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Abstract The recent failures of potential disease-modifying
drugs for Alzheimer’s disease (AD) may reflect the fact that
the enrolled participants in clinical trials are already too ad-
vanced to derive a clinical benefit. Thus, well-validated bio-
markers for the early detection and accurate diagnosis of the
preclinical stages of AD will be crucial for therapeutic ad-
vancement. The combinatorial use of biomarkers derived
from biological fluids, such as cerebrospinal fluid (CSF), with
advanced molecular imaging and neuropsychological test-
ing may eventually achieve the diagnostic sensitivity and
specificity necessary to identify people in the earliest
stages of the disease when drug modification is most likely
possible. In this regard, positive amyloid or tau tracer re-
tention on positron emission tomography imaging, low
CSF concentrations of the amyloid-3 1-42 peptide, high
CSF concentrations in total tau and phospho-tau, mesial
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temporal lobe atrophy on magnetic resonance imaging,
and temporoparietal/precuneus hypometabolism or hypo-
perfusion on 18F-fluorodeoxyglucose positron emission to-
mography have all emerged as biomarkers for the progres-
sion to AD. However, the ultimate AD biomarker panel
will likely involve the inclusion of novel CSF and blood
biomarkers more precisely associated with confirmed path-
ophysiologic mechanisms to improve its reliability for de-
tecting preclinical AD. This review highlights advance-
ments in biological fluid and imaging biomarkers that are
moving the field towards achieving the goal of a preclin-
ical detection of AD.
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Introduction

Alzheimer’s disease (AD) has an extensive preclinical stage,
which is initiated 15 to 20 years prior to the emergence of
clinical signs [1, 2]. Neuropathologic examination of older
people who died with a clinical diagnosis of no cognitive
impairment (NCI) or mild cognitive impairment (MCI) often
reveal similar pathological signatures to those with frank AD
[3—7], suggesting a heterogeneous asymptomatic phase of AD
that varies in elderly individuals. These concepts have ener-
gized the field to develop a biomarker for identifying individ-
uals in the earliest preclinical stages of AD, to facilitate early
intervention and to delay or perhaps even prevent the onset of
clinical symptoms. Moreover, biomarkers for AD progression
may also have clinical utility for tracking the efficacy of po-
tential disease-modifying therapies.
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The National Institute on Aging—Alzheimer’s Association
(NIA-AA) developed new working criteria for using a panel
of prognostic fluid and imaging biomarkers to determine the
likelihood of AD pathology and the staging of preclinical AD
and the progression to prodromal and then clinical AD [1, 8],
which included cerebrospinal fluid (CSF) amyloid-f3 (Af3)42,
amyloid positron emission tomography (PET), CSF total tau,
threonine 181 (T181) phospho-tau, mesial temporal lobe
(MTL) atrophy on magnetic resonance imaging (MRI), and
tempoparietal/precuneus hypometabolism or hypoperfusion
on 18F-fluorodeoxyglucose (FDG)-PET (Fig. 1) [1, 9]. In
general, findings to date have suggested that cerebral amyloid-
osis, as measured by increased amyloid PET signal and lower
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Fig. 1 Current models for Alzheimer’s disease (AD) progression bio-
markers. (A) A revised hypothetical model of biomarkers identifying
preclinical AD [1], as originally proposed by Jack et al. [9]. In this model,
amyloid 3 (Af3) changes (red) as identified by cerebrospinal fluid (CSF)
A4, assay or positron emission tomography (PET) amyloid imaging
precede markers for synaptic dysfunction (orange), as evidenced by
fluorodeoxyglucose (FDG)-PET and functional magnetic resonance
imaging (fMRI). These alterations are closely associated with increased
CSF tau (green), which serves as a surrogate for neuronal injury. The
dashed orange line indicates that synaptic dysfunction may be detectable
in apolipoprotein E (ApoE) €4 carriers before detectable A3 deposition.
Brain atrophy on structural MRI (sMRI; blue) and subtle decline in
cognitive function (purple) mark the transition from preclinical AD to
mild cognitive impairment (MCI). (B) Hypothetical staging of
preclinical AD. Stage 1 and 2 individuals may not progress to stage 3,
whereas stage 3 individuals may be more likely to progress to MCI and
AD. Reprinted from Alzheimer’s and Dementia, Sperling et al., Toward
defining the preclinical stages of Alzheimer’s disease: Recommendations
from the National Institute on Aging-Alzheimer's Association
workgroups on diagnostic guidelines for Alzheimer's disease, 7 (3):
280-292, with permission from Elsevier
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CSF levels of A4, precedes markers of neurodegeneration
and synaptic dysfunction (e.g., FDG-PET, MRI, and CSF tau)
prior to the onset of subtle cognitive impairment related to
AD. More specifically, loss of hippocampal volume on MRI
and the ratio of CSF Af34, to total tau or phospho-tau are
predictive of longitudinal changes in cognitive measures in
the face of mounting AD pathology and its clinical sequelae
[9-13]. In addition, arterial spin labeling MRI is used to ex-
amine the influence of changes in resting cerebral blood flow,
as well as blood oxygenation level-dependent signal response
in relation to PET-derived regional amyloid load [14, 15], or to
memory encoding in the MTL [16]. Finally, new advances in
tau PET imaging and novel fluid biomarkers hold promise to
increase biomarker reliability. In fact, tau PET imaging studies
suggest that tau accumulation may track better with cognitive
decline compared with A3 deposition in people with AD
[17—-19]. The combinatorial use of fluid and imaging bio-
markers with neuropsychological testing may eventually
achieve the diagnostic sensitivity and specificity necessary
to identify people in the earliest stages of the disease when
modification is most likely possible. In this regard, advancing
biomarker research to clinical diagnostic settings will be crit-
ical for recruiting appropriate individuals who meet inclusion
criteria for clinical trials. This article reviews the latest ad-
vancements in biological fluid and imaging biomarkers that
are moving the field towards achieving this goal.

