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Abstract

The sensitivity of fMRI in detecting neuronal activation is dependent on the relative levels of 

signal and noise in the time-series data. The temporal noise level within a single voxel is generally 

substantially higher than the intrinsic NMR (thermal) noise, and the noise is often correlated 

between voxels. This work introduces and evaluates a method that allows fMRI sensitivity 

improvement by reduction of these correlated noise sources. The method allows model-free 

estimation of the correlated noise from brain regions not activated by the functional paradigm 

using a short (1–2 min) reference scan. A single regressor representing this noise-source estimate 

is added to the design matrix used in the data analysis. Results obtained from 5 volunteers show an 

average t-score improvement of 11.3 % and a 24.2 % increase in the size of the activated area.
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INTRODUCTION

One of the main limitations of Blood Oxygen Level Dependent (BOLD) fMRI (1) is its 

relatively low sensitivity. In order to investigate brain activity, extensive temporal averaging 

is generally required, using an experimental paradigm that consists of blocks of stimuli 

interleaved by rest periods. Optimization of the fMRI sensitivity is important for 

minimization of the experimental duration.

The primary reason for the low BOLD fMRI sensitivity is the fact that the BOLD effect in 

response to controlled neuronal activity constitutes only a small fraction of the available 

MRI signal. The ability to detect this small BOLD effect from time-series data is 

compromised by the presence of a number of noise sources, including thermal (resistive) 

noise inherent to NMR, and non-thermal noise caused by instrumental instabilities, head 

motion, fluctuations in physiology (e.g. cardiac and respiratory cycles), and uncontrolled 

neuronal activity. As a result, time series standard deviation increases, resulting in a reduced 

temporal signal to noise ratio (SNR), i.e. a lower ratio of MRI signal and noise standard 

deviation.
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Great strides have been made to suppress noise in fMRI. For example, the relative 

contribution of thermal noise has been reduced dramatically with the advent of high field 

MRI systems (2) and multi-channel coil arrays (3). Monitoring of field drift and spike noise 

have eliminated much of the instrumental instabilities (4). Head stabilization using foam 

padding and bite-bars can substantially reduce motion-induced signal fluctuation (5). 

Furthermore, motion correction can be achieved retrospectively (6) during data analysis or 

prospectively (7) using navigator echoes and motion detectors. Besides, a substantial 

reduction in physiologic noise can be achieved by methods based on monitoring of cardiac 

and respiratory rate (8,9) and end-tidal CO2 (10). Lastly, additional noise suppression can be 

achieved in post-processing through sophisticated methods such as principal component 

analysis (PCA) (11) or independent component analysis (ICA) (12).

Despite the substantial improvements in fMRI sensitivity available with current noise 

suppression methods, generally a significant amount of non-thermal noise remains that 

coherently affects a large brain region or even the entire brain (13). In the current work, we 

introduce an alternative noise suppression method that exploits this temporal coherence to 

improve fMRI sensitivity. The new method, which is model-free and simple to implement, is 

demonstrated in BOLD fMRI experiments of the human visual system at 3.0 T.

METHODS

Noise suppression strategy

The proposed method aims at separating task-induced signals from noise. It seeks to 

suppress noise that is present in active brain regions and exhibits a substantial temporal 

correlation with voxels outside of the active regions. The (average) effect of such noise on 

the fMRI signal is estimated from a region outside the area(s) targeted with the stimulation 

paradigm. This reference region is determined using independent MRI data acquired during 

rest, which can either be in the form of a separate scan of the same volume, or by the 

acquisition of additional data either preceding or following the paradigm during the 

functional scan. The order of events in determining the correlated noise regressor is as 

follows:

1. An initial estimate of the active region, RAct, is obtained 

using conventional statistical analysis on the functional 

data.

2. The average signal time-course in the reference rest data, 

SRAct,Rest, for the voxels within this region RAct is 

computed.

3. Each voxel in the reference dataset that is not a member of 

RAct is correlated with SRAct,Rest. Voxels that are found to 

correlate with SRAct,Rest with more than a preset threshold 

are used to form reference region RRef.

