
Asymptotic Normality of Quadratic Estimators

James Robins, Lingling Li, Eric Tchetgen, and Aad van der Vaart
Departments of Biostatistics and Epidemiology, School of Public Health, Harvard University, 
Mathematical Institute, Leiden University

Abstract

We prove conditional asymptotic normality of a class of quadratic U-statistics that are dominated 

by their degenerate second order part and have kernels that change with the number of 

observations. These statistics arise in the construction of estimators in high-dimensional semi- and 

non-parametric models, and in the construction of nonparametric confidence sets. This is 

illustrated by estimation of the integral of a square of a density or regression function, and 

estimation of the mean response with missing data. We show that estimators are asymptotically 

normal even in the case that the rate is slower than the square root of the observations.
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1. Introduction

Let (X1, Y1), …, (Xn, Yn) be i.i.d. random vectors, taking values in sets  × ℝ, for an 

arbitrary measurable space ( , ) and ℝ equipped with the Borel sets. For given 

symmetric, measurable functions Kn:  ×  → ℝ consider the U-statistics

(1)

Would the kernel (x1, y1, x2, y2) ↦ Kn(x1, x2)y1y2 of the U-statistic be independent of n 

and have a finite second moment, then either the sequence  would be 

asymptotically normal or the sequence n(Un−EUn) would converge in distribution to 

Gaussian chaos. The two cases can be described in terms of the Hoeffding decomposition 

 of Un, where  is the best approximation of Un − EUn by a sum of 

the type  and  is the remainder, a degenerate U-statistic (compare (28) in 

Section 5). For a fixed kernel Kn the linear term  dominates as soon as it is nonzero, in 
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which case asymptotic normality pertains; in the other case  and the U-statistic 

possesses a nonnormal limit distribution.

If the kernel depends on n, then the separation between the linear and quadratic cases blurs. 

In this paper we are interested in this situation and specifically in kernels Kn that concentrate 

as n → ∞ more and more near the diagonal of  × . In our situation the variance of the 

U-statistics is dominated by the quadratic term . However, we show that the sequence 

(Un − EUn)/σ(Un) is typically still asymptotically normal. The intuitive explanation is that 

the U-statistics behave asymptotically as “sums across the diagonal r = s” and thus behave as 

sums of independent variables. Our formal proof is based on establishing conditional 

asymptotic normality given a binning of the variables Xr in a partition of the set .

Statistics of the type (1) arise in many problems of estimating a functional on a 

semiparametric model, with Kn the kernel of a projection operator (see [1]). As illustrations 

we consider in this paper the problems of estimating ∫ g2(x) dx or ∫ f2(x) dG(x), where g is 

a density and f a regression function, and of estimating the mean treatment effect in missing 

data models. Rate-optimal estimators in the first of these three problems were considered by 

[2, 3, 4, 5, 6], among others. In Section 3 we prove asymptotic normality of the estimators in 

[4, 5], also in the case that the rate of convergence is slower than , usually considered to 

be the “nonnormal domain”. For the second and third problems estimators of the form (1) 

were derived in [1, 7, 8, 9] using the theory of second-order estimating equations. Again we 

show that these are asymptotically normal, also in the case that the rate is slower than .

Statistics of the type (1) also arise in the construction of adaptive confidence sets, as in [10], 

where the asymptotic normality can be used to set precise confidence limits.

Previous work on U-statistics with kernels that depend on n includes [14, 15, 16, 17, 18]. 

These authors prove unconditional asymptotic normality using the martingale central limit 

theorem, under somewhat different conditions. Our proof uses a Lyapounov central limit 

theorem (with moment 2 + ε) combined with a conditioning argument, and an inequality for 

moments of U-statistics due to E. Giné. Our conditions relate directly to the contraction of 

the kernel, and can be verified for a variety of kernels. The conditional form of our limit 

result should be useful to separate different roles for the observations, such as for 

constructing preliminary estimators and for constructing estimators of functionals. Another 

line of research (as in [11]) is concerned with U-statistics that are well approximated by their 

projection on the initial part of the eigenfunction expansion. This has no relation to the 

present work, as here the kernels explode and the U-statistic is asymptotically determined by 

the (eigen) directions “added” to the kernel as the number of observations increases. By 

making special choices of kernel and variables Yi, the statistics (1) can reduce to certain 

chisquare statistics, studied in [12, 13].

The paper is organized as follows. In Section 2 we state the main result of the paper, the 

asymptotic normality of U-statistics of the type (1) under general conditions on the kernels 

Kn. Statistical applications are given in Section 3. In Section 4 the conditions of the main 

theorem shown to be satisfied by a variety of popular kernels, including wavelet, spline, 
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convolution, and Fourier kernels. The proof of the main result is given in Section 5, while 

proofs for Section 4 are given in an appendix.

The notation a ≲ b means a ≤ Cb for a constant C that is fixed in the context. The notations 

an ~ bn and an ≪ bn mean that an/bn → 1 and an/bn → 0, as n → ∞. The space L2(G) is the 

set of measurable functions f:  → ℝ that are square-integrable relative to the measure G 
and ‖f‖G is the corresponding norm. The product f × g of two functions is to be understood 

as the function (x1, x2) ↦ f(x1)g(x2), whereas the product F × G of two measures is the 

product measure.

2. Main result

In this section we state the main result of the paper, the asymptotic normality of the U-

statistics (1), under general conditions on the kernels Kn and distributions of the vectors (Xr, 

Yr). For q > 0 let

be versions of the conditional (absolute) moments of Y1 given X1. For simplicity we assume 

that μ1 and and μ2 are uniformly bounded. The marginal distribution of X1 is denoted by G.

The kernels are assumed to be measurable maps Kn:  ×  → ℝ that are symmetric in 

their two arguments and satisfy  for every n. Thus the corresponding 

kernel operators (with abuse of notation denoted by the same symbol)

(2)

are continuous, linear operators Kn: L2(G) → L2(G). We assume that their operator norms 

‖Kn‖ = sup{‖Knf‖G: ‖f‖G = 1} are uniformly bounded:

(3)

By the Banach-Steinhaus theorem this is certainly the case if Knf → f in L2(G) as n → ∞ 
for every f ∈ L2(G). The operator norms ‖Kn‖ are typically much smaller than the L2(G×G)-

norms of the kernels. The squares of the latter are typically of the same order of magnitude 

as the square L2(G × G)-norms weighted by μ2 × μ2, which we denote by

(4)
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We consider the situation that these square weighted norms are strictly larger than n:

(5)

Under condition (5) the variance of the U-statistic (1) is dominated by the variance of the 

quadratic part of its Hoeffding decomposition. In contrast, if kn = n, the linear and quadratic 

parts contribute variances of equal order. This case can be handled by the methods of this 

paper, but requires a special discussion on the joint limits of the linear and quadratic terms, 

which we omit. The remaining case kn ≪ n leads to asymptotically linear U-statistics, and is 

well understood.

