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Summary

Quantitative magnetic resonance imaging can be com-
bined with advanced biophysical models to measure mi-
crostructural features of white matter. Non-invasive mi-
crostructural imaging has the potential to revolutionize
neuroscience, and acquiring these measures in clinical-
ly feasible times would greatly improve patient monitor-
ing and clinical studies of drug efficacy. However, a good
understanding of microstructural imaging techniques is
essential to set realistic expectations and to prevent
over-interpretation of results. This review explains the
methodology behind microstructural modeling and im-
aging, and gives an overview of the breakthroughs and
challenges associated with it.
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Introduction

Magnetic resonance imaging (MRI) is an attractive, non-
invasive modality that can provide information about the
integrity of the central nervous system (CNS) at a reso-
lution in the order of 1mm3. To produce an image, an
MRI scanner excites the magnetic moments of hydro-
gen atoms in water molecules, or spins, using radio
waves. The excited spins will then re-emit a radio wave
that is characterized by the water density as well as the
time constants T1 and T2, which reflect the tissue chem-
ical environment, thereby providing the image contrast.
Thanks to its high sensitivity to soft tissue (not shown by
X-ray), conventional MRI can distinguish different struc-
tures and detect lesions (e.g. inflammation, scar tissue,
low-grade tumors). This good sensitivity is limited, how-
ever, by a lack of specificity, and it is usually difficult to
establish a relationship between lesion activity observed
by MRI and clinical score and patient prognosis (Rovira
et al., 2013). However, the potential of MRI goes far be-
yond its capacity to provide simple contrast between tis-
sues. By varying, in a controlled fashion, the excitation
and the dephasing of the spins that produce the mag-

netic resonance (MR) signal, researchers are able to
measure several chemical and physical properties, such
as the local change in oxygenation in functional MRI, the
diffusion profile of water molecules in diffusion MRI, and
the proportion of different macromolecules or metabo-
lites (e.g. myelin lipids or iron) in relaxometry, magneti-
zation transfer and MR spectrometry. Instead of provid-
ing arbitrary numbers, these different MRI modalities
can be calibrated in order to extract quantitative metrics,
reproducible across sites (with different brands of scan-
ner and with different coils). These techniques are com-
monly called “quantitative MRI” (Cohen-Adad and
Wheeler-Kingshott, 2014; Tofts P, 2003). While many
quantitative MRI metrics, such as T1 or fractional
anisotropy (FA) from diffusion MRI, are now widely used
by clinicians, they are still difficult to interpret, notably
because they lack specificity . To further understand
how the complex chemical environment influences
these quantitative metrics, researchers have proposed
to take up the challenge of modeling mathematically the
relationship between the white matter microstructure
and the generated MRI signal. Using the resulting mod-
els, they can extract meaningful numbers, such as the
size and density of tissue fibers, the concentration of
myelin or iron within a voxel, and the thickness of the
myelin sheath surrounding the axons. These mi-
crostructural metrics are usually called “model-based
quantitative metrics” as opposed to “physical quantita-
tive metrics” (e.g. T1 or ADC, i.e. apparent diffusion co-
efficient). The ability to measure quantitatively many dif-
ferent properties with a single system allows compre-
hensive characterization of white matter tissue, from its
composition to its microstructure. While the different in-
formation is usually exploited separately, complementa-
ry MRI metrics can also be combined to extract com-
plete and specific information about the tissue, which
can help with diagnosis and prognosis of neurodegen-
erative disorders. 
In practice, quantitative MRI metrics are extracted by ac-
quiring multiple images of the same modality (e.g. diffu-
sion MRI), using different acquisition parameters (e.g.
diffusion time). By modeling the signal change as a func-
tion of these acquisition parameters, one can extract
quantitative information. In this review, we focus on
model-based quantitative MRI metrics (which exclude
physical quantitative metrics) and describe the method-
ology for modeling the white matter microstructure and
the associated MRI signal. The challenges and limits of
these techniques will also be addressed.

White matter microstructure

To model the MRI signal it is essential to have sufficient
knowledge of the underlying tissue microstructure. For
instance, precise knowledge of the volume fraction of a
certain water component makes it easier to understand
its contribution to the MRI signal: the bigger this compo-



nent is, the more it contributes to the signal (weighted by
the T1 and T2 relaxations). 
Figure 1 shows an example of white matter electron mi-
croscopy (a) along with a schematic drawing of white
matter microstructure (b). The white matter is composed
of four main components: neurons, glial cells (e.g. as-
trocytes, microglia, oligodendrocytes), the extracellular
space, and blood vessels.
Neurons can be subdivided into fibers, cell bodies and
dendrites. In the white matter, we observe very few neu-
ronal bodies and dendrites1, and the majority of the
space is occupied by neuronal fibers (~60%) (Motter-
shead et al., 2003; Perge et al., 2009; Stikov et al.,

