er FC in the right and left frontoparietal networks in AD
versus healthy controls, involving the parietal lobule,
paracingulate and postcingulate gyrus, and frontal pole
(only the results in the right frontoparietal network sur-
vived after correction for gray matter volume). 
Fewer graph analysis studies have been published.
Some of the first reports provided inconsistent results on
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Table 1 - Studies examining functional connectivity alterations in neurodegenerative conditions by means of network-based
or graph theoretical approaches and summary of the main results.

Authors Subjects Method Main findings

Mild cognitive impairment and Alzheimer’s disease 

Greicius et al. 2004 13 mild AD, 13 HCs ICA Decreased activity in the posterior cingulate and 
hippocampus in AD

Sorg et al. 2007 24 aMCI and 16 HCs ICA Only selected areas of the DMN and the executive attention 
network demonstrated reduced network-related activity in 
aMCI. FC between both hippocampi and the posterior 
cingulate cortex of the DMN was present in healthy controls 
but absent in patients.

Sanz-Arigita et al. 18 mild AD and 21 HCs Graph theory Path length, used as global network measures, showed 
2010 significant changes in global brain FC in AD specifically 

affecting long-distance connectivity. These results reflect the 
randomization of the brain functional networks in AD, 
suggesting a loss of global information integration in disease.

Gili et al. 2011 10 aMCI, 11 AD ICA AD and aMCI patients showed a similar brain disconnection 
and 10 HCs between the posterior cingulate cortex and the medial 

prefrontal cortex and the rest of the brain; aMCI patients also 
showed a reduced connectivity in the posterior cingulate 
cortex in the absence of GM atrophy, which was, by contrast, 
detectable at the stage of fully developed AD.

Damoiseaux et al. 21 AD and 18 HCs at ICA Decreased connectivity in AD in the posterior DMN and 
2012 baseline; 9 AD and increased connectivity in the anterior and ventral DMNs. At 

10 HCs at follow-up follow-up, FC decreased across all DMNs in AD patients. 

Dipasquale et al. 21 AD and 20 HCs ICA Within-network FC alteration (AD<HCs) in the anterior and 
2015 posterior DMNs and in the sensorimotor network.

Bozzali et al. 2015 11 AD, 18 MCI ICA A strong association was detected between patients’ 
and 16 HCs education level and FC within the PCC: the effect was highly 

significant in AD patients, less significant in patients with MCI.
No correlation was found in HCs.

Serra et al. 2016 31 aMCI (14 AD ICA Discriminant analysis revealed that FC of the precuneus 
converters and 17 within the DMN at baseline is the parameter able to correctly 
non-converters after classify patients as converters and non-converters.
2 years) and 26 HCs

Minati et al. 2014 49 aMCI and 32 HCs ICA and  ICA: Decreased connectivity only for the DMN component in 
graph theory the medial parietal region, precuneus and posterior cingulate 

cortex. 
Graph theory: aMCI patients were consistently characterized 
by decreased network completeness and clustering coefficient,
reduced global network efficiency and node degree. 
This widespread disconnection was observed primarily in 
some cortical hubs, i.e. precuneus, parietal lobules, 
supramarginal and angular gyri, and cuneus, with 
additional involvement of subcortical regions, sensorimotor 
cortex and insula.

Zhao et al. 2012 33 moderate AD Graph theory Increased local efficiency and decreased global efficiency 
and 20 HCs were found in AD, mainly located in the DMN, temporal lobe 

and certain subcortical regions associated with the 
neuropathological changes in AD; the authors also showed 
that the ApoE genotype modulates brain network properties, 
especially in AD patients.

Abbreviations: AD=Alzheimer’s disease; PD=Parkinson’s disease; DLB=dementia with Lewy bodies; bvFTD=behvioral variant frontotemporal
dementia; HCs=healthy controls; ICA=independent component analysis; DMN=default mode network; FC=functional connectivity;
aMCI=amnestic mild cognitive impairment; MCI=mild cognitive impairment; SMA=supplementary motor area; UPDRS=Unified Parkinson’s dis-
ease Rating Scale; GRN=granulin
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Table 1 - Studies examining functional connectivity alterations in neurodegenerative conditions by means of network-based
or graph theoretical approaches and summary of the main results (Cont.).

