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Abstract

Vaccines stand as a very powerful means of disease prevention and treatment. Fundamental to the 

success of vaccination is the efficient delivery of antigenic cargo needed to trigger an effective 

immune response. In this article, we will review recent advances in delivery technology with a 

focus on devices designed to optimally maximize responses to antigen cargo. Included with the 

review is an overview of traditional vaccine applications and how these approaches can benefit by 

well-designed delivery methods.

Introduction

Vaccines can be divided into two broad groups: live attenuated vaccines and inactivated 

vaccines. Live attenuated vaccines, which are comprised of weakened forms of disease-

causing organisms (pathogens) such as viruses or bacteria, induce immune reactions similar 

to those resulting from an actual infection [1]. This group of vaccines elicits a strong 

response and is capable of conferring immunity that can last for decades with a single dose 

[1]. For example, one vaccination of the smallpox vaccine can maintain substantial 

immunity to the virus for up to 75 years [2]. Inactivated vaccines, which range from 

completely inactivated pathogens to the antigen components of those pathogens (including 

subunit vaccines, toxoid vaccines, carbohydrate vaccines, and conjugate vaccines) induce 

short-lived protection compared to attenuated vaccines and often require a follow-up booster 

vaccination to maintain protective immunity [3]. Furthermore, inactivated vaccines typically 

contain adjuvants, which are additives designed to enhance and shape immune response 

outcomes [4]. Understanding how to induce protective responses with adjuvants will enable 

the production of more specific and efficient vaccines, which can confer immunity for longer 

periods of time [5].

Delivery technology offers advantages in vaccine application by carefully designing the 

introduction of antigens and adjuvants for a more directed and enhanced immune response. 

In particular, delivery systems can enhance immunological outcomes by 1) prolonging the 

deposition of antigens at the site of administration, 2) recruiting sentinel immune cells 
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(termed antigen presenting cells or ACPs) required for immune response initiation, 3) 

influencing site localization and antigen delivery, and 4) protecting delicate payloads (e.g., 

nucleic acids) [6,7].

In this review, delivery technology will be evaluated in parallel to traditional vaccines (live 

attenuated and inactivated whole or component). Emphasis will be placed on how the 

delivery vector can alter, improve, or accentuate the process of immune response.

Immune Response Cascade and Lessons in Vaccine Design

Upon administration of a live attenuated vaccine, an immune response similar to that of a 

natural infection is elicited. First, specialized receptors on the surface of dendritic cells 

(DCs), such as toll-like receptors (TLRs), identify an antigen as a potential threat via 

pathogen-associated molecular patterns (PAMPs) [1]. The antigen is then internalized by 

DCs, which differentiate into antigen presenting cells after either destroying or partially 

degrading the antigen [1]. In a natural infection, DCs may be able to eradicate the pathogen 

[8]. For an efficient vaccine, however, APCs must activate the adaptive immune system [9] 

which consists of antibody producing B cells and cytokine/cytolytic molecule producing T 

cells [1,10] (Figure 1).

While a T cell-independent immune response can occur, an effective vaccine must induce a 

T cell-dependent response. This occurs when T cells interact with the APCs, differentiate 

into T-helper (Th) cells, such as CD4+ T cells, and begin to secrete cytokines that then affect 

the behavior of B cells [1,8]. For example, continuously replicating live attenuated vaccines 

constantly present proteinaceous antigens that are recognized by Th cells. These Th cells 

trigger a humoral (B cell) response, allowing for the formation of memory B cells that can 

be reactivated rapidly upon re-infection without further aid of T cells [1,11,12].

Another main component of the adaptive immune system, cytotoxic T cells (CD8+ T cells or 

killer T cells), secrete cytotoxic factors and cytokines upon interacting with ACPs, which 

allows them to kill cells that display pathogen-derived proteins [8]. CD8+ T cells are often 

activated by ACPs displaying antigens derived from foreign or altered nucleic acid content, 

resulting from cancer aberrations or viral infections, for example, in what is known as a cell-

mediated response [13]. It should be noted that a CD8+ response has recently been 

demonstrated to be indicative of an effective vaccine. For example, one study showed that a 

CD8+ T-cell response in dengue vaccines was comparable to that of a natural viral infection 

[14].

