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Abstract

Heart failure (HF) prevalence is increasing and is among the most costly diseases to society. Early 

detection of HF would provide the means to test lifestyle and pharmacologic interventions that 

may slow disease progression and improve patient outcomes. This study used structured and 

unstructured data from electronic health records (EHR) to predict onset of HF with a particular 

focus on how prediction accuracy varied in relation to time before diagnosis. EHR data were 

extracted from a single health care system and used to identify incident HF among primary care 

patients who received care between 2001 and 2010. A total of 1,684 incident HF cases were 

identified and 13,525 controls were selected from the same primary care practices. Models were 

compared by varying the beginning of the prediction window from 60 to 720 days before HF 

diagnosis. As the prediction window decreased, the performance [AUC (95% CIs)] of the 
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predictive HF models increased from 65% (63%–66%) to 74% (73%–75%) for the unstructured, 

from 73% (72%–75%) to 81% (80%–83%) for the structured, and from 76% (74%–77%) to 83% 

(77%–85%) for the combined data.

I. Introduction

Heart failure (HF) prevalence is increasing and is among the most costly diseases to 

Medicare [1]. HF affects approximately 5.7 million people in the United States, and about 

825,000 new cases per year with ~$33 billion total annual cost [2–4]. The lifetime risk of 

developing HF is 20% at 40 years of age [2]. HF has a high mortality rate: ~50% within 5 

years of diagnosis [5] and causes or contributes to approximately 280,000 deaths every year 

[6]. There has been relatively little progress in slowing progression of HF severity largely 

because there are no effective means of early detection of HF to test interventions.

Early detection of HF offers the opportunity to test and ultimately develop effective lifestyle 

and pharmacologic interventions. However, HF is a clinically complex and heterogeneous 

disease that is challenging to detect in routine care because of the diversity of alternative 

explanations for symptoms [7].

The rapid adoption of electronic health records (EHRs) and advances in machine learning 

and natural language processing (NLP) opens new opportunities to develop novel and cost-

effective methods to detect HF before it is too late to modify the natural history of the 

disease. EHRs provide rich, longitudinal patient records containing structured and 

unstructured data (e.g., progress notes). Structured data are relatively easy to extract and 

incorporate into a predictive model. But, unstructured data may contain potentially valuable 

information on Framingham HF signs and symptoms and other relevant indicators of disease 

progression or explanations for health status that are documented long before specific 

diagnoses emerge. In this study, we evaluated the independent and combined predictive 

power of EHR structured data (diagnoses, clinical measures, labs, medication orders, image 

orders and hospitalizations) and unstructured data from progress notes that was specific to 

Framingham HF signs and symptoms and to left ventricular ejection fraction (LVEF). The 

prediction window was assessed from 60 to 720 days prior to the diagnosis date and the 

predictive ability of clinical factors was examined to identify factors that are more effective 

for early detection.

II. Methods

A. Study Subjects

We used a case-control study design where the study was nested within a cohort of ~400,000 

primary care patients who received care between 2001 and 2010 from the Geisinger Clinic. 

A total of 1,684 incident HF cases were identified who met the following criteria: 1) HF 

diagnosis (or an associated ICD-9 diagnosis of HF) appeared in a minimum of three clinical 

encounters within 1.5 years of each other. If the time span between the first and second HF 

diagnoses was less than 1 year, the date of the first encounter was used as the HF diagnosis 

date; otherwise the date of the second encounter was used. 2) Age was between 50 and 85 at 
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the time of HF diagnosis. 3) The time between the first primary care physician visit and the 

HF diagnosis date was greater than 1.5 years so that sufficient follow-up time before the 

time window was available.

Up to 10 eligible clinic-, sex-, and age-matched (in 5-year age intervals) controls were 

selected for each incident HF case for a total of 13,525 subjects. Patients were eligible as 

controls if they had no HF diagnosis before the date – 1 year post-HF diagnosis of the 

matched case. Control subjects were required to have their first office encounter within 1 

year of the incident HF patient’s first office visit and have ≥1 office encounter 30 days 

before or any time after the case’s HF diagnosis date to ensure similar duration of 

observations among cases and controls.