Authors Subjects Method Main findings

Challis et al. 2015 27 AD, 50 aMCI Graph theory The single elements of the connectivity metrics were used as 
and 39 HCs features for a machine-learning algorithm to perform patient 

stratification between HCs, aMCI and AD. The model 
achieves 75% accuracy disambiguating HC from aMCI and 
97% accuracy disambiguating aMCI from AD.

Parkinson’s disease

Szewczyk-Krolikowski 32 PD on and off ICA PD showed reduced FC within the basal ganglia network in a 
et al. 2014 medication and 19 HCs wide range of areas. Medication significantly improved 

connectivity.

Putcha et al. 2015 20 PD and 20 HCs ICA PD showed significantly less coupling between salience 
network and executive network and greater coupling between
DMN and executive network. Disease severity was also 
related to reduced functional coupling between the striatum 
and salience network.

Karunanayaka et al. 17 PD with primary ICA Decreased activity was found in the left inferior parietal cortex
2016 akinetic/rigidity (PDAR), and the left posterior cingulate cortex within the DMN 

15 PD with tremor- between PDAR and both HCs and PDT subjects, but not 
predominant symptoms between PDT and HCs; resting state activity in the inferior 
(PDT) and 24 HCs parietal cortex and posterior cingulate cortex were correlated 

with some measures of cognitive performance in PD but not 
in HCs.

Wei et al. 2014 37 PD and 34 HCs Graph theory Remarkable decreased efficiency in PD was observed in the 
corticobasal ganglia motor network, with the most 
pronounced changes in the rostral SMA, caudal SMA, primary
motor cortex, primary somatosensory cortex, thalamus, 
globus pallidus and putamen. Reduced efficiency in SMA, 
primary motor cortex, thalamus and globus pallidus was 
significantly correlated with UPDRS motor scores in PD 
patients.

Zhang et al. 2015 16 PD and 20 HCs Graph theory Increased information transformation efficiency was found in 
PD. The identified network that encompassed cortical and 
subcortical regions and the cerebellum and brainstem 
correlated with clinical manifestations in PD and could 
distinguish PD from HCs.

Berman et al. 2016 19 PD on and off Graph theory PD patients off medication showed no significant changes in 
medication global efficiency and overall local efficiency, but they showed 
and 16 HCs increased local efficiency in executive and salience networks. 

Levodopa significantly decreased local efficiency in PD 
except within the subcortical network, in which it significantly 
increased local efficiency.

Dementia with Lewy bodies 

Lowther et al. 2014 15 DLB, 13 AD ICA DMN, salience and executive networks showed reduced FC 
and 40 HCs in DLB subjects compared with AD and HCs and increased 

FC in the basal ganglia network. 

Peraza et al. 2014 16 DLB and 17 HCs ICA Significant differences between DLB and HCs were found in 
the left frontoparietal, temporal, and sensorimotor networks. 
Desynchronization of a number of cortical and subcortical 
areas related to the left frontoparietal network was also 
associated with the severity and frequency of cognitive 
fluctuations.

Abbreviations: AD=Alzheimer’s disease; PD=Parkinson’s disease; DLB=dementia with Lewy bodies; bvFTD=behvioral variant frontotemporal
dementia; HCs=healthy controls; ICA=independent component analysis; DMN=default mode network; FC=functional connectivity;
aMCI=amnestic mild cognitive impairment; MCI=mild cognitive impairment; SMA=supplementary motor area; UPDRS=Unified Parkinson’s dis-
ease Rating Scale; GRN=granulin
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Table 1 - Studies examining functional connectivity alterations in neurodegenerative conditions by means of network-based
or graph theoretical approaches and summary of the main results (Cont.).

Authors Subjects Method Main findings

Peraza et al. 2015 22 DLB, 24 AD Graph theory DLB group showed a lower synchronization compared with 
and 17 HCs AD and HCs. DLB also showed higher small-worldness and 

global efficiency (DLB > controls > AD) and lower clustering 
coefficient (DLB < controls < AD). Significant associations 
between network performance measures and global cognitive
impairment and severity of cognitive fluctuations were also
found in DLB.