CSF Core Biomarkers

The CSF is in direct contact with the extracellular space of
the brain and serves as a substrate for biochemical changes
related to brain pathology. With respect to AD, the current
core CSF biomarkers—A34,, total tau, and phospho-tau
(phosphorylated specifically at residue T181)—are assayed
by enzyme-linked immunosorbent assay (ELISA) or
multiplexed assays as surrogates for mounting neuropatho-
logic plaque and neurofibrillary tangle (NFT) lesions.
Hence, it is generally thought that lower CSF A4, levels
correlate with accumulating plaque deposition and higher
CSF tau levels correlate with neuronal injury during AD
progression.

Early CSF biomarker studies were cross sectional and fo-
cused on differentiating AD from control patients. After it was
found that A3 is generated as a soluble protein during normal
cellular metabolism and secreted into the CSF [20], biomarker
research found that CSF total A3 was decreased slightly in
AD [21, 22]. However, as these initial findings did not dis-
criminate between different A3 isoforms, there was consider-
able overlap between patients with AD and controls, while
other studies reported no change in CSF total A3 in AD
[23]. As the AR4, isoform was found to be more prone than
A4 to aggregate at physiologic pH and form the nidus of
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senile plaques [24, 25], subsequent analysis of CSF A 34, used
C-terminal-specific antibodies. These early reports consistent-
ly showed a ~50% decrease in Af34, in moderate AD com-
pared with age-matched control subjects [26-29].