With live attenuated vaccines, a potent and long-lasting immune response is typically 

invoked. However, in the case of inactivated vaccines, adjuvants are often needed to enhance 

the efficacy of antigens [4]. Each adjuvant can induce different immune responses even with 

the same antigens, as demonstrated by a recent study on adjuvants for human 

immunodeficiency virus type-1 (HIV-1) that showed that, while all adjuvants tested in 

conjunction with HIV-1 gp140 envelope (Env) trimers induced a stronger immune response 

than the non-adjuvant control, aluminum-based adjuvants (Alhydrogel and Adju-Phos) were 

less potent than TLR-, Emulsion-, Liposome-, and ISCOM-based adjuvants [15]. Even with 
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these adjuvants, however, the vaccine was still not able to strongly mimic a natural infection, 

a common issue with modern inactivated vaccines. More research into developing next-

generation adjuvants is needed to produce vaccines that can mount the appropriate immune 

response, increase the generation of memory, and increase the response speed [16].

In a natural infection, pathogen-associated antigens are capable of eliciting both a humoral 

and cell-mediated immune response by activating two types of T-helper (Th) cells: Th1 and 

Th2. Th1 cells are pro-inflammatory and induce cell-mediated immunity. Th2 cells cause an 

anti-inflammatory reaction and invoke a strong antibody response and are therefore 

associated with the humoral immune system [17]. Antigens associated with parasitic and 

extracellular bacterial infections, for example, preferentially elicit a strong Th2 response, 

while those associated with intracellular bacterial infections primarily produce a Th1 

response [18].

Most modern vaccines use a humoral immune response to confer protection [16]. However, 

it has been shown that both the humoral and cell-mediated responses have complementary 

roles in protection against certain diseases [19], leading to the need to develop adjuvants and 

antigens that can balance both responses. Currently, there are adjuvants that have been found 

to produce mixed Th1 and Th2 responses, such as flagellin, a principal component of a 

bacterium’s flagella [20], but there are few adjuvants that have been designed specifically to 

do so [21].

Delivery Technology to Enhance Vaccination Effectiveness

Vaccine delivery systems can generally be categorized into biological (e.g. viral or bacterial) 

and chemical vectors [22]* (Figure 1). An important consideration in adopting delivery 

technology is effectively using the capabilities and features of the chosen vector to augment, 

alter, or improve upon traditional vaccine formulations. The following section will focus on 

certain properties that such vectors can address.

Among biological delivery systems, avirulent recombinant bacterial vectors hold potential in 

infectious disease and cancer vaccine development. Suitable nonpathogenic options with 

facile genetic manipulation protocols enable simple production, administration, and 

engineering for associated vaccination goals; as a byproduct of their bacterial nature 

(including cell wall composition and macromolecule content), the vectors also serve as 

potent natural adjuvants [23]. Examples include Salmonella spp. [24–26]*, Mycobacterium 
bovis [27], Listeria monocytogenes [28–30], Vibrio cholera [31], Lactobacillus spp. [32], 

Staphylococcus spp. [33], Shigella spp. [34], and E. coli [35].

Due to the ability of the bacterial vector to carry either genetic or protein antigens, delivery 

can be designed in a way to elicit both strong Th1 and Th2 responses. For example, 

attenuated L. monocytogenes capable of expressing and secreting the human CD24 protein 

were used to efficiently enhance both Th1 and Th2 immune responses, which resulted in 

reduced disease and longer survival rates in mice bearing tumors [36]. The range of natural 

TLR ligand adjuvants associated with bacterial vectors also offers a way of ensuring or 

biasing a more comprehensive response [37]*. Such a combination of responses has been 
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shown effective for infectious disease (H1N1 influenza) and additional cancer treatments 

[38–40]. To this stage, however, few delivery vectors have been designed or utilized to direct 

a combination of Th1/Th2 responses.

Protein-based delivery formulations also have the potential to augment traditional sub-unit 

vaccines [41–47]*. As one example of a chemical vector approach, advanced liposomal 

technology allows simple mixing of liposomes and His-tagged protein antigens through 

affinity complexation. The end result enables a high degree of surface oriented antigens 

(theoretically up to 600) and the potential to greatly vary and amplify valency of select target 

antigens from a pool of potential candidates (an important consideration in a hyper-variable 

diseases such as pneumococcal infection) [48,49]*. The latter feature is in contrast to 

vaccine strategies that subject the immune system to a broad but diluted range of antigens 

(such as proteins, peptides, nucleic acids, carbohydrates, haptens)[50].