B. Extracting Features from EHR

A feature vector representation for each patient was generated based on the patient’s EHR 

data. EHR data can be viewed as event sequences over time (e.g. a patient can have multiple 

diagnoses of hypertension on different dates). To convert such event sequences into feature 

variables, an observation window (e.g., two years) was specified. Then all events of the same 

feature within the window were represented by one or more relevant summary statistics. The 

aggregation function can produce simple feature values like counts and averages or complex 

feature values that take into account temporal information (e.g., trend and temporal 

variation). In this study, only basic aggregation functions were applied: counts for 

categorical variables and means for numeric variables. Table I summarizes the structured 

variables extracted from the EHR records of HF case and controls that were evaluated for 

predictive modeling.

An NLP application was developed to extract Framingham HF signs and symptoms from the 

unstructured text in EHR progress notes. Table II lists the 15 (out of 17) Framingham criteria 

that were extracted. Instances of affirmations (positive mentions) and denials (negative 

mentions) were identified. Details of the NLP extraction of Framingham HF signs and 

symptoms have been previously described [8] with an overall precision (or positive 

predictive value) of 0.925 and recall (or sensitivity) of 0.896 relative to manual chart review. 

Since LVEF is an important indicator of ventricular function, LVEF values and categories 

were also extracted from clinical notes. LVEF was classified into three categories: reduced 

(≤40%), moderate (40%–50%) and preserved (≥50%). Count feature aggregation was used 

for the Framingham criteria and LVEF categories while mean aggregation was used for the 

numeric LVEF variable.

C. Predictive Analytics

We examined how the performance of a predictive model varied in relation to the duration of 

the prediction window. For example, a prediction window of 365 days means that no EHR 

data was used from cases in the one year period before the assigned diagnosis date and the 

comparable date assigned to group-matched controls (see Figure 1). The observation 

window refers to the time period before the prediction window from which EHR data were 

used to predict HF. The “index date/prediction date” refers to the time point prior to the 

diagnosis date for each case and control where EHR data are used to discriminate who will 
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be a HF case versus not. The index date separates the prediction window from the 

observation window. In the current study, we varied the prediction window size from 60 

days to 720 days. A fixed observation window size of 720 days was used for all models.

To build predictive models we first used the information gain [9] measure to select the most 

discriminating subset of features. Next, random forest classifiers [10] (with 100 trees) were 

trained and evaluated. The Area under the ROC Curve (AUC) was used to measure the 

predictive performance. 10-fold cross validation (CV) was used in all model iterations and 

the AUC (95% CI) was the primary outcome of interest. An initial set of experiments was 

performed to identify the optimal number of features to use for the unstructured and 

structured feature types. Predictive models using random forest classifiers were built with 

fixed observation window (720 days) and predictive window (180 days) sizes, where the 

number of features selected by the information gain measure was allowed to vary. Cross 

validation was used to determine the optimal number of features for each feature type. 

Predictive models were then built using the unstructured and structured feature types, the 

optimal number of features and a fixed observation window size of 720 days but varying 

predictive window sizes (ranging from 60 to 720 days). These models were evaluated to 

characterize HF prediction performance and the predictive ability of clinical factors as a 

function of time before diagnosis.

III. Results

A. Impact of Prediction Window Size on HF Prediction

The optimal number of features for each feature type was identified for unstructured feature 

types: n=15 with 71% (70%–73%) AUC; for structured feature types: n=100 with80% 

(79%–81%) AUC; and for combined structured and unstructured feature types: n = 500 with 

80% (79%–82%) AUC. Figure 2 shows the impact of varying the prediction window size on 

HF prediction performance for classifiers built with the different feature types. As expected, 

by increasing the prediction window size from 60 days to 720 days (so the prediction is 

made earlier in time), the AUCs decrease from 74% (73%–75%) to 65% (63%–66%) for 

unstructured data, from 81% (80%–83%) to 73% (72%–75%) for structured data, and from 

83% (82%–85%) to 76% (74%–77%) for the combined feature types. Using combined 

unstructured and structured features, predictive performance is significantly but only slightly 

improved across all prediction window sizes over using just the unstructured or structured 

features alone (p<0.05), except at prediction window = 180 days. This observation is further 

confirmed by using n=100 combined unstructured and structured feature types. As seen in 

Figure 2, with the same number of features (n=100) selected for structured and combined 

feature types, classifiers built with the combined feature types achieved slightly better AUC 

performance over just the structured features: AUC 75% (74%–76%) ~ 83% (81%–84%) 

versus 73% (72%–75%) ~ 81% (80%–83%), p<0.05 except at prediction window = 120, 180 

days.