2015a). The extracellular space constitutes about 20%
of the volume (Bourne, 2012; Syková and Nicholson,
2008), blood vessels constitute less than 3% (Syková
and Nicholson, 2008), while the rest of the volume is oc-
cupied by glial cells. 70 to 95% of the nerve fibers are
enveloped by a myelin sheath (Biedenbach et al., 1986;
Liewald et al., 2014) (myelin is responsible for the white
appearance of the white matter). Furthermore, myelinat-
ed fibers are, on average, much larger than unmyelinat-
ed fibers (20 to 50% larger) (Biedenbach et al., 1986;
FitzGibbon and Nestorovski, 2013), with the result that
the majority of the space is occupied by myelinated
fibers. The term fiber refers to the axon plus its myelin
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Figure 1 - Modeling of white matter tissue. 
a. Transmission electron microscopy of an axial slice of white matter fiber bundles extracted from the corpus callosum of a mouse (West et al.,
2016a). b. Schematic representation of the white matter. c. Proportions of the different white matter tissue components. The top left pie chart di-
vides white matter into two general components: water (blue) (the component that produces the MRI signal) and lipids/macromolecules (red). The
top right pie chart divides white matter into three spaces (used in diffusion and myelin imaging models): the myelin sheath (purple), the extra-ax-
onal volume (yellow) and the intra-axonal volume (green). The bottom pie chart subdivides these three spaces into water and lipid/macromolecu-
lar content. d. Definitions of most commonly used MRI (gray boxes) and tissue modeling (light blue boxes) metrics and their rough values.

1 The soma to glial cell ratio is 1:15 in white matter versus 1:1 in gray matter (Azevedo et al., 2009), while glial cell density is  similar in white
and gray matter (Herculano-Houzel, 2014).



sheath. About 33%2 of the white matter volume is com-
posed of axons (Nilsson et al., 2013; Perge et al., 2009).
All these components are highly hydrated [the water
content of white matter is ~72% (Lajtha, 2013; Tofts PS,
2003)]. The axoplasm is composed largely of water
(87%) and contains 2.5% proteins (assessed in squid gi-
ant axons) (Johansen-Berg and Behrens, 2013; Adel-
mann et al., 2013). Glial cells and blood vessels are
composed of ~80% water (Shepherd, 2006); The extra-
cellular space contains mainly fluid, supplemented by
long macromolecules that constitute the extracellular
matrix (Syková and Nicholson, 2008); only the myelin
sheath presents a relatively low water content of 40%
(Morell and Quarles, 1999; Norton and Cammer, 1984).
In fact, 50 to 60% of the dry tissue weight in white mat-
ter is myelin (Norton and Autilio, 1966), and this propor-
tion reaches 75% in peripheral nerves (O’Brien and
Sampson, 1965).
Glial cell density is very constant in the brain [~105
cells/mm3 (Herculano-Houzel, 2014)], suggesting a ho-
mogeneous contribution of glial cells to the MRI signal
strength. Axon density, however, varies greatly (104 to
105/mm3) due to large differences in mean axon diame-
ter between regions  (Herculano-Houzel, 2014). 
Axons are myelinated by oligodendrocytes (one oligo-
dendrocyte for up to 50 axons [(Baumann and Pham-
Dinh, 2001)], which wrap multiple layers of myelin
around the axons until the ratio of the inner to the outer
diameter of the fiber, called the g-ratio, achieves an op-
timal value of around 0.77 (Chomiak and Hu, 2009). The
myelin sheath is thus a succession of impermeable bi-
lipid layers, separated by layers of water (myelin water).
In adults, the myelin sheath occupies approximately 25–
30% of the white matter volume (Mottershead et al.,
2003; Perge et al., 2009; Stikov et al., 2015a). The func-
tion of the myelin layers is to improve the speed of prop-
agation of action potentials by inhibiting ionic exchanges
between the intra- and the extra-axonal space. Instead,
these exchanges mostly take place at the regularly
spaced nodes of Ranvier. These nodes are ~2mm long
and spaced ~1 mm apart (depending on the axon diam-
eter), and thus constitute only 0.2% of the axon surface
(Giuliodori and DiCarlo, 2004). This anatomical feature
explains why water diffuses preferentially along the
nerve fibers (about four times faster than perpendicular
to the fibers), as observed in diffusion tensor imaging
experiments (Alexander et al., 2007), and also explains
the presence of a slow diffusion component perpendicu-
lar to the fibers that is attributed to water “trapped” inside
the axons (Clark and Le Bihan, 2000). 
Nuclear magnetic resonance (NMR) experiments have
established that the exchange rate between the intra-
and the extra-axonal space is ~600 ms (Duong et al.,
1998; Meier et al., 2003; Nilsson et al., 2013), an order
of magnitude longer than the typical diffusion time used
in diffusion MRI. Axons can thus be considered imper-
meable to water in diffusion MRI models. As for glial
cells, their membrane is more permeable thanks to the
presence of aquaporin pores on their surface (Arciéne-
ga et al., 2010; Nielsen et al., 1997). This is confirmed

by the greater restriction (50% decrease of the diffusion
coefficient) of water molecules after deactivation of
these aquaporin pores (Badaut et al., 2011), and the ap-
pearance of a new water compartment, isotropically re-
stricted, in fixed tissue (~30% of the MRI-visible water)
(Panagiotaki et al., 2012), much larger than in in vivo tis-
sue (Ferizi et al., 2014). Similarly to glial cells, water
molecules in blood vessels are not restricted, because
of the rapid exchange (exchange rate of 15-30 ms) with
the extracellular space and the glial cells (Johansen-
Berg and Behrens, 2013).
The pie charts in figure 1 summarize the above infor-
mation and give rough estimates of the volume fraction
of the different constituents of white matter, values that
are particularly useful in myelin imaging.