The remaining conditions concern the concentration of the kernels Kn to the diagonal of  × 

. We assume that there exists a sequence of finite partitions  = ∪m n,m in measurable 

sets such that

(6)

(7)

(8)

(9)

The sum in the first condition (6) is the integral of the square kernel (weighted by the 

function μ2 × μ2) over the set ∪m( n,m × n,m) (shown in Figure 1). The condition requires 

this to be asymptotically equivalent to the integral kn of this same function over the whole 

product space  × . The other conditions implicitly require that the partitioning sets are 

not too different and not too numerous.

A final condition requires implicitly that the partitioning is fine enough. For some q > 2, the 

partitions should satisfy

(10)
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This condition will typically force the number of partitioning sets to infinity at a rate 

depending on n and kn (see Section 4). In the proof it serves as a Lyapounov condition to 

enforce normality.

The existence of partitions satisfying the preceding conditions depends mostly on the kernels 

Kn, and is established for various kernels in Section 4. The following theorem is the main 

result of the paper. Its proof is deferred to Section 5.

Let In be the vector with as coordinates In,1, …, In,n the indices of the partitioning sets 

containing X1, …, Xn, i.e. In,r = m if Xr ∈ n,m. Recall that the bounded Lipschitz distance 

generates the weak topology on probability measures.

Theorem 2.1

Assume that the function μ2 is uniformly bounded. If (2) and (5) hold and there exist finite 
partitions  = ∪m n,m such that (6)–(10) hold, then the bounded Lipschitz distance 
between the conditional law of (Un − EUn)/σ(Un) given In and the standard normal 
distribution tends to zero in probability. Furthermore varUn ~ 2kn/n2 for kn given in (4).

The conditional convergence in distribution implies the unconditional convergence. It 

expresses that the randomness in Un is asymptotically determined by the fine positions of the 

Xi within the partitioning sets, the numbers of observations falling in the sets being fixed by 

In.

In most of our examples the kernels are pointwise bounded above by a multiple of kn, and 

(4) arises, because the area where Kn is significantly different from zero is of the order . 

Condition (10) can then be simplified to

(11)

Lemma 2.1

Assume that the functions μ2 and μq are bounded away from zero and infinity, respectively. 
If ‖Kn‖∞ ≲ kn, then (10) is implied by (11).

Proof—The sum in (10) is bounded up to a constant by ∫ |Kn|q d(G × G), which is bounded 

above by a constant times , by the definition of kn.

3. Statistical applications

In this section we give examples of statistical problems in which statistics of the type (1) 

arise as estimators.

3.1. Estimating the integral of the square of a density

Let X1, …, Xn be i.i.d. random variables with a density g relative to a given measure ν on a 

measurable space ( , ). The problem of estimating the functional ∫ g2 dν has been 
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addressed by many authors, including [2], [6] and [19]. The estimators proposed by [4, 5], 

which are particularly elegant, are based on an expansion of g on an orthonormal basis e1, 

e2, … of the space L2( , , ν), so that , for θi = ∫ gei dν the Fourier 

coefficients of g. Because , the square Fourier coefficient  can be 

estimated unbiasedly by the U-statistic with kernel (x1, x2) ↦ ei(x1)ei(x2). Hence the 

truncated sum of squares  can be estimated unbiasedly by

This statistic is of the type (1) with kernel  and the variables 

Y1, …, Yn taken equal to unity.

The estimator Un is unbiased for the truncated series , but biased for the functional 

of interest . The variance of the estimator can be computed to be of the order 

k/n2 ∨ 1/n (cf. (29) below). If the Fourier coefficients are known to satisfy , 

then the bias can be bounded by , and trading square bias versus the 

variance leads to the choice k = n1/(2β+1/2).

In the case that β > 1/4, the mean square error of the estimator is 1/n and the sequence 

 can be shown to be asymptotically linear in the efficient influence function 

2(g − ∫ g2 dν) (see (28) with μ(x) = E(Y1| X1 = x) ≡ 1 and [4], [5]). More interesting from 

our present perspective is the case that 0 < β < 1/4, when the mean square error is of order 

n−4β/(2β+1/2) ≫ 1/n, and the variance of Un is dominated by its second-order term. By 

Theorem 2.1 the estimator, centered at its expectation, and with the orthonormal basis (ei) 

one of the bases discussed in Section 4, is still asymptotically normally distributed.

The estimator depends on the parameter β through the choice of k. If β is not known, then it 

would typically estimated from the data. Our present result does not apply to this case, but 

extension are thinkable.

3.2. Estimating the integral of the square of a regression function

Let (X1, Y1), …, (Xn, Yn) be i.i.d. random vectors following the regression model Yi = b(Xi) 

+ εi for unobservable errors εi that satisfy E(εi|Xi) = 0. It is desired to estimate ∫ b2 dG for 

G the marginal distribution of X1, …, Xn.

If the distribution G is known, then an appropriate estimator can take exactly the form (1), 

for Kn the kernel of an orthonormal projection on a suitable kn-dimensional space in L2(G). 

Its asymptotics are as in Section 3.1.

Because an orthogonal projection in L2(G) can only be constructed if G is known, the 

preceding estimator is not available if G is unknown. If the regression function b is regular 
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of order β ≥ 1/4, then the parameter can be estimated at -rate (see [1]). In this section we 

consider an estimator that is appropriate if b is regular of order β < 1/4 and the design 

distribution G permits a Lebesgue density g that is bounded away from zero and sufficiently 

smooth.

Given initial estimators b̂n and ĝn for the regression function b and design density g, we 

consider the estimator

(12)

Here (x1, x2) ↦ Kk,g(x1, x2) is a projection kernel in the space L2(G). For definiteness we 

construct this in the form (14), where the basis e1, …, ek may be the Haar basis, or a general 

wavelet basis, as discussed in Section 4. Alternatively, we could use projections on the 

Fourier or spline basis, or convolution kernels, but the latter two require twicing (see (16)) to 

control bias, and the arguments given below must be adapted.