The first study of CSF total tau as a biomarker for AD used
a pan-tau antibody that recognized both unphosphorylated and
phosphorylated tau, and reported an ~1000% increase in CSF
tau from older patients with AD compared with younger adult
controls [30]. Subsequent age-matched studies using tau
monoclonal antibodies that detect all isoforms of tau indepen-
dently of phosphorylation state found an ~200% to 300%
increase in total tau in AD [31-33]. ELISA methods were also
developed for phospho-tau as a putative readout of tau pathol-
ogy by targeting epitopes associated with NFTs, including
threonine 181, threonine 231, and serine 396 + 404 (the
PHF-1 epitope), among others, with observations of up to
~300% increases in these phospho-tau moieties in the CSF
of patients with AD [34-36]. Blennow [37] evaluated the
sensitivity and specificity of core CSF biomarkers for differ-
entiating AD from controls. CSF A{34, demonstrated a mean
sensitivity of 86% and a mean specificity of 89%. By contrast,
total tau yielded a mean sensitivity of 81% and a mean spec-
ificity of 91%, whereas the diagnostic accuracy of multiple
forms of phospho-tau also yielded a mean sensitivity of 81%
and a mean specificity of 91% [37]. Moreover, combining
measurements of Af34, and tau concentrations in CSF im-
proved diagnostic potential. For example, the CSF ratio of
phospho-tau (T181) to A 34, was found to be superior to either
measure alone for identifying AD among controls and other
neurologic diseases, with a sensitivity of 86% and specificity
0f 97% [38]. Another report revealed a sensitivity of 96% and
specificity of 86% using the CSF ratio of total tau to AR4,
[39]. While A34, demonstrates good sensitivity for differen-
tiating AD from nondemented subjects, combining CSF A3,
and tau measures for the differential diagnosis of AD appears
to mitigate some of the nonspecific biochemical characteris-
tics of AP4,, which is also reduced in Creutzfeldt—Jakob dis-
ease, multiple system atrophy, Lewy body dementia (LBD),
frontotemporal dementia (FTD), vascular dementia, amyotro-
phic lateral sclerosis, and neuroinflammation, in addition to
AD [40, 41]. However, CSF phospho-tau levels are particu-
larly useful in differentiating AD from other dementias such as
LBD, FTD, and vascular dementia with more than 80% spec-
ificity [42].

CSF biomarker development naturally extended to longi-
tudinal studies and the utility of A34,, total tau, and phospho-
tau for predicting conversion from NCI to MCI and to AD. In
this regard, high CSF total tau and low CSF Af34, was found
in 90% of MCI cases that progressed to AD compared with
10% of stable MCI cases [43]. Likewise, high CSF phospho-
tau (T231) was also found in MCI cases that progressed to AD
compared with stable MCI cases and correlated with decline
on neuropsychological testing [44, 45]. Several additional

longitudinal studies of clinically well-characterized cohorts
validated the concept that the CSF core biomarkers could be
used to help predict likelihood of conversion. Notably,
Hansson et al. [46] showed that the combination of high
total-tau with a low A 34,/phospho-tau (T181) ratio at baseline
yielded 95% sensitivity and 87% specificity for the detection
of incipient AD. Fagan et al. [10] compared baseline CSF
samples from 139 patients with Clinical Dementia Rating
(CDR) scores of CDR 0 (cognitively normal or NCI), CDR
0.5 MCT or very mild AD), or CDR 1 (mild AD) with follow-
up clinical assessments [10]. Cox proportional hazard models
adjusted for age, sex, education, and APOE genotype revealed
that participants with CSF total tau/Af34, and phospho-tau
(T181)/AP4, significantly predicted conversion from CDR 0
to CDR greater than 0, with higher ratios predicting a faster
rate of conversion than those with low ratios [10].
Interestingly, the tau/A 4, ratios were similar in CDR 0.5
(MCI) and CDR 1 (mild AD), underscoring the diagnostic
potential of the biomarker for identifying prodromal disease.
A more recent analysis of CSF samples from patients in the
Amsterdam Dementia Cohort showed that the tau/A 34, ratio
was the most robust combination for predicting dementia due
to AD in subjects with MCI [47].

Given the effects of apolipoprotein E4 (ApoE4) gene dos-
age on the risk of AD and age at dementia onset [48], several
groups have evaluated biomarker trajectories as a function of
¢4 allele number, with varying agreement [49-53]. Most re-
cently, 2 studies examined the effects of ApoE4 on longitudi-
nal CSF core biomarkers within cohorts of cognitively normal
middle-to-older-aged subjects. Sutphen et al. [52] found that
€4 homozygotes yielded among the lowest CSF A34, levels,
whereas €4 noncarriers were associated with the highest CSF
A4 levels, with heterozygotes falling in the middle range.
Moreover, longitudinal increases for total tau and total tau/
A4, and decreases in cognitive function appeared to overlap
to a greater extent in ¢4 carriers than in noncarriers [52].
Likewise, Toledo et al. [53] found that €4 carriers showed
higher CSF tau and lower A4, values than ¢3/e3 patients,
with the largest effect observed for Af34,. Whereas AP,
values remained stable up to the beginning of the seventh
decade in healthy controls without any €4 alleles, A34; levels
of healthy controls with 1 or 2 ¢4 alleles showed a decrease
beginning during the fifth decade of life and plateaued at the
middle of the eighth decade. Hence, the ApoE gene dosage
risk factor for AD may be reflected in CSF biomarkers—par-
ticularly low A4, levels—in middle age as a potential signal
for the onset of preclinical AD.