Quantitative MRI modalities

In this section, important quantitative MRI modalities are
briefly presented, focusing on the fundamental physics
that allows the methodology to retrieve meaningful
measures of tissue microstructure. This section also
highlights the advantages of these metrics compared to
conventional MRI and clarifies the limitations in their in-
terpretation.

Diffusion MRI

Theory

A popular modality for assessing tissue microstructure is
diffusion MRI. Diffusion MRI takes advantage of the dif-
fusion of water molecules to probe the microenviron-
ment. Just as the diffusion of a drop of ink on a fibrous
tissue reveals the direction of the microscopic fibers that
compose that tissue (Fig. 2), diffusion MRI reveals the
direction of the fibers that compose the white matter tis-
sue, a technique called diffusion tensor imaging (DTI). In
each voxel and in multiple directions, the diffusion of wa-
ter molecules is measured thanks to an equation that re-
lates MRI signal reduction to the diffusion rate of water
molecules (Stejskal and Tanner, 1965) (see next para-
graph). If the diffusion is modeled in 2D, it can be de-
scribed by an ellipse, as illustrated with the drop of ink
(Fig. 2). In 3D the diffusion can be described by a tensor
(a 3x3 symmetric matrix with six parameters), therefore
at least six diffusion-weighted MR images need to be ac-
quired to resolve its shape. This can be done for each
individual voxel in the MRI acquisition. This principle can
be pushed further to measure the amount of water
trapped inside the myelinated fibers, and the size distri-
bution of these fibers (Assaf et al., 2008). Indeed, these
water molecules present restricted diffusion and result in
a small MRI signal decrease. Although models exist for
different tissues (e.g. kidney cells, gray matter), the ma-
jority of the models have been adapted to white matter
tissue, because white matter presents fewer dendrites
and many myelinated fibers in relatively coherent orien-
tations.

Modeling white matter microstructure

Functional Neurology 2016; 31(4): 217-228 219

2 Note that an axon volume fraction of 33% and a fiber volume fraction of 60% leads to a g-ratio of √(33/60)=0.74, which is close to the opti-
mal value of 0.77 as mentioned in Chomiak and Hu (2009).
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Diffusion encoding in MRI is performed through the de-
phasing and rephasing of the spins using magnetic field
gradients, referred to in this paper as “diffusion gradi-
ents”. The standard diffusion protocol is the pulsed-gra-
dient spin echo sequence, which is composed of two dif-
fusion gradients characterized by three parameters:
their duration δ, amplitude G, and separation ∆ (Fig. 3).
The relationship between diffusion gradients and MRI
signal was first expressed by Stejskal and Tanner (1965)
assuming a Gaussian diffusion:

S = S0e–bD
where S0 represents the MR signal when no diffusion
encoding is applied (i.e. b = 0), b = (gδG)2 . (∆ – δ/3)
(s/mm2), and D (mm2/s) is the diffusion coefficient in the
direction of the diffusion gradients. 

Advanced modeling

The MR model for Gaussian diffusion is thus character-
ized by a single parameter b instead of three (∆, δ, and
G). This equation can be validated experimentally by
measuring the evolution of the MR signal in water for dif-

ferent combinations of ∆, δ, and G (Fig. 4). However, the
same experiment in the white matter (with diffusion gra-
dient directions perpendicular to the main axis of the ax-
ons) shows that: i) a single exponential is not sufficient
to model the MR signal decay as a function of the b-val-
ue, and ii) the MR signal is not a function of the b-value
only (see figure 4). The first observation led to the de-
velopment of the models with multiple compartments, a
slow diffusion compartment that corresponds to the
trapped water (within myelinated axons for instance),
and a fast diffusion compartment that corresponds to the
water that is diffusing in the extracellular matrix or is in
active exchange with glial cells (e.g. astrocytes via the
aquaporin pores). The second observation (signal is not
dependent only on the b-value) requires the use of non-
Gaussian diffusion equations to model the slow com-
partment. The equation of restricted diffusion within
cylinders of known diameter (Wang et al., 1995) correct-
ly models this non-Gaussianity of diffusion in white mat-
ter (Alexander et al., 2010; Assaf and Basser, 2005;
Avram et al., 2004; Ferizi et al., 2014, 2015; Nilsson et
al., 2013; Panagiotaki et al., 2012; Zhang et al., 2012).
This non-Gaussian compartment is usually attributed to
the water restricted in myelinated fibers. Although the ex-
tra-axonal compartment is a complex structure, assum-
ing Gaussian diffusion in this compartment correctly
models the MRI signal (Alexander et al., 2010; Assaf and
Basser, 2005; Ferizi et al., 2015; Nilsson et al., 2013;
Zhang et al., 2012), probably due to the good permeabil-
ity of the membranes (see section “White matter mi-
crostructure”), although this assumption can be refined
when varying the diffusion time (Burcaw et al., 2015).
While Gaussian diffusion, notably used in DTI experi-
ments, is a good approximation at low b-values (typical-
ly b = 1500 s/mm2) for a fixed diffusion time, advanced
models, such as those from the previous paragraph, are
necessary for larger b-values or in experiments with var-
ious diffusion times in order to get measurements (e.g.
diffusion coefficients) that are independent of the acqui-
sition protocol (e.g. choice of b-values and diffusion
times). Another asset of these more advanced models is
their robustness to partial volume effects or contamina-
tion with cerebrospinal fluid (CSF). Not accounting for
these effects leads to abnormally low values of FA, for

Figure 3 - Timeline for encoding the diffusion of the water molecules in MRI.  
Just after being excited, the position of each molecule is tagged based on the phase of its spins, by applying gradient #1 (parametrized by its
strength G and duration δ). During a time ∆, the spins (illustrated by small circles) move (due to Brownian motion or convection). The longer
the time ∆ is, the further the molecules can move. A second and identical gradient is applied to quantify this displacement through a signal loss
in the MR response.  