The initial estimators b̂n and ĝn may be fairly arbitrary rate-optimal estimators if constructed 

from an independent sample of observations. (e.g. after splitting the original sample in parts 

used to construct the initial estimators and the estimator (12)). We assume this in the 

following theorem, and also assume that the norm of b̂n in Cβ[0, 1] is bounded in 

probability, or alternatively, if the projection is on the Haar basis, that this estimator is in the 

linear span of e1, …, ekn. This is typically not a loss of generality.

Let Ê and  denote expectation and variance given the additional observations. Set μq(x) = 

E(|ε1|q|X1 = x) and let ‖·‖3 denote the L3-norm relative to Lebesgue measure.

Corollary 3.1—Let b̂n and ĝn be estimators based on independent observations that 
converge to b and g in probability relative to the uniform norm and satisfy ‖b̂n − b‖3 = 

OP(n−β/(2β+1)) and ‖ĝn − g‖3 = OP(n−γ/(2γ+1)). Let μq be finite and uniformly bounded for 
some q > 2. Then for b ∈ Cβ[0, 1] and strictly positive g ∈ Cγ[0, 1], with γ ≥ β, and for kn 

satisfying (5),

Furthermore, the sequence  tends in distribution to the standard 
normal distribution.
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For kn = n1/(2β+1/2) the estimator Tn of ∫ b2 dG attains a rate of convergence of the order 

n−2β/(2β+1/2) + n−2β/(2β+1)−γ/(2γ+1). If γ > β/(4β2 + β + 1/2), then this reduces to n−4β/(1+4β), 

which is known to be the minimax rate when g is known and b ranges over a ball in Cβ[0, 1], 

for β ≤ 1/4 (see [3] or [20]). For smaller values of γ the estimator can be improved by 

considering third or higher order U-statistics (see [9]).

3.3. Estimating the mean response with missing data

Suppose that a typical observation is distributed as X = (Y A, A, Z) for Y and A taking 

values in the two-point set {0, 1} and conditionally independent given Z, with conditional 

mean functions b(z) = P(Y = 1|Z = z) and a(z)−1 = P(A = 1|Z = z), and Z possessing density 

g relative to some dominated measure ν.

In [7] we introduced a quadratic estimator for the mean response EY = ∫ bg dν, which 

attains a better rate of convergence than the conventional linear estimators. For initial 

estimators ân, b̂n and ĝn, and Kk,α̂n,ĝn a projection kernel in L2(g/a), this takes the form

Apart from the (inessential) asymmetry of the kernel, the quadratic part has the form (1). 

Just as in the preceding section, the estimator can be shown to be asymptotically normal 

with the help of Theorem 2.1.

4. Kernels

In this section we discuss examples of kernels that satisfy the conditions of our main result. 

Detailed proofs are given in an appendix.

Most of the examples are kernels of projections K, which are characterised by the identity K 
f = f, for every f in their range space. For a projection given by a kernel, the latter is 

equivalent to f (x) = ∫ f (υ)K(x, υ) dG(υ) for (almost) every x, which suggests that the 

measure υ ↦ K(x, υ) dG(υ) acts on f as a Dirac kernel located at x. Intuitively, if the 

projection spaces increase to the full space, so that the identity is true for more and more f, 
then the kernels (x, υ) ↦ K(x, υ) must be increasingly dominated by their values near the 

diagonal, thus meeting the main condition of Theorem 2.1.

For a given orthonormal basis e1, e2, … of L2(G), the orthogonal projection onto lin (e1, …, 

ek) is the kernel operator Kk: L2(G) → L2(G) with kernel

(13)

It can be checked that it has operator norm 1, while the square L2-norm 

of the kernel is k.
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A given orthonormal basis e1, e2, … relative to a given dominating measure, can be turned 

into an orthonormal basis  of L2(G), for g a density of G. The kernel of 

the orthogonal projection in L2(G) onto lin ( ) is

(14)

If g is bounded away from zero and infinity, the conditions of Theorem 2.1 will hold for this 

kernel as soon as they hold for the kernel (13) relative to the dominating measure.

The orthogonal projection in L2(G) onto the linear span lin (f1, …, fk) of an arbitrary set of 

functions fi possesses the kernel

(15)

for A the inverse of the (k × k)-matrix with (i, j)-element 〈fi, fj〉G. In statistical applications 

this projection has the advantage that it projects onto a space that does not depend on the 

(unknown) measure G. For the verification of the conditions of Theorem 2.1 it is useful to 

note that the matrix A is well-behaved if f1, …, fk are orthonormal relative to a measure G0 

that is not too different from G: from the identity , one can 

verify that the eigenvalues of A are bounded away from zero and infinity if G and G0 are 

absolutely continuous with a density that is bounded away from zero and infinity.

Orthogonal projections K have the important property of making the inner product 

 quadratic in the approximation error. Nonorthogonal 

projections, such as the convolution kernels or spline kernels discussed below, lack this 

property, and may result in a large bias of an estimator. Twicing kernels, discussed in [21] as 

a means to control the bias of plug-in estimators, remedy this problem. The idea is to use the 

operator K + K* − K K*, where K* is the adjoint of K: L2(G) → L2(G), instead of the 

original operator K. Because I − K − K* + K K* = (I − K)(I − K*), it follows that

If K is an orthogonal projection, then K = K* and the twicing kernel is K + K* − K K* = K, 

and nothing changes, but in general using a twicing kernel can cut a bias significantly.

If K is a kernel operator with kernel (x1, x2) ↦ K(x1, x2), then the adjoint operator is a 

kernel operator with kernel (x1, x2) ↦ K(x2, x1), and the twicing operator K + K* − K K* 

is a kernel operator with kernel (which depends on G)
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(16)

4.1. Wavelets

Consider expansions of functions f ∈ L2(ℝd) on an orthonormal basis of compactly 

supported, bounded wavelets of the form

(17)

where the base functions  are orthogonal for different indices (i, j, υ) and are scaled and 

translated versions of the 2d base functions :

Such a higher-dimensional wavelet basis can be obtained as tensor products 

 of a given father wavelet ϕ0 and and mother wavelet ϕ1 in one 

dimension. See for instance Chapter 8 of [22].

We shall be interested in functions f with support  = [0, 1]d. In view of the compact 

support of the wavelets, for each resolution level i and vector υ only to the order 2id base 

elements  are nonzero on ; denote the corresponding set of indices j by Ji. Truncating 

the expansion at the level of resolution i = I then gives an orthogonal projection on a 

subspace of dimension k of the order 2Id. The corresponding kernel is

(18)

Proposition 4.1—For the wavelet kernel (18) with k = kn = 2Id satisfying kn/n → ∞ and 
kn/n2 → 0 conditions (2), (6), (7), (8), (9) and (10) are satisfied for any measure G on [0, 1]d 

with a Lebesgue density that is bounded and bounded away from zero and regression 
functions μ2 and μq (for some q > 2) that are bounded and bounded away from zero.