The progression from single-center studies to multicenter
efforts were initially faced with problems related to intersite
differences such as CSF collection, storage methods and assay
platforms [54]. For example, a 12-center study of 750 individ-
uals with NCI, MCI, and AD recruited in Europe and the USA
found that the combination of CSF A4,/ phospho-tau
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(T181) and total tau identified incipient AD within the MCI
group with fairly good accuracy, but with lower sensitivity
(83%) and specificity (72%) than reported for single-center
studies [11]. The AP4, assay had considerable intersite vari-
ability, and the authors highlighted the need for standardiza-
tion of analytical techniques and clinical diagnostics [11].
Indeed, standardization efforts became a major focus for mul-
tisite studies, including the AD Neuroimaging Initiative
(ADNI). Within the Biomarker Core of ADNI, efforts were
made to standardize the analysis of all collected baseline CSF
samples by using the same multiplexed XMAP bead-based
platform (Luminex, Austin, TX, USA) with A[34,, phospho-
tau (T181), and total tau monoclonal antibodies provided in
the INNO-BIA Alz Bio3 immunoassay kit (Innogenetics,
Ghent, Belgium). The initial utility of the approach was dem-
onstrated by comparing cut-off values of Af3,,, phospho-tau
(T181), and total tau in an ADNI clinical cohort of control
participants, and subjects with MCI and AD and comparing
those values with CSF from independent, autopsy confirmed
control and AD cases [55]. The baseline CSF profile for total
tau/A 34, was detected in 33 of 37 ADNI participants with
MCI who converted to probable AD during the first year of
the study. By contrast, A{34, cut-off values derived from the
ADNI cohort was the most sensitive biomarker for AD in the
autopsy cohort, with a receiver operating characteristic area
under the curve (AUC) of 0.913 and sensitivity for AD detec-
tion of 96.4% [55]. Using this same standardized procedure,
Shaw et al. [56] analyzed within-site and intersite assay reli-
ability across 7 ADNI centers using aliquots of CSF from
normal controls and patients with AD. Each center performed
3 analytical runs using separate fresh aliquots of each CSF
sample examined and data were analyzed using mixed-
effects modeling to determine assay precision. The coefficient
of variation was 5.3% for AR4,, 6.7% for total tau, 10.8% for
phospho-tau within centers, and 17.9% for A4, 13.1% for
total tau, and 14.6% for phospho-tau between centers [56].
More recently, Toledo et al. [57] investigated biomarker
changes in ADNI controls, and subjects with MCI and AD
across multiple centers over a 4-year period using standard-
ized procedures [57]. In this study, clinical diagnosis was as-
sociated with abnormal baseline levels of both A 34, and total
tau, or with abnormal phospho-tau (T181) levels alone.
Moreover, low baseline Af34, predicted greater increases in
phospho-tau (T181) levels on follow-up, whereas neither
baseline total tau nor phospho-tau was associated with an
A4, decrease during follow-up, suggesting that changes in
A4 levels precede tau levels [57]. Notably, the longitudinal
stability of these biomarkers varied in patients with normal
baseline levels: 1 group remained stable over time, whereas
the other had decreasing Af34, and increasing phospho-tau
(T181) levels over time. When the stable population was ex-
cluded from analysis, the time taken to reach cut point levels
of biomarkers was significantly shortened. Hence,
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longitudinal analysis of CSF biomarkers revealed substantial
cohort heterogeneity and the lack of a clear association be-
tween level changes and cognitive status, at least over a span
of 4 years. However, the suggestion that changes in A4,
levels precede tau levels reflects a similar finding in a
European cohort showing that levels of A34, are already fully
decreased at least 5 to 10 years before conversion to AD,
whereas increases in the tau markers appear later for con-
verters [58]. However, as proposed by the new working
criteria for AD, the appearance of elevated baseline CSF tau
and other markers of neurodegeneration may reliably predict
the onset of cognitive impairment in preclinical subjects [10,
59]. Hence, despite lingering pre- and post-analytic issues of
intersite variability, the CSF core biomarkers developed to
date are useful for the early diagnosis of AD and prediction
of disease progression (Fig. 2). Altered baseline levels in these
markers, used in combination with imaging and other novel
fluid biomarkers, as discussed below, may be clinically bene-
ficial for the reliable identification of preclinical and prodro-
mal disease for the efficient design of drug intervention clin-
ical trials (Fig. 1).