Figure 2 - Diffusion reveals the underlying microstructure of
the tissue.
The diffusion of a drop of ink on isotropic (left) or anisotropic (right)
fibrous tissue is Gaussian and can be modeled with an ellipse. The
main axis of this ellipse (horizontal axis in this case) defines the
main direction of the fibers that form the tissue. The ratio between
the main and the secondary axis defines the degree of anisotropy of
the paper. Similarly, diffusion in the white matter tissue is modeled
with an ellipsoid in diffusion tensor imaging experiments. This figure
was inspired by Dr Gordon Kindlmann (University of Chicago).
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instance at the periphery of the white matter tissue, no-
tably close to ventricles or at the periphery of the spinal
cord, even if the tissue is healthy.
These models can thus be used to describe tissue mi-
crostructure. The relative proportion between the re-
stricted water trapped inside axons and the water pre-
senting Gaussian diffusion outside the axons can be re-
trieved (metric fr in Fig. 1), and some models also fea-
ture the orientation dispersion or the permeability of the
myelin sheath (Clark and Le Bihan, 2000; Nilsson et al.,
2012, 2013; Panagiotaki et al., 2012; Zhang et al.,
2012). Some of these parameters can be measured ro-
bustly only with a system that can achieve very high gra-
dient strengths, while others are adapted for clinical
scanners.

Myelin imaging

In one important field of MRI research, the aim is to
measure the myelin content within a tissue. Myelin im-
aging is particularly interesting in neurodegenerative
diseases, as well as in several neurological disorders
(e.g. autism, schizophrenia), because of the presence of
demyelination or abnormal myelination of neuronal
fibers (Fields, 2008). Unfortunately, measuring the sig-
nal directly from myelin is challenging due to the ultra-
short myelin relaxation times (T2~10 ms), and because
the signal from myelin gets lost in the strong water sig-
nal. Although some groups showed very promising re-
sults of direct myelin imaging in humans in vivo (Sheth
et al., 2016), such techniques are very recent and fur-
ther validation is required. Instead of detecting the
myelin directly, researchers have developed strategies
to retrieve quantitative metrics that correlate with ab-
solute myelin content (or myelin volume fraction, MVF)
from the water signal. As a consequence, it should be
kept in mind that the term myelin imaging can be mis-
leading. Indeed, these techniques provide quantitative
metrics that need to be calibrated, assuming a linear re-
lationship with MVF, in order to retrieve the true myelin

content. Usually, the coefficients of this linear relation-
ship are not perfectly known and might change in
pathology (e.g. effect of the non-compact myelin sheath
in multi-component T2 experiments). Also, some of
these techniques are sensitive to all lipids and macro-
molecules in general (e.g. magnetization transfer) and
not only to myelin. Different physical properties have
been used to obtain metrics sensitive to myelin content. 

Magnetization transfer

One strategy is to take advantage of the phenomenon
called magnetization transfer (MT) (Wolff and Balaban,
1989), where the hydrogen spins bound to macromole-
cules, once excited by a dedicated radiofrequency pulse,
transfer a part of their energy to the neighboring free wa-
ter spins. The more the macromolecules present in the
voxel, the greater the number of free water spins excited
via this phenomenon, which impacts on the MR signal.
The most common metric utilizing this phenomenon is
the magnetization transfer ratio (MTR), which has been
shown to correlate with myelin content (Schmierer et al.,
2004), but also with other properties such as the T1 re-
laxation time (Henkelman et al., 2001). A particularly in-
teresting improvement of MTR is the saturated magneti-
zation transfer metric (MTsat) (Helms et al., 2008): MTsat
decouples MTR from T1, but is still protocol-dependent.
In order to derive truly quantitative metrics from the MT
phenomenon, researchers proposed modeling it in white
matter and introduced equations of the MR signal
change as a function of acquisition parameters (e.g. fre-
quency or power of the radiofrequency pulse that excites
the macromolecules), a technique called quantitative MT
(qMT) (Henkelman et al., 1993). While comprehensive
models are theoretically able to quantify myelin content
(Harrison et al., 1995), fitted parameters are too unstable
to be estimated in vivo (Levesque and Pike, 2009). Al-
ternatively, qMT extracts the volume fraction of all macro-
molecules in a voxel (i.e. not only myelin, but also mem-
branes of other cells and organelles).