4. In the functional data, the average signal time-course in this 

region RRef is then computed (referred to as SRRef,Funct).
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The time-course SRRef,Funct(t) provides an estimate for correlated noise present in both RAct 

and RRef, which can be separated from task-induced signal on a pixel-by-pixel basis using 

regression analysis. To estimate the effect of the method on the noise level in RAct in the 

functional data, we can model the pixel signals Si(t) as containing signals SP induced by to 

the stimulus paradigm, a noise source NC that is fully correlated within and between regions 

RAct and RRef, and a fully uncorrelated noise source NU:

(1)

where AP,i, AC,i and AU,i describe the relative contribution of each component for a given 

voxel. SB is the baseline signal in the experiment, which is not time-dependent. The average 

signals SRAct and SRRef follow from:

(2a)

(2b)

with the summation being performed over the N pixels in area RAct and the M pixels in area 

RRef respectively. Since NU is not correlated within RAct or RRef, and assuming that no 

stimulus related signal occurs in RRef, Equations (2a) and (2b) for large N and M simplify 

to:

(3a)

(3b)

Equation 3b provides a direct relationship between SRRef and the average value of correlated 

noise NC in region RRef, and can be used as a regressor to extract the paradigm signal SP 

from SRAct.

SRRef,Funct potentially contains some activation signal from the inclusion of voxels that were 

somewhat, but not significantly activated in step 1). If this is the case, and SRRef,Funct were 

included in the design matrix used for the analysis of the fMRI data, the measured activation 

amplitude would be negatively affected. To overcome this, regression is performed on 

SRRef,Funct using the design matrix that contains the functional paradigm (convoluted with a 
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hemodynamic response function), as well as all other regressors that ultimately will be used 

in the actual fMRI analysis (typically the design matrix used in step 1)). The result of this 

analysis is used to orthogonalize SRRef,Funct with respect to the other regressors. This 

orthogonalized noise-estimate regressor is referred to as S′RRef,Funct. S′RRef,Funct is then 

added to the design matrix, after which the functional data are reanalyzed using this 

expanded design matrix. Voxels in RRef are excluded from this final functional analysis step 

to assure that the correlated noise regressor was obtained from independent data.

The final implementation of the method deviated slightly from the way it was described 

above. In step 3) above, only the voxels in RAct were barred from possible inclusion in RRef. 

The exclusion criterion was changed to bar all voxels that exceeded 75 % of the significance 

threshold determined in step 1) from possible inclusion in RRef. Although this somewhat 

stricter criterion possibly excludes some strongly-correlating voxels from contributing to 

SRRef,Funct, it prevents these voxels from being excluded from the final functional analysis 

performed with the design matrix containing the correlated noise regressor.

The two penalties for using this method are the loss of a single degree of freedom during 

functional analysis, and the need to acquire a limited amount of additional data (on the order 

of one or a few minutes per volunteer per session).

MRI data acquisition

To evaluate the effectiveness of the proposed method, BOLD fMRI experiments were 

performed on a 3.0 Tesla GE Signa MRI scanner (GE Medical Systems, Milwaukee, WI, 

USA), using a 16-channel receive-only detector array (Nova Medical Inc., Wilmington, MA, 

USA) (3). Six normal volunteers were scanned under an IRB-approved protocol (n = 6, 2 

females, 4 males, average age 32.2 years).

The imaging technique consisted of a single-shot echo-planar imaging (EPI) (14) 

acquisition, using a 50% ramp-sampling fraction. The image matrix size was 96 × 72 and the 

field of view was 210 × 158 mm2. Slice thickness was 2.0 mm, slice gap 0.5 mm, resulting 

in a nominal voxel size of 2.3 × 2.3 × 2.0 mm3. Ten slices were scanned at an oblique-axial 

angle to cover the visual areas. The echo time (TE) and repetition time (TR) were 44 ms and 

1000 ms respectively. The nominal excitation flip angle was 70°. A bipolar crusher gradient 

(b-value of 0.23 s·mm−2) was used to suppress signal from the largest vessels, resulting in 

flow suppression with the first null at an average velocity of 31 mm·s−1.