4.2. Fourier basis

Any function f ∈ L2[−π, π] can be represented through the Fourier series f = ∑j∈ℤ fjej, for 

the functions  and the Fourier coefficients . The truncated 

series fk = ∑|j|≤k fjej gives the orthogonal projection of f onto the linear span of the function 

{ej : |j| ≤ k}, and can be written as Kk f for Kk the kernel operator with kernel (known as the 

Dirichlet kernel)
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(19)

Proposition 4.2—For the Fourier kernel (19) with k = kn satisfying n ≪ kn ≪ n2 

conditions (2), (6)–(10) are satisfied for any measure G on ℝ with a bounded Lebesgue 
density and regression functions μ2 and μq (for some q > 2) that are bounded and bounded 
away from zero.

4.3. Convolution

For a uniformly bounded function ϕ: ℝ → ℝ with ∫ |ϕ| dλ < ∞, and a positive number σ, 

set

(20)

For σ ↓ 0 these kernels tend to the diagonal, with square norm of the order σ−1.

Proposition 4.3—For the convolution kernel (20) with σ = σn satisfying n−2 ≪ σn ≪ n−1 

conditions (2), (6)–(10) are satisfied for any measure G on [0, 1] with a Lebesgue density 
that is bounded and bounded away from zero and regression functions μ2 and μq (for some q 
> 2) that are bounded and bounded away from zero.

4.4. Splines

The Schoenberg space Sr(T, d) of order r for a given knot sequence T: t0 = 0 < t1 < t2 < ⋯ < 

tl < 1 = tl+1 and vector of defects d = (d1, …, dl) ∈ {0, …, r − 1} are the functions f: [0, 1] 

→ ℝ whose restriction to each subinterval (ti, ti+1) is a polynomial of degree r − 1 and 

which are r − 1 − di times continuously differentiable in a neighbourhood of each ti. (Here 

“0 times continuously differentiable” means “continuous” and “−1 times continuously 

differentiable” means no restriction.) The Schoenberg space is a k = r + ∑i di-dimensional 

vector space. Each “augmented knot sequence”

(21)

defines a basis N1, …, Nk of B-splines. These are nonnegative splines with ∑j Nj = 1 such 

that Nj vanishes outside the interval ( ). Here the “basic knots” ( ) are defined as the 

knot sequence (tj), but with each ti ∈ (0, 1) repeated di times. See [23], pages 137, 140 and 

145). We assume that |ti−1 − ti| ≤ |t−1 − t0| if i < 0 and |ti+1 − ti| ≤ |tl+1 − tl| if i > l.

The quasi-interpolant operator is a projection Kk: L1[0, 1] → Sr(T, d) with the properties
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for every 1 ≤ p ≤ ∞ and a constant Cr depending on r only (see [23], pages 144–147). It 

follows that the projection Kk inherits the good approximation properties of spline functions, 

relative to any Lp-norm. In particular, it gives good approximation to smooth functions.

The quasi-interpolant operator Kk is a projection onto Sr(T, d) (i.e.  and Kk f = f for f 
∈ Sr(T, d)), but not an orthogonal projection. Because the B-splines form a basis for Sr(T, d), 

the operator can be written in the form Kk f = ∑j cj(f)Nj for certain linear functionals cj : 

L1[0, 1] → ℝ. It can be shown that, for any 1 ≤ p ≤ ∞,

(22)

([23], page 145.) In particular, the functionals cj belong to the dual space of L1[0, 1] and can 

be written as cj(f) = ∫ fcj dλ for (with abuse of notation) certain functions cj ∈ L∞[0, 1]. 

This yields the representation of Kk as a kernel operator with kernel

(23)

Proposition 4.4—Consider a sequence (indexed by l) of augmented knot sequences (21) 

with  for every 0 ≤ i ≤ l and splines with fixed defects di = d. For the 
corresponding (symmetrized) spline kernel (23) with l = ln conditions (2), (6), (7), (8), (9) 

and (10) are satisfied if ln/n → ∞ and ln/n2 → 0 for any measure G on [0, 1] with a 
Lebesgue density that is bounded and bounded away from zero and regression functions μ2 

and μq (for some q > 2) that are bounded and bounded away from zero.

5. Proof of Theorem 2.1

For Mn the cardinality of the partition  = ∪m n,m, let Nn,1, …, Nn,Mn be the numbers of 

Xr falling in the partitioning sets, i.e.

The vector Nn = (Nn,1, …, Nn,Mn) is multinomially distributed with parameters n and vector 

of success probabilities pn = (pn, 1, …, pn,Mn) given by
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Given the vector In = (In, 1, …, In,n) the vectors (X1, Y1), …, (Xn, Yn) are independent with 

distributions determined by

(24)

(25)

We define U-statistics Vn by restricting the kernel Kn to the set ∪m n,m × n,m, as follows:

(26)

The proof of Theorem 2.1 consists of three elements. We show that the difference between 

Un and Vn is asymptotically negligible due to the fact that the kernels shrink to the diagonal, 

we show that the statistics Vn are conditionally asymptotically normal given the vector of 

bin indicators In, and we show that the conditional and unconditional means and variances of 

Vn are asymptotically equivalent. These three elements are expressed in the following four 

lemmas, which should be understood all implicitly to assume the conditions of Theorem 2.1.

Lemma 5.1

var(Un − Vn)/ var Un → 0.

Lemma 5.2

.

Lemma 5.3

.

Lemma 5.4

.

5.1. Proof of Theorem 2.1

By Lemmas 5.1 and 5.3 the sequence ((Un − EUn)−(Vn − E(Vn| In)) / sd Vn tends to zero in 

probability. Because conditional and unconditional convergence in probability to a constant 

is the same, we see that it suffices to show that (Vn − E(Vn| In))/ sd Vn converges 

conditionally given In to the normal distribution, in probability. This follows from Lemmas 

5.4 and 5.2.
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The variance of Un is computed in (29) in Section 5.2. By the Cauchy-Schwarz inequality 

(cf. (2)),

Because μ2 is bounded by assumption and the norms ‖Kn‖ are bounded in n by assumption 

(2), the right sides are bounded in n. In view of (5) it follows that the first two terms in the 

final expression for the variance are of lower order than the third, whence

(27)

5.2. Moments of U-statistics

To compute or estimate moments of Un we employ the Hoeffding decomposition (e.g. [24], 

Sections 11.4 and 12.1)  of Un given by

(28)

The variables  and  are uncorrelated, and so are all the variables in the single and 

double sums defining  and . It follows that

(29)

See equation (4) for the definition of kn.
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There is no similarly simple expression for higher moments of a U-statistic, but the 

following useful bound is (essentially) established in [25].