Figure 4 - MRI signal as a function of b-value in voxels presenting Gaussian (left) or non-Gaussian (right) diffusion of water
molecules. 
While conventional diffusion MRI assumes Gaussian diffusion characterized by dependence on the b-value only, diffusion perpendicular to neu-
ronal fibers (right) is non-Gaussian, which allows the extraction of additional microstructural information such as axon diameter.
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Myelin water fraction

Another strategy is to exploit the relationship between
myelin content and spin relaxometry. Indeed, the water
contained in the myelin sheath (myelin water amounts to
approximately 40% of the myelin volume) presents a
very short T2 relaxation time compared with the rest of
the water molecules. By measuring the amount of water
with a short T2 relaxation time, it is possible to measure
the myelin water fraction (MWF) (MacKay et al., 1994). 
It is also possible to infer the myelin volume fraction
from the MWF if we assume that 40% of myelin water is
in the myelin sheath. While initial implementations of
this technique suffered from high noise level, new ac-
quisition strategies and models have been developed to
obtain higher quality images and to make this technique
usable for clinical studies (Deoni et al., 2008; Oh et al.,
2013; Prasloski et al., 2012). Note that T1 relaxation
time can also be used for myelin imaging as proposed
by Stüber et al. (2014), keeping in mind that T1 is po-
tentially biased by axon diameter (Harkins et al., 2016).

Normalized proton density

Another relevant metric for microstructure modeling is
the measurement of the water content obtained using
normalized proton density (PD) mapping (Tofts PS,
2003; Volz et al., 2012). The complement of this metric
is the non-water volume; this provides a measure of the
macromolecular tissue volume (MTV), which includes
lipids (Mezer et al., 2013). While all raw MR images are
PD weighted, obtaining quantitative measurement of the
water content requires challenging corrections of coil ex-
citation (B1+) and sensitivity (B1−) profiles, as well as a
calibration of the signal with relatively pure water (e.g.
CSF) (Mezer et al., 2013; Tofts PS, 2003; Volz et al.,
2012). With a good correction and calibration pipeline,
water content can be measured precisely and with high
reproducibility in the brain (Mezer et al., 2013).

Multimodal MRI

Thanks to ongoing improvements in acquisition se-
quences, protocols and hardware, it is now possible to
obtain quantitative maps rapidly (in less than 10 min).
By obtaining multiple quantitative MRI maps in a rea-
sonable time it is possible to get complementary infor-
mation on the tissue microstructure. The different met-
rics can be combined using models to derive more ro-
bust and relevant quantitative metrics, commonly called
multimodal or multi-parametric measurements.  One ex-
ample is the computation of the fiber g-ratio, defined as
the ratio of the axon caliber to the fiber caliber (axon
plus myelin). The g-ratio can be computed by combining
the restricted water fraction (fr) obtained with quantita-
tive diffusion MRI, and the MVF obtained with myelin im-
aging. Taken independently, both fr and MVF are affect-
ed by CSF contamination or edema. In the computation
of the g-ratio, these effects are compensated for; this
simplifies the interpretation in case of demyelination,
and is expected to improve the specificity of the tech-
nique to myelin sheath thickness. 
The recent development of MR fingerprinting also offers
interesting ways to obtain multi-parametric maps in a
rapid manner (Ma et al., 2013), although further valida-
tion is still required before these techniques can be ap-
plied to pathological cases.

Challenges

In addition to practical and technical challenges, quanti-
tative MRI presents fundamental challenges that make
the modeling and interpretation of quantitative MRI re-
sults difficult.

Inferring the microscopic from the macroscopic

The signal is an average of many micro- and nanoscop-
ic processes occurring over space (one voxel is com-
posed of millions of magnetic spins) and time (usually in
the order of milliseconds). The diffusion, for instance, is
due to the Brownian movement and convection of water
molecules within cells, between cells and through mem-
brane aquaporin pores. Although very complex at
nanoscopic scale, these chaotic displacements of water
molecules can be described through probability func-
tions [e.g. Gaussian in free water (Einstein, 1956)] that
are highly reproducible on a macroscopic scale, and can
therefore be modeled. But these probability functions al-
so depend on the microscopic structure of the tissue
(e.g. size of the cells and direction of the fibers), which
hinders or restricts the global diffusion and thus modifies
the MRI signal. Explaining the macroscopic features
from the micro- and nanoscopic processes requires the
isolation of the main effects from the negligible ones, a
task that is particularly difficult because i) many of the
parameters involved are related to the MRI acquisition
(e.g. magnetic gradient strength, duration, delays) and
physics (e.g. diffusion coefficients, membrane perme-
abilities, exchange rates); ii) the precision of the meas-
urements, hardware capability and experiment duration
are limited, and iii) the observed signal usually shows a
simple behavior (e.g. bi-exponential) with only subtle
changes. 

Choosing the right model

Due to this difficulty in relating the macroscopic to the
microscopic, many models have been developed for
each MRI modality. While most diffusion models share
the same approach (i.e., they are based on a mixture of
free, hindered and restricted water compartments), they
usually propose to take into account additional effects or
to make additional simplifications and assumptions.
Choosing the right model is not straightforward and mul-
tiple criteria need to be taken into account. The com-
plexity of the model, which can be defined by the num-
ber of parameters to fit, is one important criterion; while
the most complex models are supposedly more accu-
rate and specific, they produce less precise metrics with
worse image quality, and thus cannot detect a subtle
change in tissue integrity. 
On the other hand, simple models produce metrics that
are harder to interpret because of the difficulty in de-
coupling the contributions from multiple sources. Anoth-
er criterion for choosing the right model is the targeted
tissue. Indeed, in the majority of the white matter, the
large dispersion of orientation (and crossing) of the
fibers needs to be taken into account in the diffusion
model (via additional parameters). Zhang et al. (2012)
proposed a popular model called NODDI that can quan-
tify this dispersion of orientation as well as the intra-ax-
onal volume. However, this aspect can be neglected