Stimulus design

The fMRI experiment consisted of visual stimulation using a 5 minute, 30 s off/30 s on 

block paradigm, followed by a 5-minute rest period. During the block-paradigm stimulus on-

periods, a 7.5 Hz contrast-reversing radial checkerboard was shown, occupying 

approximately 30 degrees of the volunteer’s visual field. The check size of the checkerboard 

stimulus increased logarithmically with eccentricity to elicit a strong response throughout 

the visual field. Rest (off) periods, as well as the 5-minute rest period that followed the block 

paradigm, consisted of a uniform 50 % grey disk. The visual stimuli were presented using 

back-projection on a translucent screen positioned directly behind the subject’s head using a 

U2-1200 DLP projector (PLUS Vision Corp., Tokyo, Japan). The subject was able to 
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observe the screen via a mirror mounted on the detector array. The stimulus display was 

generated using Presentation 9.90 software (Neurobehavioral Systems, Inc., Albany, CA, 

USA), running on an AMD Athlon XP 2000+ based PC (Windows XP Pro SP2), and 

synchronized to the MRI scanner once in each TR interval using a scanner-generated TTL 

pulse. During the 10-minute task, alertness was monitored by presenting a response task 

with the visual stimuli in the form of small colored dot in the center of the visual field. The 

color of the dot was alternated between red and pink over time (at pseudo-random intervals), 

and subjects were instructed to press a button whenever they observed a color change. In 

addition, the colored dot functioned as a point for the subject to fixate on to reduce eye 

movement.

Data analysis

Unless otherwise noted, all data analysis was performed off-line using IDL 6.4 (ITT visual 

information solutions, Boulder, CO, USA). EPI images were reconstructed as described 

previously (14) and corrected for slice timing differences by sinc interpolation. Note that due 

to the circular nature of this procedure, the last image of the time series was mixed with the 

first. These volumes were however not used in the actual analysis (see below). Following 

slice timing correction, magnitude images were registered to the one-before-last image in the 

time-series, using C-code based on software developed by Thévenaz et al. (6), in order to 

correct for small head motion.

To ensure steady state of the spin system, the first 15 volumes were discarded. The volumes 

16 though 315 were used as functional data (containing 5 ‘on’ blocks of 30 s, with onset 

times of 15, 75, 135, 195 and 255 s relative to the start of this subset). The block paradigm 

data were analyzed as described earlier (15), assuming a hemodynamic response function 

with a latency and full-width at half maximum (FWHM) of 3.5 s each. This IDL code 

detected (16) and corrected (17) serial correlation in the regression analysis. The code was 

modified from what was described in (15) to correct for temporal autocorrelation over more 

than one lag using a Tukey window with M=3, as is described in (18). A rather narrow 

windowing function was used since the temporal autocorrelation was found to be only 

significant for lag 1 and 2 for these data (results not shown). Part of the remainder of the 

data was used as the independent data for determining the reference region (RRef). The 

analysis was performed 5 times, using either 30, 60, 120, 180 or 270 volumes of these 

remaining rest data as reference data.

Due to the presence of spikes that affected signal stability in a large part of the brain at 

several time points, data from one of the volunteers were excluded.

RESULTS

The proposed correction method improved statistical performance of the fMRI experiment in 

all volunteers. This can be seen in Figure 1, which shows the t-score found when accounting 

for correlated noise using the proposed method as a function of t-score when not taking the 

noise-estimate regressor into account. All voxels in which statistically significant activation 

was found in the analysis without the correlated-noise regressor are shown, for all 5 

volunteers combined. It can be seen that the t-score improves in the large majority of the 
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voxels. This is further supported by Table 1, which shows the percent change in t-score and 

several other experimental parameters for the data obtained with the additional regressor 

compared to data obtained when not accounting for correlated noise. Results show that on 

average the t-score improves by 11.3±1.6 % and the number of activated voxels by 

24.2±9.2 % (both errors are standard errors over the volunteers).