Lemma 5.5—(Giné, Latala, Zinn). For any q ≥ 2 there exists a constant Cq such that for 
any i.i.d. random variables X1, …, Xn and degenerate symmetric kernel K,

Proof: The second inequality is immediate from the fact that the L2-norm is bounded above 

by the Lq-norm, and 3q/2 − 1 ≥ q, for q ≥ 2. For the first inequality we use (3.3) in [25] (and 

decoupling as explained in Section 2.5 of that paper) to see that the left side of the lemma is 

bounded above by a multiple of

Because Lq-norms are increasing in q, the second term on the right is bounded above by 

n−3q/2+1E|K(X1, X2)|q, which is also a bound on the third term, as n2 − 2q ≤ n−3q/2+1 for q ≥ 

2.

We can apply the preceding inequality to the degenerate part of the Hoeffding 

decomposition (28) of Un and combine it with the Marcinkiewicz-Zygmund inequality to 

obtain a bound on the moments of Un.

Corollary 5.1—For any q ≥ 2 there exists a constant Cq such that for the U-statistic given 
by (1) and (28),

Proof: The first inequality follows from the Marcinkiewicz-Zygmund inequality and the fact 

that E|Z − EZ|q ≤ 2qE|Z|q, for any random variable Z. To obtain the second we apply Lemma 

5.5 to , which is a degenerate U-statistic with kernel Kn (X1, X2)Y1Y2 − Πn (X1, X2, Y1, 

Y2), for Πn the sum of the conditional expectations of Kn (X1, X2)Y1Y2 relative to (X1, Y1) 

and (X2, Y2) minus EUn. Because (conditional) expectation is a contraction for the Lq-norm 

(E|E(Z| )|q ≤ E|Z|q for any random variable Z and conditioning σ-field ), we can bound 

the L2- and Lq-norms of the degenerate kernel, appearing in the bound obtained from 

Lemma 5.5, by a constant (depending on q) times the L2- of Lq-norm of the kernel Kn (X1, 

X2)Y1Y2.
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5.3. Proof of Lemma 5.1

The statistic Un − Vn is a U-statistic of the same type as Un, except that the kernel Kn is 

replaced by Kn (1 − 1 n) for n = ⋃m ( n,m × n,m). The variance of Un − Vn is given by 

formula (29), but with Kn replaced by the kernel operator with kernel Kn,n = Kn (1 − 1 n). 

The corresponding kernel operator is Kn,n f = Kn f − ∑m Kn (f1 n,m)1 n,m, and hence

It follows that the operator norms ‖Kn,n‖2 of the operators Kn,n are uniformly bounded in n 
(cf. equation (3) for the operators Kn). Applying decomposition (29) to the kernel Kn,n we 

see that var(Un − Vn) = O(n−1) + 2kn,n/n2, where kn,n is the L2(G × G)-norm kn,n of the 

kernel Kn,n weighted by μ2 × μ2, as in (4) but with Kn replaced by Kn,n. By assumption (6) 

the norm kn,n is negligible relative to the same norm (denoted kn) of the original kernel. 

Because the variance of Un is asymptotically equivalent to 2kn/n2 and kn/n → ∞, this 

proves the claim.

5.4. Proof of Lemma 5.2

The variable Vn can be written as the sum Vn = ∑m Vn,m, for

(30)

Given the vector of bin-indicators In the observations (Xr, Yr) are independently generated 

from the conditional distributions in which Xr is conditioned to fall in bin n,In,r, as given in 

(24)–(25). Because each variable Vn,m depends only on the observations (Xr, Yr) for which 

Xr falls in bin n,m, the variables Vn,1, …, Vn,Mn are conditionally independent. The 

conditional asymptotic normality of Vn given In can therefore be established by a central 

limit theorem for independent variables.

The variable Vn,m is equal to Nn,m (Nn,m − 1)/ (n(n − 1)) times a U-statistic of the type (1), 

based on Nn,m observations (Xr, Yr) from the conditional distribution where Xr is 

conditioned to fall in n,m. The corresponding kernel operator is given by

(31)

Robins et al. Page 16

Stoch Process Their Appl. Author manuscript; available in PMC 2017 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



We can decompose each Vn,m into its Hoeffding decomposition 

 relative to the conditional distribution given In. We shall 

show that

(32)

To prove Lemma 5.2 it then suffices to show that the sequence 

converges conditionally given In weakly to the standard normal distribution, in probability. 

By Lyapounov’s theorem, this follows from, for some q > 2,

(33)

By Lemma 5.4 the conditional standard deviation sd(Vn| In) is asymptotically equivalent in 

probability to the unconditional standard deviation, and by Lemma 5.1 this is equivalent to 

sd Un, which is equivalent to . Thus in both (32) and (33) the conditional standard 

deviation in the denominator may be replaced by .

In view of the first assertion of Corollary 5.1,

By Lemma 5.6 (below, note that (npn,m)2 ≲ (npn,m)3 in view of (9)) the expectation of the 

right side is bounded above by a constant times

In view of (2) the sum over m of this expression is bounded above by a multiple of 1/n, 

which is o(kn/n2) by assumption (5). Because , this concludes the proof of 

(32).

In view of the second assertion of Corollary 5.1,
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By Lemma 5.6 the expectation of the right side is bounded above by a constant times

With αn,m (q) = ∫∫ |Kn|q μq × μq 1 n,m × n,m dG × G it follows that

The right side tends to zero by assumptions (6), (7) and (10). This concludes the proof of 

(33).

5.5. Proof of Lemma 5.3

Only pairs (Xr, Xs) that fall in one of the sets n,m × n,m contribute to the double sum (26) 

that defines Vn. Given In there are Nn,m (Nn,m − 1) pairs that fall in n,m and the distribution 

of the corresponding vectors (Xr, Yr), (Xs, Ys) is determined as in (24)–(25). From this it 

follows that

Defining the numbers αn,m = ∫∫ Kn μ × μ 1 n,m × n,m dG × G, we infer that

By the Cauchy-Schwarz inequality, the numbers αn,m satisfy
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In particular ∑m |αn,m| ≲ 1. In view of (2) the numbers  given in (34) (below) are of the 

order Mn/n2 + 1/n. Lemma 5.7 (below) therefore implies that the right side of the second last 

display is of the order , because (9) implies that Mn ≲ n. 