Behavioral variant frontotemporal dementia

Zhou et al. 2010 12 bvFTD, 12 AD ICA bvFTD attenuated salience network connectivity, in 
and 12 HCs frontoinsular, cingulate, striatal, thalamic and brainstem 

nodes, but enhanced connectivity within the DMN. AD, by 
contrast, reduced DMN connectivity to the posterior 
hippocampus, medial cingulo-parieto-occipital regions and 
dorsal raphe nucleus, but intensified salience network 
connectivity. Clinical severity in bvFTD correlated with loss of 
right frontoinsular salience network connectivity and with bi-
parietal DMN connectivity enhancement. A combined index of
salience network and DMN connectivity achieved 92% 
accuracy in discriminating between the three groups.

Borroni et al. 2012 11 bvFTD carriers  ICA FC within the salience network was reduced in all FTD 
of GRN mutation, patients (more markedly in the mutation carriers), while it was
16 bvFTD non-carriers, enhanced in the DMN. Conversely, pre-symptomatic carriers 
11 HCs, 9 siblings showed increased connectivity in the salience network, with 
carriers of GRN no changes in the DMN.
mutation and 13 
non-carrier siblings

Hafkemeijer et al. 12 bvFTD, 20 AD and ICA and “At follow-up, connectivity between angular gyrus and right 
2016 22 HCs at baseline graph theory frontoparietal network, and between paracingulate gyrus and 

and 1.8-year follow-up DMN was lower in bvFTD compared with controls, and lower 
compared with AD between anterior cingulate gyrus and 
executive control network, and between lateral occipital 
cortex and medial visual network. Over time, connectivity 
decreased in AD between precuneus and right frontoparietal 
network and in bvFTD between inferior frontal gyrus and left 
frontoparietal network. Longitudinal changes in connectivity 
between supramarginal gyrus and right frontoparietal network
differ between both patient groups and controls.”

Sedeño et al. 14 bvFTD and 12 HCs Graph theory Average betweenness centrality across regions was examined
2016 within different networks. The authors found a significantly de

creased betweenness centrality in the bilateral frontotemporo-
insular network in bvFTD patients versus HCs.

Abbreviations: AD=Alzheimer’s disease; PD=Parkinson’s disease; DLB=dementia with Lewy bodies; bvFTD=behvioral variant frontotemporal
dementia; HCs=healthy controls; ICA=independent component analysis; DMN=default mode network; FC=functional connectivity;
aMCI=amnestic mild cognitive impairment; MCI=mild cognitive impairment; SMA=supplementary motor area; UPDRS=Unified Parkinson’s dis-
ease Rating Scale; GRN=granulin

the altered brain network pattern in AD patients (Su-
pekar et al., 2008; Stam et al., 2007). Sanz-Arigita and
colleagues (2010) used graph analysis to study AD al-
terations at whole-brain level by comparing the “small-
world” structure in a group of AD patients compared with
a group of healthy subjects. They found a relative ran-
domization of AD architecture driven by a different con-
nectivity pattern compared with healthy group. Specifi-
cally, in the AD subjects they found higher FC within in
the frontal cortices and between these and the corpus

striatum and thalamus, as well as decreased connectiv-
ity between the temporal lobe and parietal and occipital
cortices.
Zhao et al. (2012) showed that the topological proper-
ties of the brain networks were disrupted in moderate-
stage AD compared with an elderly healthy population.
In particular, they found a higher clustering coefficient in
AD, higher average shortest path length values and a
lower global efficiency. These findings suggested that
long distance information integration and information



transfer ability are compromised in AD patients. Howev-
er, they showed stronger local information processing
capacity in the moderate stage of the disease. More re-
cently, reduced clustering coefficient and reduced glob-
al efficiency were found in MCI patients compared with
healthy controls using fine cortical parcellation (mean
ROI volume = 1.55 ± 0.33 ml) (Minati et al., 2014). The
same study demonstrated a widespread reduction in
node degree (a measure of the local density of connec-
tions), which significantly exceeded the changes detect-
ed using ICA, both in amplitude and topographical ex-
tent. For this reason, the authors underlined that graph-
based analysis showed a superior ability to detect dis-
ease-related disconnection in MCI, suggesting that this
technique might potentially be used in the determination
of biomarkers of early dementia.
Challis et al. (2015) did not evaluate specific graph met-
rics, but used the single elements of the connectivity
metrics as features for a machine-learning algorithm to
perform patient stratification between healthy control
subjects and either aMCI or AD subjects. The model
achieved 75% accuracy disambiguating healthy partici-
pants from patients with aMCI and 97% accuracy dis-
ambiguating aMCI subjects from those with AD, and
confirming the importance of functional disconnection in
the evolution of AD. 