The data for Figure 1 and Table 1 were derived from the analysis using 120 s of reference 

data (120 time points) and a correlation threshold for determining RRef of 0.5. Results from 

the other four analyses with the same threshold of 0.5, using 30, 60, 180 or 270 s worth of 

reference data, respectively, were very similar (average results are shown in the bottom two 

rows of Table 1). A paired t-test was used to compare the t-score improvements, and the 

differences were found to be not significant. For example, the analysis in which just 30 s of 

reference data was used resulted in an average t-score increase of 11.0±2.5 % and an average 

increase in the number of significantly activated voxels of 22.3±5.3 %. The results were also 

very similar when using different correlation thresholds to derive the reference region, as can 

be seen in row 8 and 9 of Table 1, which show the average results over volunteers for a 

threshold of 0.4 and 0.6, respectively, when using 120 s worth of reference data. 

Furthermore, Table 1 shows that the fitted activation amplitude does not substantially 

change, which indicates that the t-score increase is primarily due to a decrease of the 

variance in the residual.

Figure 2 shows average signal time courses for one of the volunteers (volunteer 2), either 

computed from the original data or using data from which the correlated noise estimate had 

been removed. The top panel shows the results for the 2005 voxels that were significantly 

activated in the analysis without the correlated-noise regressor. The bottom panel shows 

similar results for the 201 voxels that were not significantly activated in the analysis without 

the correlated-noise regressor, but were significantly activated when analyzed based on the 

method proposed here. The correction regressor used for this experiment, in this case 

derived from the signal time courses of 960 voxels, is also shown in Figure 2 (top panel). 

Substantial signal fluctuations in the original active-region data (from which the correlated 

noise estimate had not been removed) can be seen to be also represented in the noise-

estimate regressor. Note that the correction regressor is derived from non-activated brain 

areas, not from the voxels in the activated area. This can be seen in Figure 3, which shows 

the masks used for this volunteer for 4 out of 10 slices. Furthermore, the correction regressor 

was derived by averaging, in this case over 960 voxels, also indicating that that it is unlikely 

that these fluctuations are the result of random noise. The fluctuations are strongly reduced 

by the introduction of the noise-estimate regressor in the analysis, as is shown by the 

corrected data in Figure 2.

Figure 3 further shows that the voxels that form the correction mask RRef, derived using 

correlation analysis, are not randomly distributed over the brain. It can be seen that virtually 

all RRef-voxels are located in the grey matter, and that a substantial part of the RRef-voxels 

are clustered (e.g. in the posterior singulate area in the top-left panel, and the ventral-lateral 

area and middle-temporal cortex in the bottom-left panel of Figure 3).

de Zwart et al. Page 6

Magn Reson Med. Author manuscript; available in PMC 2017 January 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



DISCUSSION

In this work a method is presented that substantially increases the performance of fMRI 

experiments. It does not require any hardware or experimental changes, apart from the need 

to acquire a small amount of reference data. Based on the experimental findings described 

here, on the order of 1–2 minutes worth of reference data will probably be sufficient for 

robust performance under commonly used fMRI experimental conditions. In the experiments 

performed here there, results were not significantly different for reference data sets ranging 

from 30–270 s in length. The method results in the loss of a single degree of freedom during 

statistical analysis. Reducing the number of degrees of freedom will affect the noise 

distribution and therefore reduce the t-score. However, this penalty is typically low if the 

number of samples is sufficiently large. For example, for a p-threshold of 0.05 the loss for a 

reduction of one degree of freedom will be less than 1 % if there are more than 85 degrees of 

freedom remaining. The subset of data used for functional analysis in these experiments 

consisted of 300 time points, making this penalty negligible. Out of the 8540 voxels (over 5 

volunteers) in this experiment that were significantly activated when the correlated noise 

regressor was not used in analysis, t-score decreased in 1146 voxels (13.4 %) when using a 

design matrix that does contain the correlated noise regressor. The average t-score decrease 

in those 1146 voxels was 0.6 %. In the remaining 86.6 % of the voxels, the t-score increased 

on average 12.0 % when accounting for correlated noise. The overall average t-score change 

was 10.3 %. Note that this average over all voxels is not identical to the 11.3 % reported in 

Table 1, since the value in Table 1 is the average over volunteers.