By assumption (5) this is smaller than , which is of the same order as sd Vn.

5.6. Proof of Lemma 5.4

By (29) applied to the variables Vn,m defined in (30),

where the operator Kn,m is given in (31), the distribution Gn,m is defined in (24), and

We can split this into three terms. By Lemma 5.6 the expected value of the first term is 

bounded by a multiple of

Similarly the expected value of the absolute value of the second term is bounded by a 

multiple of

These two terms divided by kn/n2 tend to zero, by (5).

By Lemma 5.1 and (27) we have that var Vn ~ 2kn/n(n − 1), which in term is asymptotically 

equivalent to 2 ∑m αn,m (2)/n(n − 1), by (6). It follows that
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Here the coefficients αn,m (2)/kn satisfy the conditions imposed on αn,m in Corollary 5.2, in 

view of (6) and (7). Therefore this corollary shows that the expression on the right is oP 

(kn/n2).

5.7. Auxiliary lemmas on multinomial variables

Lemma 5.6—Let N be binomially distributed with parameters (n, p). For any r ≥ 2 there 
exists a constant Cr such that ENr1N≥2 ≤ Cr ((np)r ∨ (np)2).

Proof: For r = ṟ + δ with ṟ an integer and 0 ≤ δ < 1 there exists a constant Cr with Nr1N≥2 ≤ 

CrNδ N (N − 1) ⋯ (N − ṟ + 1) + CrNδ N (N − 1) for every N. Hence

for N1 and N2 binomially distributed with parameters n − ṟ and p and n − 2 and p, 

respectively. By Jensen’s inequality , which is bounded above by (np)δ, 

yielding the upper bound Cr ((np)r + (np)2+δ). If np ≤ 1, then this is bounded above by 2Cr 

(np)2 and otherwise by 2Cr (np)r.

The next result is a law of large numbers for a quadratic form in multinomial vectors of 

increasing dimension. The proof is based on a comparison of multinomial variables to 

Poisson variables along the lines of the proof of a central limit theorem in [12].

Lemma 5.7—For each n let Nn be multinomially distributed with parameters (n, pn, 1, …, 

pn,Mn) with maxm pn,m → 0 as n → ∞ and lim infn→∞ n minm pn,m > 0. For given 
numbers αn,m let

(34)

Then

Proof: Because ∑m αn,m ((n − 1)/n − 1) = ∑m αn,m (−1/n), it suffices to prove the statement 

of the lemma with n(n − 1) replaced by n2. Using the fact that ∑m Nn,m = n we can rewrite 

the resulting quadratic form as, with λn,m = npn,m,
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for C1 and C2 the Poisson-Charlier polynomials of degrees 1 and 2, given by

Together with x ↦ C0(x) = 1 the functions x ↦ C1(x, λ) and x ↦ C2(x, λ) are the 

polynomials 1, x, x2 orthonormalized for the Poisson distribution with mean λ by the 

Gramm-Schmidt procedure. For X = (X1, …, XMn) let

Thus up to a factor  the statistic Tn (Nn) is the quadratic form of interest.

If the variables Nn,1, …, Nn,Mn were independent Poisson variables with mean values λn,m, 

then the mean of Tn (Nn) would be zero and the variance would be given by , and hence 

in that case Tn (Nn) = OP (sn). We shall now show that the difference between multinomial 

and Poisson variables is of the order .

To make the link between multinomial and Poisson variables, let ñ be a Poisson variable 

with mean n and given ñ = k let Ñn = (Ñn,1, …, Ñn,Mn) be multinomially distributed with 

parameters k and pn = (pn,1, …, pn,Mn). The original multinomial vector Nn is then equal in 

distribution to Ñn given ñ = n. Furthermore, the vector Ñn is unconditionally Poisson 

distributed as in the preceding paragraph, whence, for any Mn → ∞,

The left side is bigger than

where the vector Nn (k) is multinomial with parameters k and pn. Because the sequence 

 tends to a standard normal distribution as n → ∞, the probability 

 tends to the positive constant Φ(1) − Φ(−1). We conclude that the 

sequence of minima on the right tends to zero. The probability of interest is the term with k 
= n in the minimum. Therefore the proof is complete once we show that the minimum and 

maximum of the terms are comparable.

To compare the terms with different k we couple the multinomial vectors Nn (k) on a single 

probability space. For given k < k′ we construct these vectors such that 

 for  a multinomial vector with parameters k′ − k 
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and pn independent of Nn (k). For any numbers N and N′ we have that 

. Therefore,

For  and  the binomial variable Nn,m (k′ − k) has first and 

second moment bounded by a multiple of  and . From this the right side of the 

display can be seen to be of the order ∑m |αn,m |O(n−1/2)≔ ρn. Similarly, we have 

 and

can be seen to be of the order , which is also of the 

order ρn.

We infer from this that E|Tn (Nn (k)) − Tn (Nn (n)) = O(ρn), uniformly in , and 

therefore

uniformly in , for every Mn → ∞, by Markov’s inequality. In the preceding 

paragraph it was seen that the minimum of the right side over k with  tends to 

zero for any Mn → ∞. Hence so does the left side.

Under the additional condition that

it follows from Corollary 4.1 in [12] that the sequence  times the quadratic form in the 

preceding lemma tends in distribution to the standard normal distribution. Thus in this case 

the order claimed by the lemma is sharp as soon as n−1/2 ∑m |αn,m| is not bigger than sn.
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Corollary 5.2—For each n let Nn be multinomially distributed with parameters (n, pn,1, …, 

pn,Mn) with lim infn→∞ n minm pn,m > 0. If αn,m are numbers with ∑m |αn,m| = O(1) and 
maxm |αn,m| → 0 as n → ∞, then

Proof: Since npn,m ≳ 1 by assumption the numbers sn defined in (34) satisfy

The corollary is a consequence of Lemma 5.7.

6. Proofs for Section 3

Proof of Corollary 3.1

We consider the distribution of Tn conditionally given the observations used to construct the 

initial estimators b̂n and ĝn. By passing to subsequences of n, we may assume that these 

sequences converge almost surely to b and g relative to the uniform norm. In the proof of 

distributional convergence the initial estimators b̂n and ĝn may therefore be understood to be 

deterministic sequences that converge to limits b and g.