222 Functional Neurology 2016; 31(4): 217-228
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(which simplifies the modeling) in the spinal cord white
matter where there is good coherence of orientation
(Grussu et al., 2016). 
Choosing the right model also goes hand in hand with
deciding the acquisition strategy: instead of building
very complex models that would work with any acquisi-
tion protocol, another interesting strategy is to adapt the
acquisition in order to simplify the modeling. For in-
stance, acquiring diffusion data only in one direction per-
pendicular to the direction of the fibers (in tissues with
good coherence of orientation) allows simpler modeling
than a complete 3D acquisition, and thus the extraction
of more robust metrics with shorter protocols. Another
example is the choice of diffusion time in the protocol:
the longer the diffusion time, the more hindered the dif-
fusion in the extra-axonal compartment (Burcaw et al.,
2015). Acquisition protocols that have only long diffusion
times will thus be modeled differently from those con-
sisting only of short durations. Some groups even pro-
posed changing the acquisition paradigm: oscillating in-
stead of pulsed magnetic gradients have been used
successfully to encode the diffusion (Lundell et al.,
2015; Shemesh et al., 2015); additional preparatory
pulses have been used in myelin imaging to cancel the
signal from free water protons (VISTA) (Oh et al., 2013).

Validating the models

Testing and validating the different models requires a
good ground truth, which is hard to get. The comparison
of the MRI signal with histology, as well as the fabrication
of realistic and well-controlled synthetic phantoms is an
active field of research in microstructural imaging. Histol-
ogy is technically complex due to tissue deterioration dur-
ing the preparation stages (e.g. fixation, staining, slicing)
and it is limited due to the many coupled variables that
cannot be controlled independently. While histology is a
great method for demonstrating the sensitivity to a partic-
ular microstructural feature, it cannot easily be used to
show the specificity. Indeed, microstructural properties (g-
ratio, T1, absolute myelin content, water content, axon di-
ameter) generally correlate with each other. Hence, as-
sessing with confidence the specificity of each individual
metric is an inherently ill-posed problem. 
The issue of validation from ex vivo data is further com-
plicated by the difficulty in generating, from histology,
ground truth data that match the resolution of MRI: with-
in a single MRI voxel there lie thousands of axons,
which need to be individually labeled in order to retrieve
aggregated ground truth metrics such as axon diameter
and myelin. Fortunately, recent efforts in open-source
software3 for automatic axon and myelin segmentation
(Zaimi et al., 2016) will make it easier for researchers to
use large-scale histology and validate the relationship of
their metric with the desired microstructural feature. Al-
though numerical and synthetic phantoms allow for bet-
ter-controlled experiments, this approach needs to be
complemented with more realistic white matter tissue. In
summary, there is no perfect validation method and the
research community relies on the accumulation of evi-
dence from diverse approaches to validate quantitative
MRI methods. 

Translating the models to the damaged tissue

Tissue characteristics can change drastically in patholo-
gy. The proliferation of microglia, inflammation, the pres-
ence of axonal debris, or the constitution of a glial scar
in nervous tissue limit the validity of some assumptions
used in models [e.g. impermeability of the myelin sheath
in demyelination, unrestricted diffusion in the extra-ax-
onal compartment (Syková et al., 1999)]. Choosing a
model that is robust to all pathological cases is one of
the biggest challenges of quantitative MRI.

Performance of quantitative MRI metrics

Quantitative MRI has seen many improvements thanks
to better acquisition strategies (Deoni et al., 2003; Mar-
ques et al., 2010; Oh et al., 2013; Prasloski et al., 2012;
Van et al., 2014), optimized experimental designs
(Alexander, 2008), more robust models (Zhang et al.,
2012), and advanced data processing, such as faster
and more stable equation solvers (Daducci et al., 2015;
Sepehrband et al., 2016). On top of that, acquisition time,
noise level and image artifacts (e.g. sensitivity to move-
ment) have been improved thanks to improvements in
hardware, in terms of field and gradient strength, coils
and sequences (e.g. parallel imaging, simultaneous mul-
tislice excitation, reduced field of view). By combining all
these improvements, the quantitative MRI metrics cited
in previous sections can provide high-quality maps, with
image quality similar to that of conventional MRI images,
in just a couple of minutes. Beyond these improvements
in acquisition time and image quality, quantitative MRI al-
so requires accurate and reproducible ways of extracting
the values in specific regions, a task facilitated by the de-
velopment of automatic and robust segmentation, regis-
tration and metric extraction software and pipelines
(Dupont et al., 2016; Vollmar et al., 2010). Unfortunately
integrating all these improvements is difficult and time-
consuming; in practice, basic or unoptimized methods
are always used at some point, which leaves space for
even better results in the future.

Qualitative assessment

One approach to estimate the sensitivity and precision
of a quantitative metric is to qualitatively assess the lev-
el of noise and detail in the maps. In the latest imple-
mentations, model-based diffusion MRI metrics can pro-
duce highly detailed maps with high contrast-to-noise
ratio (Daducci et al., 2015). Although MWF mapping
was particularly noisy when it was first introduced
(MacKay et al., 1994), relatively good quality MWF
maps can now be obtained rapidly (Deoni et al., 2008;
Oh et al., 2013; Prasloski et al., 2012). qMT generates
maps with similar noise level as MWF (depending on ac-
quisition time), but with particularly small contrast in the
white matter (Dula et al., 2010; Levesque et al., 2010).
Proton density maps are highly detailed with relatively
good quality and correlate with qMT and MWF (Mezer et
al., 2013).