Since the same p-threshold was used to determine which voxels are considered significantly 

activated, the false-positive rate should not be affected by application of this method, 

assuming that the residual noise is normally distributed, which may not be the case due to 

the physiological noise contribution. Temporal autocorrelation correction should compensate 

for some of this effect. However the true false-positive rate, or the effect of the proposed 

method thereon, cannot be easily assessed. Since additional noise is accounted for by the 

proposed method, the false-negative rate is presumably reduced, resulting in an increase of 

the number of activated voxels.

One could argue that the time used for the acquisition of reference data could have been 

used to acquire additional fMRI data, which would also increase t-score. However, the 

performance increase obtained with the method proposed here was larger than can be 

expected based on additional sampling. For example, analysis with 30 s worth of reference 

data yielded a t-score increase of 11.0±2.5 %, whereas a t-score increase of 4.9 % could be 

expected if a similar 30-s longer fMRI experiment was performed, if all noise is assumed to 

be random. The benefit will further increase if the same reference data are used in the 

analysis of several datasets.

Furthermore, the exclusion of voxels in the reference region (RRef) could be seen as a 

disadvantage of the proposed method. However, the voxels in RRef were not deemed 

significantly activated in the analysis that does not account for correlated noise. Therefore, 

the exclusion of these voxels cannot be considered a drawback of this method, since all 

voxels that were significantly activated in the original analysis are inherently excluded from 
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RRef, and therefore included in the final analysis. Subsequently, the exclusion of voxels in 

RRef cannot lead to a reduction of the number of activated voxels.

The data in Table 1 suggest an apparent discrepancy. The observed variance decrease is not 

in agreement with the increase in t-score found for the same volunteer. This is the result of 

two effects. First, the t-score scales with the inverse of the standard deviation. Therefore, 

averaging changes in variance (the square of SD) does not correspond to the resulting 

average in t-score. Second, the IDL code used for analysis detected and corrected serial 

correlation in the regression analysis. Since the correction only accounted for correlation 

between neighboring time points, it affected some regressors more than others, depending on 

their frequency characteristics. As a result, the overall decrease in variance was smaller than 

the decrease in the estimated variance of the amplitude of the block paradigm regressor. In 

order to demonstrate that this was the origin of the discrepancy, the analysis was performed 

a second time without performing the serial correlation correction (data not shown). When 

the serial correlation correction step was skipped, the changes in t-score exactly matched the 

changes in signal stability (1/SD). In addition, the observed changes in fitted activation 

amplitude dropped below 0.0001 %, demonstrating that the small changes in fitted 

amplitude in our data were the result of this correction as well.

For the data in this paper, a correlation threshold of 0.5 was used for the selection of the 

reference-region voxels. Choice of this threshold was somewhat arbitrary. Increasing the 

threshold will lead to a decrease of the number of voxels included in the mask. If the number 

of voxels in the correlation mask is small, thermal noise will potentially not be sufficiently 

averaged out when the regressor is computed. On the other hand, lowering the threshold too 

much could lead to the inclusion of too many noisy voxels in the regressor, as well as cause 

more voxels to be excluded from the final processing step. Sensitivity for threshold changes 

was low however, as can be seen in Table 1.

In the proposed method, the correlated noise regressor is orthogonalized with respect to the 

other regressors in the design matrix, most notably the activation paradigm regressor. This 

assures the removal of any residual activation signal from the correlated noise regressor, 

thereby assuring that all activation is fitted by the paradigm regressor and not erroneously 

assigned to the correlated noise regressor. A drawback of this approach is that the (generally 

small) bias resulting from a possible correlation between the paradigm and correlated noise 

is not removed. This bias is not introduced by or exacerbated by the proposed method. The 

exact same bias also affects the conventional analysis that does not account for correlated 

noise. This bias could potentially be removed by using non-orthogonalized regressors. 

However, apart from the reduced accuracy of the coefficients computed using regression 

analysis with a non-orthogonal design matrix, it is in practice difficult to obtain a proper 

estimate of the correlated noise that does not contain residual activation. The reference 

region (Rref) can contain a limited amount of activation (below the detection threshold), 

which will contribute to the correlation between the correlated noise regressor and the 

paradigm regressor. This true activation (signal changes over time that are the result of the 

task) cannot be separated from actual correlated noise (other signal changes over time that 

happen to partially coincide with, but are unrelated to, the task) that has some degree of 

correlation with the paradigm.
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Employing non-orthogonalized regressors with the proposed method is straightforward. 