B. Predictive Ability of Features

The predictive ability of the top features selected from each of the two feature types as a 

function of the predictive window size was also investigated. Predictive ability was 
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measured by the number of times a feature was selected in a 10-fold cross validation (CV) 

experiment using an information gain feature selection criterion. Figure 3(a) shows the 19 

unstructured features that were selected at least once in the top m=15 for different predictive 

window sizes. Among these, 10 features were consistently selected in all 10 folds across all 

predictive window sizes: 4 positive Framingham criteria (APED, ANKED, DOE and RC), 4 

negative Framingham criteria (APED, ANKED, PLE and RALE) and 2 LVEF features 

(value and reduced LVEF). The predictive ability of the remaining features shows interesting 

patterns that depend on the size of the predictive window. For example, RALE (positive) 

shows up in the top features only for predictive windows shorter than 480 days while HEP 

(negative) shows up in the top features only for longer predictive windows (600 days to 720 

days). Similarly, Figure 3(b) and 3(c) show the predictive patterns of the top structured and 

combined features, respectively. For structured data, 168 features were selected at least once, 

and 60 were consistently selected in all 10 fold cross-validation models across all predictive 

window sizes. Twenty-three of the 60 features (38%) were related to hospitalization (e.g. 

Legally Blind, Cardiac Disorders, etc.), 16 (27%) were Lab measures (e.g. creatinine, B-type 

Natriuretic Peptide [BNP], etc.), 13 (22%) were for medication orders (e.g. digoxin, 

furosemide, etc.) and 8 (13%) were in reference to specific diagnoses (e.g., COPD, Diabetes, 

etc.). Some clinical variables showed increased predictive ability closer to the diagnosis 

date. For example, Hemoglobin (HGB) was selected for predictive window sizes less than 

540 days, and Estimated Glomerular Filtration Rate (eGFR) and hematocrit (HCT) were 

selected only for predictive window sizes less than 300 days. In contrast, other clinical 

variables demonstrated increased predictive ability further away from the diagnosis date 

(e.g. Cholesterol was selected when the predictive window size was more than 420 days). 

For the combined feature type, 169 features were selected at least once. Forty-seven were 

consistently selected in all 10-fold cross-validation models across all predictive window 

sizes. Similar to the structured features, the majority – 21 (45%) out of the 47 features were 

related to hospitalization, 10 (21%) were for medication reconciliation, 8 (17%) were in 

reference to specific diagnoses, 6 (13%) were Framingham criteria (APED positive, 

ANKED positive and negative, DOE positive, RC positive and PLE negative), and 2 (4%) 

were LVEF (numeric and reduced category). Some clinical factors with increased early or 

late predictive ability are highlighted in Figure 3(c).

IV. Discussion

Treatment of HF has universally focused on post-diagnosis, after irreversible remodeling and 

functional impairment have occurred [11]. Early detection of HF would open opportunities 

to test interventions that may delay the progression of heart failure. This study characterized 

HF prediction performance and the predictive ability of structured and unstructured clinical 

factors extracted from EHRs as a function of time (from 60 days up to 2 years) before 

diagnosis. It utilized NLP to extract Framingham criteria from unstructured clinical notes 

and machine learning techniques to investigate separate unstructured and structured 

information for HF prediction. The prediction performance for unstructured, structured and 

combined data from EHR demonstrated consistent improvement as the predictive window 

decreased. The combined unstructured and structured data from EHR demonstrated 

significantly better predictive performance compared to using just the structured or 
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unstructured data alone across all prediction window sizes (p<0.05, except at prediction 

window = 180 days when compared to structured data only). While the gain in AUC was 

relatively small when using combined structured and unstructured data, unstructured data 

were over-represented in the combined model. Some Framingham criteria documented in 

clinical notes long before the diagnosis showed consistent predictive ability across all 

prediction window sizes (APED, DOE, RC positive, PLE negative, ANKED positive and 

negative). Our study also confirmed the predictive ability of certain labs (BNP, INR, 

creatinine, etc) when using structured data for HF prediction; however, these lab features 

were not consistently selected when combined structured and unstructured features were 

used. Furthermore, no labs were selected for predictive window size = 180 days (see Figure 

3c). This implies the potential value and robustness of some Framingham criteria 

(mentioned above) over certain labs.