While the protein-based nature of such a formulation may bias towards a humoral response, 

the inclusion of counter-biased adjuvants would offer the potential of a more comprehensive 

response. In addition, the affinity-based complexation simplicity of such liposomal vectors 

opens the possibility of a fully synthesized construct featuring the liposome and peptide 

epitopes, such that no biological recombinant proteins are required, potentially simplifying 

overall vector production.

Chemical delivery vectors also include microneedles, a novel vaccine method that aims to 

replace traditional syringes and targets the network of APCs in the skin layer below the 

stratum corneum. These systems consist of micron-scale administration devices (to limit 

injection pain and promote compliance) that are created with appropriate drug formulations 

and can be divided between four major categories: solid, coated, dissolving, and hollow [51]. 

Microneedles have been shown to effectively deliver a wide variety of vaccines, including 

live-attenuated, inactivated, subunit, and DNA formats [52]. For example, a recent study 

created microneedles composed of dissolvable polyelectrolyte multilayers (using different 

polymers per layer) encapsulating DNA antigens for HIV, which resulted in the prolonged 

persistence of antigens in the skin [53].

Due to their unique route of administration, microneedles are capable of heavily impacting 

the type of elicited immune response. In one case, it was found the microneedle delivery of 

an M2e-TLR5 ligand fusion protein induced a Th1 biased response which conferred better 

protection against influenza when compared with the balanced Th1/Th2 response of an 

intranasal delivery route [54]. This type of class switch could allow for the production of 

vaccines for difficult pathogens such as HIV as well as improve the effectiveness of existing 

vaccines.

Summary

Delivery technology offers a means of accentuating or altering the desired immune 

responses from traditional vaccine formats. A key end goal is to better engineer the vector 

and corresponding immune response. Such a capability would then offer the potential to 

optimize vaccination outcomes. In the Table 1, we summarize the delivery technology 
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described in this article, including strengths, weaknesses, and applications. In the future, 

there may be opportunities to combine these various vector formats as has recently been 

explored between biological and chemical modalities [35] such that individual advantages of 

each vector are synergized.
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Highlights

• Vaccine potency can be influenced by antigen delivery 

technology

• Chemical vectors covered include microneedle devices 

and liposomes

• Biological vectors covered include attenuated bacterial 

hosts

• A diverse set of properties and tools enable vaccine 

delivery vector impact
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Figure 1. 
Vaccine types, delivery devices, and immune response outcomes. A) A pictorial 

representation of different vaccines and delivery devices. Biological delivery systems 

include avirulent and attenuated recombinant bacterial vectors capable of delivering genetic 

and protein antigens. Traditional whole cell vaccines, such as the live attenuated vaccine 

depicted, contain weakened versions of pathogens that do not cause disease but can continue 

to replicate. Unlike whole cell vaccines, subunit vaccines only contain the most antigenic 

regions of a pathogen. Liposomes, a type of chemical delivery system, can provide a high 

degree of multivalent surface antigens. B) Diagram representing the processing and 

presentation of antigens in dendritic cells (DCs). Pattern recognizing receptors on the 

surface of DCs identify pathogen associated molecular patterns (PAMPs) which initiate DC 

activation. Exogenous antigens are internalized by DCs and processed in endocytic vesicles 
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before being loaded onto MHC Class II molecules, forming a peptide-MHC II complex that 

is presented to immature T cells that can then stimulate either a humoral or cell-mediated 

(CTL, cytotoxic T cell; NK, natural killer cell) response. Endogenous, as well as exogenous, 

antigens can also be loaded onto MHC I molecules; the resulting complex then interacts 

with CD8+ T cells, which have cytotoxic activity.
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Table 1

Delivery Technology Summary

Chemical Biological

Microneedle Liposome Bacterial

Advantages • Painless

• Variety of vaccine 
applications

• Controlled release

• Antigen/adjuvant 
surface display

• Biocompatibility

• Entrapment of 
secondary agents

• Natural adjuvant

• Multiple antigen 
formats

• Multiple 
administration routes

Disadvantages • Local inflammation

• Potentially expensive

• Instability

• Circulation issues

• Safety

• Complexity

Application • HIV

• Influenza

• HIV

• Channelopathy

• Cancer

• Pneumococcal disease
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