When repeating the analysis using such a modified approach, a mean t-score increase of 

9.5±2.7 % (compared to 11.3±1.6 % for the fully orthogonalized design matrix, see Table 1) 

was found, as well as a BOLD amplitude change of −1.38±1.7 % (compared to −0.11±0.1 

for the orthogonalized design matrix). The variance change was identical for the two 

approaches, as is to be expected, since the same signals can be described by both design 

matrices, albeit with different coefficients for the paradigm- and correlated noise regressors.

While preparing this manuscript, we became aware of recent work by Fox et al. (13), in 

which spontaneous signal fluctuations in the left somatomotor cortex (LMC) were found to 

be correlated to the fluctuations in the right somatomotor cortex (RMC). Subtraction of the 

average RMC signal was used to improve the signal in LMC. Although this work shows 

similarities to the method presented here there are also some important differences. First of 

all, the coherent noise descriptor is derived from the equivalent anatomical area in the 

opposing hemisphere, whereas our method is generalized by using correlated voxels from 

the entire brain. A separate step is used to subtract the RMC signal from LMC, and the 

noise-descriptor is not decorrelated from other functional regressors in the subsequent 

functional analysis. This can negatively affect performance (9), here it lead to loss in 

activation amplitude in LMC of 11% on average over 11 subjects.

The source of the fluctuations removed by the method presented here was not further 

investigated. Possible sources are the cardiac- and/or respiratory cycle, as well as activity in 

cortical networks that are unrelated to the stimulus paradigm (often referred to as resting 

state fluctuations (19,20)). Although artifacts related to the cardiac- and respiratory 

fluctuations can be adequately removed using other methods (e.g. RETROICOR (8)), such 

methods typically require the acquisition of independent physiological data (for example 

using respiratory bellows and a pulse oximeter), and lead to a greater reduction of the 

number of degrees of freedom than the method presented here. Since the spatial extent of 

these possible contributors to the correlated noise regressor applied here is unlikely to 

change during the time span of a typical exam, the acquisition of a single reference scan is 

expected to be sufficient, although this has not been investigated.

In conclusion, this method allows for substantial increases of fMRI paradigm detection 

sensitivity at the cost of the loss of a single degree of freedom (which is accounted for in our 

functional analysis) and the need for the acquisition of a limited amount of additional data 

(on the order of one minute per volunteer per session for the scan parameters used here). The 

method was demonstrated here using block paradigm data, but can be used to correct any 

kind of over-determined fMRI experiment, including single-event and event-related fMRI 

experiments.
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Figure 1. 
T-score improvement in activated voxels when the proposed method was applied as a 

function of the t-score found when not taking the noise-estimate regressor into account for 

8540 voxels in 5 volunteers. Voxels were selected if they were significantly activated in the 

analysis performed without the noise-estimate regressor.
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Figure 2. 
Average signal time course in the activated voxels of one of the volunteers (volunteer 2) for 

original data (blue trace) and data from which the correlated noise, as determined by the 

method described here, was removed (red trace). The top panel shows the average for voxels 

that were significantly activated in the analysis without the correlated noise regressor, the 

bottom panel shows similar results for the voxels that were found to be significantly 

activated when the correction regressor was included in the analysis, but not in the analysis 

without it. The correction regressor used for this volunteer is shown in black in the top 

panel. (For figure clarity, an offset of −5 a.u. was used for this trace.)
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Figure 3. 
The various masks used for the analysis with correlation threshold 0.5 and 120 s worth of 

reference data, shown for 4 out of 10 slices for volunteer 2 (the same volunteer used for 

Figure 2). The area found to be significantly activated when analysis was performed without 

the noise-estimate regressor is shown in green. The additional voxels that were only 

significantly activated when applying the method described here are shown in yellow. All 

reference mask voxels are shown in red.
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