Novel CSF Biomarkers

Despite the promise for CSF core biomarkers for the identifi-
cation of presymptomatic AD, the inherent heterogeneity in the
progression of mounting plaque and tangle load over time be-
tween patients, as well as the presence of mixed pathologies
and different comorbidities, highlight the need to augment the
CSF core biomarkers with novel proteins to improve diagnostic
accuracy in longitudinal studies [60-62]. A growing list of
candidate biomarkers for AD derived from the CSF has been
proposed, including apolipoprotein isoforms [63, 64], brain-
derived neurotrophic factor [65], prostaglandin D2
synthase:transthyretin dimers [66], synuclein isoforms [67,
68], ubiquitin [69, 70], SNAP-25 [71], neurogranin [72—74],
visinin-like protein 1 (VILIP-1) and chitinase-3-like protein 1
(YKL-40)[52, 75, 76], and the neurofilament light chain (NFL)
[77-79]. In particular, a longitudinal CSF analysis of the post-
synaptic protein, neurogranin, in 378 healthy controls and sub-
jects with MCI and AD revealed significantly higher
neurogranin in MCI converters and patients with AD compared
with controls and MCI nonconverters [74]. Neurogranin was
strongly correlated with CSF tau but not A 34, levels, and high
neurogranin levels were significantly associated with deteriora-
tion in cognitive performance, hippocampal volume on MRI,
and cortical glucose metabolism on FDG-PET in healthy con-
trols [74]. Likewise, CSF levels of the neuronal calcium sensor
VILIP-1 differentiated CDR 0.5 to 2 from CDR 0 controls and
individuals with other dementias such as LBD and FTD and
correlated with CSF tau, phospho-tau (T181), and brain volume.
CSF VILIP-1/AP4; predicted future cognitive impairment at
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AD, Alzheimer's disease; MCI, mild cognitive impairment (MCI-C: MCI-
converters, MCI-S: MCl-stables); SD, standard deviation; LR+, positive likeli-
hood ratio; LR—, negative likelihood ratio; sensitivity and specificity values are
expressed in percentages.

Fig. 2 Summary of cerebrospinal fluid (CSF) biomarker diagnostic
performance. (A) Sensitivity, specificity, and likelihood ratios of CSF
core biomarkers based on primary studies published after the
introduction of new criteria recommended by the National Institute on
Aging—Alzheimer’s Association workgroups [96].* (B) Head-to-head
CSF biomarker performance based on average Alzheimer’s disease
(AD) to control ratios. Biomarkers are differentiated based on
significant differences with good effect sizes (green), significant
differences with moderate effect sizes (purple), or nonsignificant or