Parkinson’s disease

Parkinson’s disease (PD) is a progressive neurodegen-
erative disease characterized by a specific range of mo-
tor symptoms, including slowness of movement, rigidity,
tremor at rest and postural instability (Jankovic, 2008).
Its core pathophysiological mechanism is degeneration
of nigrostriatal dopaminergic neurons, which leads to a
deficiency of dopamine in the striatum and the early mo-
tor features of the disease (Greffard et al., 2006). More-
over, about 40% of patients with PD are also affected by
dementia (Emre, 2003).
The considerable importance of rfMRI in PD studies de-
rives from the fact that, unlike task-based fMRI, it allows
the FC disruption mechanisms that occur in the motor
areas to be investigated without the patients having to
perform any motor tasks (PD patients are typically af-
fected by motor impairments). This neurodegenerative
disease has been investigated using ICA and focusing
on specific networks, and with graph theory analysis,
the latter allowing a whole-brain exploration using spe-
cific graph indices.
One of the most affected RSNs in rigidity-predominant
PD is the basal ganglia network. Szewczyk-Krolikowski
and colleagues (2014) found reduced basal ganglia mo-
tor network connectivity in non-tremor patients with ear-
ly PD and without cognitive deficits; this reduced con-
nectivity involved the putamen and caudate bilaterally,
the midbrain, the superior temporal gyrus bilaterally, the
dorsolateral prefrontal cortex bilaterally, the medial pre-
frontal cortex, and the precuneus. Topological efficiency
was also evaluated in a graph-based study to estimate
the impairment of the basal ganglia motor circuit in non-
tremor patients with mild to moderate PD (Wei et al.,
2014). In this study, the PD patients showed decreased
efficiency in the basal ganglia motor pathway, especial-
ly in the right rostral supplementary motor area, the left
caudal supplementary motor area, and the bilateral pri-

mary motor cortex, primary somatosensory cortex, thal-
amus, globus pallidus and putamen.
However, PD patients with tremor and without cognitive
impairment have been reported to show alteration of dif-
ferent circuits involving different areas. Zhang et al.
(2015) reported a widespread increase of FC in such PD
patients compared with healthy subjects, increased cen-
trality in the frontal, parietal, and occipital regions, and
decreased centrality in the cerebellum anterior lobe and
thalamus. Increased efficiency in information transfer
was also found in a distributed network encompassing
different regions, including the nodes of the DMN, the
sensorimotor cortex, prefrontal and occipital areas, the
thalamus, basal ganglia, cerebellum and brainstem. 
Beyond its motor symptoms, PD also affects the cogni-
tive domain in a high percentage of patients. However,
the risk of developing cognitive impairment is associat-
ed with different factors. Using ICA, Karunanayaka and
colleagues (2016) tested the hypothesis that PD patients
with primary rigidity are more likely to develop cognitive
deficits than those with tremor-predominant symptoms.
They focused on the DMN as it is supposed to be in-
volved in cognitive processing, and found a decrease in
FC in rigidity-predominant PD patients compared with
healthy controls and tremor-predominant PD patients.
This result led them to hypothesize that the discrepan-
cies in the literature (Krajcovicova et al., 2012; Tessitore
et al., 2012) might be related, in part, to the fact that oth-
er studies did not take PD subtypes into account. 
In order to evaluate possible alterations of the cognitive
domain, together with the DMN, other RSNs have re-
cently been investigated both with ICA and using  graph
theory analysis (Berman et al., 2016; Putcha et al.,
2015). The graph-based study led by Berman and col-
leagues reported significantly reduced FC in the auditory
and visual network areas and an increased integrated lo-
cal efficiency in the DMN, executive regions and salience
networks, which are typically referred to as the “core”
neurocognitive networks responsible for maintaining ef-
fective neural communication. This result is in line with
the ICA-based study performed by Putcha et al. (2015),
in which aberrant coupling was found between the DMN
and executive network, together with reduced coupling
between the salience network and the executive one. 