The estimator (12) is a sum  of a linear and quadratic part. The (conditional) 

variance of the linear term  is of the order 1/n, which is of smaller order than kn/n2. It 

follows that  tends to zero in probability.

To study the quadratic part  we apply Theorem 2.1 with the kernel Kn of the theorem 

taken equal to the present Kkn,ĝn and the Yr of the theorem taken equal to the present Yr − 

b̂n(Xr). For given functions b1 and g1, set

The function μq(b̂n) converges uniformly to the function μq(b), which is uniformly bounded 

by assumption, for q = 1, q = 2 and some q > 2. Furthermore 

, where the function g × g/ĝn × ĝn converges uniformly to 

one. Therefore, the conditions of Theorem 2.1 (for the case that the observations are non-

i.i.d.; cf. the remark following the theorem) are satisfied by Theorem 4.1 or 4.2. Hence the 
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sequence  tends to a standard normal distribution, for k̂n = kn(b̂n, 
ĝn). From the conditions on the initial estimators it follows that k̂n/kn(b, g) → 1. Here kn(b, 

g) is of the order the dimension kn of the kernel.

Let Tn(b1, g1) be as Tn, but with the initial estimators b̂n and ĝn replaced by b1 and g1. Its 

expectation is given by

In particular e(b, g) = ∫ b2 dG. Using the fact that Kkn,g is an orthogonal projection in L2(G) 

we can write

(35)

By the definition of Kkn,g the absolute value of the first term on the right can be bounded as

By assumption b is β-Hölder and g is γ-Hölder for some γ ≥ β and bounded away from 

zero. Then  is β-Hölder and hence its uniform distance to lin (e1, …, ek) is of the order 

(1/k)β. If the norm of b̂n in Cβ[0, 1] is bounded, then we can apply the same argument to the 

functions , uniformly in n, and conclude that the expression in the display with b̂n 

instead of b1 is bounded above by OP (1/kn)2β. If the projection is on the Haar basis and b̂n is 

contained in lin (e1, …, ekn), then the approximation error can be seen to be of the same 

order, from the fact that the product of two projections on the Haar basis is itself a projection 

on this basis.

For  we can write

If multiplied by a symmetric function in (x1, x2) and integrated with respect to G × G, the 

arguments x1 and x2 in the second term can be exchanged. The second term on the right in 

(35) can therefore be written

Robins et al. Page 24

Stoch Process Their Appl. Author manuscript; available in PMC 2017 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Here ‖ · ‖G,3 is the L3(G)-norm, we use the fact that L2-projection on a wavelet basis 

decreases Lp-norms for p = 3/2 up to constants, and the multiplicative constants depend on 

uniform upper and lower bounds on the functions g1 and g. We evaluate this expression for 

b1 = b̂n and g1 = ĝn, and see that it is of the order .

Finally we note that Êb,gTn = e(b̂n, ĝn) and combine the preceding bounds.
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7. Appendix: proofs for Section 4

Lemma 7.1

The kernel of an orthogonal projection on a k-dimensional space has operator norm ‖Kk‖2 = 

1, and square L2(G×G)-norm .

Proof

The operator norm is one, because an orthogonal projection decreases norm and acts as the 

identity on its range. It can be verified that the kernel of a kernel operator is uniquely defined 

by the operator. Hence the kernel of a projection on a k-dimensional space can be written in 

the form (13), from which the L2-norm can be computed.

Proof of Proposition 4.1—We can reexpress the wavelet expansion (17) to start from 

level I as

The projection kernel Kk sets the coefficients in the second sum equal to zero, and hence can 

also be expressed as
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The double integral of the square of this function over ℝ2d is equal to the number of terms in 

the double sum (cf. (13) and the remarks following it), which is O(2Id). The support of only 

a small fraction of functions in the double sum intersects the boundary of . Because also 

the density of G and the function μ2 are bounded above and below, it follows that the 

weighted double integral kn of  relative to G as in (4) is also of the exact order O(2Id).

Each function  has uniform norm bounded above by 2Id times 

the uniform norm of the base wavelet of which it is a shift and dilation. A given point (x1, 

x2) belongs to the support of fewer than  of these functions, for a constant C1 that depends 

on the shape of the support of the wavelets. Therefore, the uniform norm of the kernel Kk is 

of the order kn.

By assumption each function  is supported within a set of the form 2−I (C + j) for a given 

cube C that depends on the type of wavelet, for any υ. It follows that the function 

 vanishes outside the cube 2−I (C + j) × 2−I (C + j). There are 

O(2Id) of these cubes that intersect  × ; these intersect the diagonal of  × , but may 

be overlapping. We choose the sets n,m to be blocks (cubes) of  adjacent cubes 2−I (C + 

j), giving  sets n,m. [In the case d = 1, the “cubes” are intervals and they can 

be ordered linearly; the meaning of “adjacent” is then clear. For d > 1 cubes are “adjacent” 

in d directions. We stack ln cubes 2−I (C + j) in each direction, giving cubes n,m of sides 

with lengths ln times the length of a cube 2−I (C + j).]

Because the kernels are bounded by a multiple of kn, condition (10) is implied by (11), in 

view of Lemma 2.1, The latter condition reduces to , the probabilities G( n,m) 

being of the order 1/Mn.

The set of cubes 2−I (C + j) that intersects more than one set n,m is of the order 

. To see this picture the set  as a supercube consisting of the M cubes n,m, 

stacked together in a M1/d × ⋯ × M1/d-pattern. For each coordinate i = 1, …, d the stack of 

cubes  can be sliced in M1/d layers each consisting of (M1/d)d−1 cubes m,n, which are 

 cubes 2−I (C + j). The union of the boundaries of all slices (i = 1, 

…, d and  slices for each i) contains the union of the boundaries of the sets n,m. The 

boundary between two particular slices is intersected by at most  cubes 2−I (C + 

j), for a constant C2 depending on the amount of overlap between the cubes. Thus in total of 

the order  cubes intersect some boundary.

If Kk(x1, x2) ≠ 0, then there exists j and υ with , which implies that 

there exists j such that x1, x2 ∈ 2−I (C + j). If the cube 2−I (C + j) is contained in some n,m, 

then (x1, x2) ∈ n,m × n,m. In the other case 2−I (C + j) intersects the boundary of some 

n,m. It follows that the set of (x1, x2) in the complement of ∪m n,m × n,m where Kk(x1, 

x1) ≠ 0 is contained in the union U of all cubes 2−I (C + j) that intersect the boundary of 

some n,m. The integral of  over this set satisfies
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Here we use that G(2−I (C + j)) ≲ 1/kn. This completes the verification of (6).