least as well as the tau/A 34, ratios, and VILIP-1 and VILIP-1/
A4, accurately predicted the presence or absence of amyloid
PET positivity, regardless of clinical diagnoses, suggesting its
augmentative utility for preclinical AD screening [80]. NFL
has also emerged as a potential surrogate marker for disease
pathogenesis related to axonal pathology. In this regard, a re-
cent study using cases from the ADNI cohort showed that CSF
NFL was higher in subjects with MCI and AD than individuals
with NCI, and that higher NFL concentration was associated
with faster whole-brain and hippocampal atrophy, white matter
intensity changes, and cognitive deterioration over time [79].
Another potential CSF marker for disease progression is
pro nerve growth factor (proNGF), which is the predominant
NGF moiety in brain that displays dual survival/apoptotic
properties and is increased in MCI and AD postmortem brain
tissue [81-83]. Our group recently showed that CSF levels of
proNGF were higher in subjects with amnestic MCI and mild
AD, as well as CDR 0.5 and 1, than in people with NCI or
CDR 0, respectively [84]. Increasing CSF proNGF was signif-
icantly associated with cognitive deterioration, and the combi-
nation of proNGF/A3,4, performed better than tau/A (34, for
distinguishing amnestic MCI from controls [84]. Collectively,
these novel CSF biomarkers could reflect molecular changes
associated with disease pathogenesis, including deficiencies in
synaptic function and cell survival factors.
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significant with minor effect sizes (red) [97]** *Reprinted from
Frontiers in Aging Neuroscience 6, 47, Ferreira et al., Meta-review of
CSF core biomarkers in Alzheimer’s disease: the state-of-the-art after
the new revised diagnostic criteria, pp. 1-24, 2014 (Open Access).
**Reprinted from The Lancet Neurology, Olsson et al., CSF and blood
biomarkers for the diagnosis of Alzheimer's disease: a systematic review
and meta-analysis, doi:10.1016/S1474-4422(16)00070-3 2016, with
permission from Elsevier.

With respect to inflammatory pathways, the proinflamma-
tory chitinase YKL-40, which was isolated initially in a pro-
teomic screen, displayed significantly higher levels in CDR
0.5 and 1 compared with CDR 0 individuals in a discovery
and validation cohort, with CSF YKL-40/A[34, ratio
predicting the conversion from CDR 0 to CDR > 0, as well
as total tau/AP42 and phospho-tau (T181)/Af4;, [85]. Other
notable promising CSF candidate markers include protein
modulators of the endosomal-autophagy—lysosomal system
[86], which may reflect the major disturbances found in these
pathways in MCI and AD [87-89]; protein and lipid markers
of oxidative stress in MCI and AD [90-92]; and alterations in
microRNA profiles that may reflect underlying dysregulation
of amyloid and tau pathways [93-95]. Two recent meta-
reviews [96, 97] provide a current state of the field with re-
spect to the utility of CSF core (Fig. 2A) and novel (Fig. 2B)
biomarkers for identifying people at risk for dementia. As the
most rigorously tested surrogates for AD pathogenesis, CSF
amyloid-beta A3 and tau levels will continue to help refine a
reliable composite biomarker along with imaging and cogni-
tive parameters. Ultimately, the addition of novel biomarkers
to augment the differential diagnosis of AD and other demen-
tias in their preclinical and prodromal stages may provide a
front-line screen for early intervention and optimal subject
recruitment for clinical trials.
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Molecular Neuroimaging Biomarkers

The development of PET radioligands for the in vivo detection
of fibrillary A3 deposits and intracellular tau aggregates has
provided a significant advance in biomarker development,
complementing CSF studies and expanding our knowledge
of how early amyloid plaques and NFTs begin to develop in
the preclinical phases of AD. Although the relative role that
these hallmark AD pathologies play in the onset of synaptic
loss, neuronal cell death, and clinical symptoms of MCI and
early AD remain to be determined, it is becoming evident that
they precede clinical onset by years or decades [1].

Although amyloid PET and CSF biomarkers can identify
early AD with similar accuracy [98], highly sensitive imaging
radioligands used in combination with other novel AD bio-
markers will be critical for timely initiation of therapy trials in
pathological aging, MCI, and early AD.

Pittsburgh compound B [PiB; [C-11]6-OH-BTA-1; [N-meth-
yl-11C]2-(4’-methylaminophenyl)-6-hydroxybenzothiazole] is
the most widely used amyloid imaging agent and the first A3
selective radiotracer to differentiate AD from NCI by PET [99,
100]. PiB binds with a high affinity to 3-sheet structured amy-
loid aggregates [101], and owing to its good brain penetrance
and fast clearance is suitable for PET imaging [102]. In NCI
controls, PiB PET retention is typically low in cortical, subcorti-
cal, and cerebellar regions, while in AD it is high in cortical
regions displaying A3 plaques at postmortem evaluation [103].
With respect to CSF core biomarkers, a strong concordance
between PiB-PET and CSF A4, was seen in mixed cohorts of
NCI and AD [104, 105], or NCI, MCI, and AD [106], with no
correlation between PiB-PET and CSF tau [104]. These findings
were corroborated in other cohorts with NCI [107], MCI [108,
109] and AD [105]. Some longitudinal studies suggested that
amyloid PET may be more sensitive than CSF A 34, in identify-
ing subjects with MCI who will convert to AD. Forsberg et al.
[108] reported that all those with MCI who converted to AD had
high PiB PET retention, but less than half of them had patholog-
ical CSF A3 4;. In another study, 87% of MCI cases had high PiB
retention, with only 53% having pathological CSF A34, [109].
A clinical-pathological study of a PiB-negative patients with
NClI reported that 12 months after PET scan there was a decrease
in CSF A3 4, and a slight increase in CSF tau and p-tau concen-
trations, and 6 months later the individual transitioned to MCI
[110]. In this case, brain autopsy revealed primarily diffuse A3
plaques in the neocortex, suggesting that compared with PiB-
PET, CSF A4, is a more sensitive biomarker for detection of
AD pathology [110].