Dementia with Lewy bodies

Dementia with Lewy bodies (DLB), which is the one of
the most frequent types of neurodegenerative dementia,
is associated with greater deficits on attentional and vi-
suoperceptual tasks (Calderon et al., 2001; Collerton et
al., 2003). The clinical symptoms of DLB can overlap
with those of AD and PD, making this disorder difficult to
differentiate from these conditions. Compared with the
more extensive literature on AD and PD, fewer neu-
roimaging studies have investigated DLB, and the neu-
ral changes responsible for its characteristic distressing
symptoms — attentional deficits, motor features of
parkinsonism, and depression — are still not well un-
derstood. Most studies of DLB used seed-based analy-
sis to focus on certain core regions, including the poste-
rior cingulate cortex, precuneus, primary visual cortex,
hippocampus, putamen, caudate and thalamus (Kenny
et al., 2012, 2013; Galvin et al., 2011). However, as
highlighted in the methods of analysis section, the limi-
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tation of this approach is that it only tests the FC of spe-
cific brain regions and the choice is therefore linked to a
priori hypotheses or previous studies. A more extensive
study was performed by Lowther and colleagues (2014),
who, by means of ICA, analyzed different RSNs and
compared FC in DLB patients versus healthy controls
and AD patients, finding significant alterations in the de-
fault mode, salience and executive control networks.
Their results also showed greater FC in the basal gan-
glia and limbic networks in DLB subjects compared with
healthy controls, a finding that may be related to the
parkinsonian symptoms and mood disturbances that are
typical in DLB. In another study, an ICA-based approach
was used to assess whether cognitive fluctuations,
which are a core symptom in DLB, are related to patho-
logical alterations in distributed brain networks (Peraza
et al., 2014). No DMN FC alterations were found in DLB
compared with controls, but significant cluster differ-
ences between DLB and controls were found in the left
frontoparietal, temporal and sensorimotor networks
(DLB < healthy subjects). 
A desynchronization of a number of cortical and subcor-
tical areas related to the left frontoparietal network was
also shown to be associated with the severity and fre-
quency of cognitive fluctuations. 
Graph theory studies of network organization in DLB are
scarce. A graph-based study was performed to describe
possible alterations in DLB brain complexity at global
and local levels and to compare these alterations with
those caused by AD (Peraza et al., 2015). 
The authors found significant differences in the func-
tional brain network measures of DLB patients (higher
global efficiency and clustering coefficient, lower aver-
age path length) compared with healthy controls and
broader network alterations compared with AD. Of note,
global efficiency was significantly correlated with cogni-
tive and fluctuating attention scores in DLB. Moreover,
compared with the healthy subjects, the DLB patients
showed higher small-worldness, while the AD patients
showed lower small-worldness. The authors also inves-
tigated regional network differences between the
groups, finding lower node degree and nodal clustering
in parietal, occipital and frontal cortices and higher node
degree in both thalamic nodes in DLB patients com-
pared with controls. 

Behavioral variant frontotemporal dementia

Frontotemporal dementia (FTD) is another kind of de-
mentia that groups various types of neurodegenerative
disorders associated with atrophy of the frontal and tem-
poral lobes, and is clinically characterized by language
or behavioral impairments (Cardarelli et al., 2010). The
behavioral variant of FTD (bvFTD) is one of the sub-
types most studied so far and is mainly characterized by
changes in behavior, personality and motivation (Ras-
covsky et al., 2011). However, bvFTD symptoms may
vary considerably and sometimes symptoms such as
memory disturbances and behavioral abnormalities can
be misinterpreted as AD symptoms and lead to misdi-
agnosis. Clinical differentiation between these types of
dementia may be challenging, particularly in their early
stages. Therefore, it has been suggested that analysis
of brain FC could be used to find early markers of brain
changes associated with the two types of dementia, so