In this study, we used a very basic approach for feature construction, limiting the use of 

clinical knowledge and evidence to refine features and other information (e.g., missing 

values) to improve feature representations. In addition, we used a fixed observation window 

to investigate the impact of varying predictive windows; however, in clinical settings, a long 

patient history might not always be available to enable HF assessment. We will continue to 

explore how feature construction from data driven and knowledge driven approaches can 

enhance model performance, including development of more advanced feature construction 

methods to investigate the temporal information of clinical factors and investigate the 

combined impacts of varying observation windows and predictive windows for HF 

prediction. Furthermore, since the different types of HF (diastolic HF with preserved LVEF 

versus systolic HF) require different intervention strategies, we would like to apply and 

extend this approach to the prediction and identification of important clinical factors for 

different HF subtypes.

V. Conclusion

In conclusion, our study demonstrated that both unstructured and structured information in 

EHR can facilitate early detection of HF as early as two years prior to diagnosis. The 

combined data achieved superior performance compared to using structured or unstructured 

data alone across all the prediction window sizes. Unstructured and structured factors 

exhibited different patterns of predictive ability with some being more useful closer to and 

others farther from the diagnosis date.
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Figure 1. 
Illustration of the timeline for predictive modeling.
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Figure 2. 
Predictive modeling performance (AUC) with different feature types and predictive window 

sizes.
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Figure 3. 
Heat maps of the top m features selected by any fold in 10-fold cross validation (CV) for 

unstructured feature types (a; m=15), structured feature types (b; m=100) and combined 

feature types (c; m=100). Each row along the vertical axis is a feature. The horizontal axis 

indicates the prediction window size from 720 days to 60 days prior to the diagnosis date. 

The dark red indicates that the feature is selected in all of the 10 folds in 10-fold CV; the 

dark blue indicates that the feature is not selected in any of the 10 CV folds. Examples of 

clinical variables are labeled to highlight the different patterns of predictive ability as a 

function of predictive window size.
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Table I

Structured Variable Categories, Examples, Number Of Unique Variables, And Aggregation Methods.

Variable Category Example Variables # of Variables Aggregation Method

Clinical Diagnosis Diabetes, Cardiac disorders, etc. 18,569 count

Clinical Measures Pulse, Systolic blood pressure, etc. 6 mean

Labs Cholesterol, Serum Glucose, etc. 2,336 mean

Medication Reconciliation Beta Blockers, Loop Diuretics, etc. 1,250 count

Prescription Order Furosemide, digoxin, etc. 3,952 count

Imaging Order Echo orders, etc. 18 count

Hospitalization The ICD-9 associated with the hospitalization. 7,304 count
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Table II

Extracted Framingham HF Criteria, Code Names And The Feature Subtypes.

Extracted Framingham HF criteria –Code names Sub-typesa

Major Criteria

Acute Pulmonary Edema – APEdema (APED) P, N

Paroxysmal Nocturnal Dyspnea or orthopnea – PNDyspnea (PND) P, N

Jugular Venous Distention – JVDistension (JVD) P, N

Rales – Rales (RALE) P, N

Radiographic Cardiomegaly – RCardiomegaly (RC) P, N

S3 Gallop – S3Gallop (S3G) P, N

Hepatojugular Reflux – HJReflux (HJR) P, N

Central venous pressure > 16 cm H2O – ICV Pressure (ICV) P, N

Weight Loss of 4.5 kg in 5 days, due to HF treatment (WTL) P

Minor Criteria

Bilateral Ankle Edema – AnkleEdema (ANKED) P, N

Dyspnea on Ordinary Exertion – DOExertion (DOE) P, N

Hepatomegaly – Hepatomegaly (HEP) P, N

Nocturnal Cough – NightCough (NC) P, N

Pleural Effusion – PleuralEffusion (PLE) P, N

Tachycardia (rate of ≥120 min−1) – Tachycardia (TACH) P

a
P: Positive/Affirmation, N: Negative/Denial.
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