Postmortem brain studies indicate that PiB binding is most
prominent in classic neuritic plaques and vascular A3 deposits
[cerebral amyloid angiopathy (CAA)][111-114], yet it does not
bind to NFTs or non-AD neuropathology [112, 115-118].
While both A3 plaques and CAA can contribute to PiB- reten-
tion in vivo, CAA is most frequent in the occipital lobe, which

@ Springer

is less affected with plaques when compared with other cortical
regions [119, 120]. Johnson et al. [119] reported that all
nondemented subjects diagnosed with clinically probable
CAA and all AD subjects were PiB-positive. Global cortical
PiB retention in CAA was greater relative to NCI cases, and
lower than in AD; however, the occipital-to-global PiB ratio
was greater in CAA than in AD, similar to other CAA cohorts
[121]. An autopsy evaluation of a PiB positive patient with
mild AD (CDR = 1; Mini-Mental State Examination score =
25) and a clinical diagnosis of LBD found numerous neocor-
tical diffuse A3 plaques but only rare cored plaques and se-
vere CAA [111]. These mixed results support the need for
postmortem evaluation of PiB-PET-imaged brains for validat-
ing radioligand sensitivity and specificity, and for estimating
the threshold level of underlying pathology for PET positivity.
Moreover, the presence of A3 deposits in PiB negative pa-
tients with NCI and MCI brings into question the sensitivity of
PiB for detecting fibrillary AR [110, 117, 122]. Several studies
used postmortem brain tissue analysis and in vitro [H-3]PiB
binding to validate PiB’s utility in quantifying fibrillar A3
load and to distinguish among NCI, MCI, and AD. [H-3]PiB
binding in the precuneus cortex was significantly higher in
AD compared with NCI and MCI groups, and greater
[H-3]PiB binding levels correlated strongly with a more se-
vere CERAD (Consortium to Establish a Registry for
Alzheimer’s Disease) pathology scores and antemortem cog-
nitive impairment [123, 124]. In other studies, [H-3]PiB bind-
ing in multiple brain regions was able to distinguish between
clinical categories, and correlated with concentrations of fi-
brillar A by ELISA [125, 126].