3 https://github.com/neuropoly/axonseg 



Reproducibility

The reproducibility of quantitative metrics is usually as-
sessed by the coefficient of variation (CoV) and/or the
voxel-wise Pearson correlation coefficient (r) in scan-
rescan experiments of the same subject at two different
time points (the subject is removed from the scanner be-
tween scans). 
Most model-based quantitative metrics have a good
CoV (<10%). These include fr (Grussu et al., 2015),
MWF (Wu et al., 2006), PD (Mezer et al., 2013) and
qMT (Levesque et al., 2010). Some metrics, however,
are less stable on clinical setups and are adapted es-
sentially for research scanners and studies; axon diam-
eter measurements, for instance, present relatively
large CoV values on clinical scanners (>11%) (Clayden
et al., 2015) due to the requirement of strong gradients
(Dyrby et al., 2012; Huang et al., 2015).
Particularly good whole-brain scan-rescan correlations
(r >0.9) have been shown for the metrics fr (Tariq et al.,
2012) and PD (Mezer et al., 2013). While such high val-
ues are quite remarkable, comparing correlation coeffi-
cients between quantitative metrics is particularly risky
because r is highly dependent on the dynamic of the
metric. For example, the g-ratio is relatively constant in
healthy tissue, leading to low correlation coefficients. On
the contrary, metrics that present high contrast between
CSF and white matter would have high correlation coef-
ficients as a result of CSF contamination. Also, the same
metric can present very different correlation coefficients
depending on the region of interest selected to perform
the comparison (e.g. including both gray and white mat-
ter, as opposed to white matter only, usually improves
the correlation coefficient). Future studies where sever-
al metrics are acquired within the same sample would
shed light on this issue. 
Another interesting metric that can be used to assess
metric reproducibility is the intraclass correlation coeffi-
cient (ICC); indeed, the ICC shows the capability of a
metric to detect differences between subjects that are
significantly higher than the intra-subject scan-rescan
difference. In the presence of significantly higher inter-
subject differences, the ICC should be close to 1. In-
stead, if the values are similar, ICC will be close to 0.5.
Using this statistic, it has been shown that both diffusion
MRI (ICC=0.84 for fr in the spinal cord) (Grussu et al.,
2015) and myelin imaging techniques (ICC=0.76 for
MWF in the brain) (Meyers et al., 2013) are able to de-
tect differences of white matter microstructure between
two healthy subjects.

Sensitivity

Within the white matter, the microstructure can change
drastically, mainly due to large differences in axon di-
ameters between regions (see section “White matter mi-
crostructure”). While the white matter appears homoge-
neous on conventional MRI scans, quantitative MRI re-
veals microstructural differences, notably between dif-
ferent regions of the corpus callosum (Alexander et al.,
2010; Barazany et al., 2009; Mezer et al., 2013; Stikov
et al., 2015a) or between spinal cord tracts (Duval et al.,
2015; Duval et al., 2016a; Fujiyoshi et al., 2016; Taso et
al., 2016). These metrics can also track the microstruc-
tural changes related to brain development (Dean et al.,

2016; MacMillan et al., 2011; Saito et al., 2012) or tissue
deterioration in pathology (Chong et al., 2016; Fujiyoshi
et al., 2016; Klawiter et al., 2011; Schmierer et al., 2008;
Stikov et al., 2015a). The good sensitivity and repro-
ducibility of these metrics suggest an improved capacity
to detect subtle changes. Note that the sensitivity of
quantitative MRI metrics implies the sensitivity of the
non-quantitative MRI contrasts that produced this met-
ric. However, compensating effects (e.g. simultaneous
increase of T1 and MT) can conceal subtle changes in
non-quantitative MRI contrast. 

Specificity

Specificity is supposed to be the main asset of quantita-
tive MRI metrics since these metrics disentangle the in-
formation from different sources. Unfortunately, assess-
ing the specificity of quantitative MRI metrics is challeng-
ing due to the inter-correlation of many microstructural
and MR parameters in the white matter (e.g. axon diam-
eter, axon density, myelin content, water content, T1, T2*)
(see the section “Challenges”). This issue can lead to in-
correct interpretation of tissue structure: T1, for instance,
has been considered successively as a semi-quantitative
marker for myelin (Koenig et al., 1990), for water content
(Fatouros and Marmarou, 1999), and even for axon di-
ameter (Harkins et al., 2016). While the lack of specificity
of the early quantitative MRI metrics is commonly pointed
out (Alexander et al., 2007; Schwartz et al., 2005; Wheel-
er-Kingshott and Cercignani, 2009), model-based metrics
bring new information (i.e. not perfectly correlated with
conventional metrics) (Alexander et al., 2010; Zhang et
al., 2012) that correlates with histology (Alexander et al.,
2010; Barazany et al., 2009; Dula et al., 2010; Duval et
al., 2015, 2016b; Ong and Wehrli, 2010; West et al.,
2016b), and improves specificity in lesions (Kipp et al.,
2016; Stikov et al., 2015a). More comprehensive models
(Burcaw et al., 2015), as well as a new paradigm for
measuring myelin (Sheth et al., 2016), should further im-
prove the specificity of these metrics.