as to differentiate one disease from the other. Zhou and
colleagues (2010) studied alterations of the DMN and
salience network in bvFTD and AD patients, demon-
strating a divergent effect of the two diseases on core
neural network dynamics. Their results showed that, in
comparison with a control group, bvFTD attenuates
salience network connectivity, mainly in frontoinsular,
cingulate, striatal, thalamic and brainstem nodes, and
enhances DMN FC, while connectivity in AD is reduced
in the posterior hippocampus, medial cingulo-parieto-
occipital regions and the dorsal raphe nucleus, and in-
creased in the salience network. Consistent with those
findings, a selective disruption of the salience network in
the presence of bvFTD was reported by Borroni et al.
(2012). In the same study, genetic data were used to in-
vestigate the effect of granulin mutation, which has been
identified as a major cause of FTD, on brain FC. Healthy
subjects, bvFTD patients, carriers and non-carriers of
granulin mutation, and pre-symptomatic carriers were
recruited. The results showed a more marked involve-
ment of the salience network in the bvFTD patients who
carried the  granulin mutation than in the mutation non-
carriers, and an increase in FC in the asymptomatic
granulin mutation carriers compared with the healthy
controls, while no changes were found in the DMN.
These results suggest that changes in FC might not be
monotonic throughout the course of the disease, but in-
stead manifest as an initial increase — a coping strate-
gy — followed by a decrease caused by the accrual of
pathology.
Other studies have been conducted to assess whether
the FC changes in bvFTD involve further large-scale dis-
tributed networks and to look for other alterations able to
discriminate between bvFTD and AD. Hafkemeijer and
colleagues (2016) used both ICA and the graph theory
approach to compare the effects of these two types of
dementia on brain connectivity. Network analysis per-
formed by ICA highlighted FC differences in the lateral
visual cortical network (AD > bvFTD), dorsal visual
stream network (AD < bvFTD) and auditory system net-
work, where a decreased negative FC between this net-
work and the angular gyrus was found in patients with
bvFTD compared to AD. On comparing the bvFTD pa-
tients with a group of healthy controls, altered FC was
found in the auditory network. The graph theory ap-
proach provided additional information about the right
superior temporal gyrus, by detecting decreased FC
with the cuneal cortex, supracalcarine cortex, intracal-
carine cortex and lingual gyrus in bvFTD versus AD.
A recent graph-based study was performed by Sedeño
and colleagues (2016). They used a specific graph in-
dex, i.e. the average betweenness centrality across re-
gions within different networks, to characterize the cen-
tral role of each network in the dynamics of the overall
system in bvFTD. Their main finding was a significantly
decreased betweenness centrality in the bilateral fron-
totemporoinsular network in bvFTD patients compared
with the healthy group.

Concluding remarks 

Brain FC is likely to have a fundamental role in the
study and understanding of several diseases, as it has
proven to have great potential as a biomarker for the
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characterization or detection of their onset, severity and
progression. 
In this scenario, both ICA and graph theory approaches
have become very powerful tools for studying different
pathological conditions and highlight — at network and
at whole-brain level — the cerebral functional reorgani-
zation occurring in neurodegenerative diseases in asso-
ciation with various kinds of deficits (e.g. cognitive im-
pairment, motor deficits, etc.).
The continuous improvement of these advanced analy-
sis techniques aims at extracting, from data, useful in-
formation for understanding the complex mechanisms
that regulate brain connectivity in pathophysiological
conditions and provide simple and non-invasive bio-
markers for data-driven patient stratification, differential
diagnosis and disease monitoring. 
In conclusion, ICA and graph theoretical methods can
be considered complementary tools for exploring brain
FC, as ICA studies the RSN connectivity, while graph
theoretical methods go further, analyzing different as-
pects of FC architecture. Hence, a further step towards
a more detailed FC analysis of the brain might be a com-
bination of the two, e.g. using high-dimensional ICA to
obtain a data-driven functional atlas of the gray matter
regions and graph theoretic indices on the nodes thus
obtained to investigate the small-world functional archi-
tecture of the brain and its alterations in pathology.
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