By the spatial homogeneity of the wavelet basis, the contributions of the sets n,m × n,m to 

the integral of  are comparable in magnitude. Hence condition (7) is satisfied for any Mn 

→ ∞.

In order to satisfy conditions (8) and (9) we must choose Mn → ∞ with Mn ≲ n. This is 

compatible with choices such that Mn/kn → 0 and .

Proof of Proposition 4.2—Because Kk is an orthogonal projection on a (2k+1)-

dimensional space, Lemma 7.1 gives that the operator norm satisfies ‖Kk‖ = 1 and that the 

numbers kn as in (4) but with μ2 = 1 are equal to .

By the change of variables x1 − x2 = u, x1 + x2 = υ we find, for any ε ∈ (0, π], and Kk(x1, 

x2) = Dk(x1 − x2),

By the symmetry of the Dirichlet kernel about π we can rewrite  as 

. Splitting the integral on the right side of the preceding display over the 

intervals (ε, π] and (π, 2π], and rewriting the second integral, we see that the preceding 

display is equal to

For ε = 0 this expression is equal to the square L2-norm of the kernel Kk, which shows that 

. On the interval (ε, π) the kernel Dk is bounded above by 

. Therefore, the preceding display is bounded above by

We conclude that, for small ε > 0,
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This tends to zero as k → ∞ whenever ε = εk ↓ 0 such that .

We choose a partition (−π, π] = ∪m n,m in Mn = 2π/δ intervals of length δ for δ → 0 with 

δ ≫ ε and ε satisfying the conditions of the preceding paragraph. Then the complement of 

∪m n,m × n,m is contained in {(x1, x2): |x1 − x2| > ε} except for a set of 2(Mn − 1) 

triangles, as indicated in Figure 3. In order to verify (6) it suffices to show that (2k + 1)−1 

times the integral of  over the union of the triangles is negligible. Each triangle has sides 

of length of the order ε, whence, for a typical triangle Δ, by the change of variables x1 − x2 

= u, x2 = υ, and an interval I of length of the order ε,

Hence (6) is satisfied if 2(Mn − 1)ε → 0, i.e. ε ≪ δ.

Because  is independent of m, (7) is satisfied as soon as the number 

of sets in the partitions tends to infinity.

Because 0 ≤ Kk ≤ 2k + 1, condition (10) is implied by (11), which is satisfied if δ ≪ n/k.

The desired choices  are compatible, as by assumption k/n2 → 0.

Proof of Proposition 4.3—Without loss of generality we can assume that ∫ |ϕ| dλ = 1. 

By a change of variables

Here | ∫ g(x − συ)g(x) dx| ≤ ‖g‖∞ and, as σ ↓ 0,

for every fixed υ, by the L1-continuity theorem. We conclude by the dominated convergence 

theorem that . Because μ2 is bounded away from 0 and ∞, 

the numbers kn defined in (4) are of the exact order σ−1.

By another change of variables, followed by an application of the Cauchy-Schwarz 

inequality, for any f ∈ L2(G),

Therefore, the operator norms of the operators Kσ are uniformly bounded in σ > 0.
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We choose a partition ℝ = ∪m n,m consisting of two infinite intervals (−∞, −a] and (a, ∞) 

and a regular partition of the interval (−a, a] in such a way that every partitioning set satisfies 

G( n,m) ≤ δ. We can achieve this with a partition in Mn = O(1/δ) sets.

Because |Kσ| is bounded by a multiple of σ−1, condition (10) is implied by (11), which takes 

the form δ/(σn) → 0, in view of Lemma 2.1.

For an arbitrary partitioning set n,m,

It follows that (7) is satisfied as soon as δ → 0.

Finally, we verify condition (6) in two steps. First, for any ε ↓ 0, by the change of variables 

x1 − x2 = υ, x2 = x,

This converges to zero as σ → 0 for any ε = εσ > 0 with ε ≫ σ. Second, for ε ≪ δ the 

complement of the set ∪m n,m × n,m is contained in {(x1, x2): |x1 − x2| > ε} except for a 

set of 2(Mn − 1) triangles, as indicated in Figure 3. In order to verify (6) it suffices to show 

that σ times the integral of  over the union of the triangles is negligible. Each triangle has 

sides of length of the order ε, whence, for a typical triangle Δ, with projection I on the x1-

axis,

The total contribution of all triangles is 2(Mn − 1) times this expression. Hence (6) is 

satisfied if 2(Mn − 1)ε → 0, i.e. ε ≪ δ.

The preceding requirements can be summarized as σ ≪ ε ≪ δ ≪ σn, and are compatible.

Proof of Proposition 4.4—Inequality (22) implies that cj(f) = 0 for every f that vanishes 

outside the interval , whence the representing function gj is supported on this 

interval. It follows that the function (x1, x2) ↦ Nj(x1)cj(x2) vanishes outside the square 

, which has area of the order l−2. We form a partition (0, 1] = ∪m n,m 

by selecting subsets  of the basic knot sequences such that 

 for every i and define . The numbers Mn are 

chosen integers much smaller than ln, and we may set  for p = ⌊ln/Mn⌋.
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Because Kk is a projection on Sr(T, d) and the function x1 ↦ Kk(x1, x2) is contained in 

Sr(T, d) for every x2, it follows that ∫ Kk(x1, x2)Kk(x1, x2) dx1 = Kk(x2, x2) for every x2, and 

hence

because the identities Ni = KkNi = ∑j cj(Ni)Nj imply that cj(Ni) = δij by the linear 

independence of the B-splines. Because the density of G and the function μ2 are bounded 

above and below the L2(G × G)-norm kn as in (4) is of the same order as the dimension kn = 

r + lnd of the spline space.

Inequality (22) implies that the norm of the linear map cj, which is the infinity norm ‖cj‖∞ of 

the representing function, is bounded above by a constant times , which is of 

the order kn. Therefore,

The set in the right side is the union of Mn cubes of areas not bigger than the area of the sets 

, which is bounded above by a constant times . (See Figure 7.) The 

preceding display is therefore bounded above by

For Mn/kn → 0 this tends to zero. This completes the verification of (6).

The verification of the other conditions follows the same lines as in the case of the wavelet 

basis.
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Figure 1. 
The diagonal of  ×  covered by the set ∪m( n,m × n,m).
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Figure 2. 
The support cubes of the wavelets and the bigger cubes n,m × n,m.
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Figure 3. 
The triangles used in the proofs of Theorems 4.2 and 4.3, and the sets n,m × n,m.
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