Accuracy

In the early stages of MRI biomarker development, ac-
curacy could be considered a secondary issue. Indeed,
if a quantitative metric presents good reproducibility
across sites, as well as good sensitivity and specificity to
microstructure integrity, this metric requires only norma-
tive values from healthy subjects in order to decide
whether or not a patient presents abnormal values. An at-
las of widely used semi-quantitative metrics has already
been generated [e.g. FMRIB58_FA (Smith et al., 2004)]. 
However, accuracy is important in model-based quan-
titative MRI for validating the models and for allowing
accurate interpretation of tissue integrity in different
case scenarios. Accuracy is notably important when
several metrics are combined, such as in computing
the g-ratio, to prevent misinterpretation (Campbell et
al., 2016). Accuracy is usually assessed by comparing
MRI metrics with features extracted from ex vivo tissue
such as those reported in figure 5. Some metrics can
be directly compared such as PD, fr or axon diameter
distribution. While PD and fr present relatively good
accuracy (Nilsson et al., 2013; PS Tofts, 2003), axon
diameter measurement has been reported to be over-
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estimated by a factor of ~3 (Alexander et al., 2010;
Horowitz et al., 2015; Innocenti et al., 2015; Zhang et
al., 2011), and this was recently shown to be due to
modeling issues (Burcaw et al., 2015) that were affect-
ing the specificity of this metric. Unfortunately, many
metrics, such as MWF and qMT, cannot be compared
directly because they are specific to different mi-
crostructural features (myelin water for MWF, macro-
molecules for qMT). However, the MRI metric (e.g.
MWF) can be calibrated to get accurate measurements
of the microstructural feature (in this case, the myelin
volume fraction, or MVF). Usually this calibration as-

sumes a linear relationship between the MRI metric
and the targeted microstructural parameter (i.e. MWF
∝ MVF), and is performed using synthetic phantoms
(e.g. agar-agar solution with a known concentration) or
using a few normative values measured with histology
on healthy tissue (e.g. white matter and gray matter
myelin content). While these calibration strategies
might be a good approximation for healthy tissue, a lin-
ear assumption might not hold in pathology. For in-
stance, how should we define the MWF or the fr in ax-
ons presenting unwrapped myelin sheaths? For these
reasons, special care should be taken in evaluating the
accuracy of quantitative MRI metrics.

Examples of quantitative MRI images

In this section, we present some examples of quantita-
tive MRI maps. These maps are often easily distin-
guished from conventional MRI by the presence of a col-
or bar associating a pixel color with a quantitative value.
Figure 6 shows maps of MVF, axon volume fraction
(AVF) and g-ratio obtained using qMT and NODDI on a
multiple sclerosis patient. As shown in the section Re-
producibility, the variation of these metrics across
healthy subjects is relatively low (CoV<10%) which
means that the underlying microstructure within a
healthy population does not vary much. Knowing this, al-
teration of tissue integrity can be detected, not from the
contrast with surrounding tissue, but directly from the
quantitative value. Thanks to robust registration proce-
dures, it is also possible to detect abnormal values auto-
matically, segment a lesion, and provide statistics. Con-
ventional fluid attenuated inversion recovery (FLAIR)
contrast clearly indicates the presence of three hyperin-
tense lesions. While these three lesions are associated
with a reduction of myelin content MVF and axon densi-
ty AVF, only one of them presents an abnormal g-ratio,
suggesting a gain in specificity of the g-ratio metric. Ex vi-
vo experiments, such as that presented in figure 5, enable
comparison between MRI and histology to assess the
sensitivity and accuracy of models. Because microstruc-

Modeling white matter microstructure

Functional Neurology 2016; 31(4): 217-228 225

Figure 6 - Example of multi-parametric quantitative MRI maps of a multiple sclerosis patient. 
Myelin volume fraction (MVF) was obtained using a qMT (Henkelman et al., 1993), axon volume fraction (AVF) was computed using the NOD-
DI model (Zhang et al., 2012), and g-ratio was calculated from AVF and MVF (Stikov et al., 2015a). Conventional FLAIR contrast indicates the
presence of three hyperintense lesions. These lesions are associated with a reduction in MVF and AVF, but only one lesion shows an abnor-
mal g-ratio (>0.8).

Figure 5 - A comparison of ex vivo quantitative MRI maps
with histology. 
Once segmented, histology can provide mean axon diameter or
myelin volume fraction in a voxel. Visually, MRI and histology are in
agreement, supporting the sensitivity of MRI to these specific mi-
crostructural properties.  



tural parameters are correlated between each other (e.g.
axon diameter, axon density and g-ratio), assessing their
specificity is not straightforward, and would require a
number of comparisons, not only in healthy white matter,
but also in pathological tissue (West et al., 2016b).

Concluding remarks

In this brief review, we have described the most common
quantitative MRI metrics and the methodology for model-
ing white matter. We showed that state-of-the-art quanti-
tative MRI techniques produce reproducible maps that
are highly sensitive to particular microstructural parame-
ters. These maps are more specific to white matter mi-
crostructure than conventional MRI metrics, and can be
calibrated to give meaningful numbers. While the long-
term objective is to be able to retrieve the exact tissue mi-
crostructure and assess its integrity non-invasively, cur-
rent quantitative MRI metrics should be interpreted care-
fully. With automatic processing pipelines, quantitative
MRI should see more clinical applications in the next few
years, notably for diagnosis and prognosis of diseases,
as well as the monitoring of the effects of treatment.
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