About 10% to 20% of patients with clinical AD are
PiB negative, in agreement with autopsy reports, suggesting
that they may have been clinically misdiagnosed [4, 100]. Ina
study using [F-18]florbetapir PET imaging, amyloid PET-
negative individuals with AD and MCI were more likely to
be ApoE4-negative, exhibit lower CSF tau concentrations,
and perform better on longitudinal cognitive testing, while
amyloid PET-negative subjects with MCI also had milder hip-
pocampal atrophy and hypometabolism [127]. It is also well
established that 20% to 30% of NCI subjects are PiB positive
[99, 118, 128-132], consistent with autopsy evidence of sig-
nificant AD pathology in NCI cases [7, 133, 134]. This inci-
dence increases up to 65% in those aged > 80 years [135].
However, these observations are influenced by a study center’s
threshold for defining amyloid positivity, its clinical definition
of “cognitively normal”, and ApoE genotype status. ApoE4 is
associated with higher PiB PET retention in elderly NCI [131,
136], while in people with MCI it confers an increased likeli-
hood of converting to AD [137, 138]. Compared with noncar-
riers, ApoE4-positive patients with a PiB negative scan have
more than double the rate of progression to PiB positive [139],
reminiscent of ApoE4 effects on lower CSF Af34,. An associ-
ation between ApoE4 and increased PiB PET retention was
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reported in cross-sectional [140] and longitudinal [141] analy-
ses of AD cohorts, while some investigations found no such
association [99, 138, 142], and ApoE2 was associated with
lower PiB PET retention [136]. The reason for preserved cog-
nition despite significant plaque load in PiB positive NCI is not
clear. It has been suggested that resilience to AD pathology can
be due to less advanced “maturation” of amyloid plaques,
preservation of neurons and synapses, less accumulation of
soluble tau in synapses, and less severe inflammatory re-
sponses [143]. Nevertheless, PiB positive individuals with
NCI are at risk for developing cognitive decline when com-
pared with PiB negative individuals with NCI matched by age
and education [132, 144-146], and PiB positive in elderly
people with NCI is a marker for preclinical AD [1].
Similarly, PiB positive subjects with MCI are more likely to
convert to AD [108, 109, 146], and individuals with amnestic
MCI are more likely to be PiB positive than those with
nonamnestic MCI [147, 148]. Thus, amyloid PET imaging is
useful in identifying people that will develop AD, or those with
pathology unrelated to AD.

One of the main drawbacks of PiB-PET imaging is the short
radioactive half-life of carbon-11 (~20 min), which limits the
distribution of [C-11] PiB to PET imaging centers with on-site
cyclotrons. However, longer-lived fluorine-18 (F-18)-labeled
amyloid PET tracers have been developed that are similarly
effective in detecting fibrillar A pathology [149, 150].
[F-18]flutemetamol is a 3’-fluoro analog of PiB (3’-F-PiB) with
similar retention characteristics, although slightly greater reten-
tion in white matter [151]. In a phase I clinical study of subjects
with NCI and mild AD, the AD group had greater retention of
[F-18]flutemetamol in the neocortex and striatum but not in the
white matter, cerebellum, and pons [152]. A multicenter phase II
trial of [F-18]flutemetamol in 15 older patients with NCI (>55
years), 10 young subjects with NCI (<55 years), 20 patients with
amnestic MCI, and 27 patients with early AD reported 93.1%
sensitivity and 93.3% specificity [153]. As expected, regional
retention levels of [F-18]flutemetamol and PiB correlated
strongly in MCI and AD [153], supporting the notion that these
2 related tracers are comparable in detecting fibrillar A3 de-
posits in vivo. A clinicopathological study in a large end-of-life
population demonstrated high sensitivity and specificity of
[F-18]flutametamol [154]. [F-18]florbetapir [(E)-
4-(2-(6-(2-(2-(2-[F-18]-fluoroethoxy)ethoxy)ethoxy)pyridin-3-
yl)vinyl)-N-methyl benzenamine; [F-18]AV-45; or amyvid]
[155] has also proven to be effective in imaging A fibrillar
pathology in vivo [156]. Those with AD displayed higher
[F-18]florbetapir retention in cortical regions when compared
with NCI, while white matter and cerebellar retention was not
different between AD and NCI [157]. In a large multicenter trial,
positive [F-18]florbetapir PET scans were seen in 28% of NCI
(>55 years old), 47% of MCI, and 85% with AD [158].
[F-18]florbetapir PET was negative in subjects with NCI younger
than 50 years of age, and correlated with neuritic plaques

assessed postmortem in 29 terminally ill patients [159]. High
sensitivity and specificity was reported for [F-18]florbetapir
PET using global cortical standardized uptake value ratio to dif-
ferentiate AD from NCI [160]. [F-18]florbetaben [(E)-
4-(2-(4-(2-(2-(2-[F-18]fluoroethoxy)ethoxy)ethoxy)phenyl)-vi-
nyl)-N-methyl-benzenamine; [F-18]AV-1 or BAY-94-9172] has
higher neocortical PET retention in AD compared with NCI or
patients with FTD [161, 162]. Increased [F-18]florbetaben gray
matter retention was reported in AD compared with MCI or non-
AD dementias [163]. High sensitivity and specificity of
[F-18]florbetaben was seen in a multicenter phase II study
consisting of 69 subjects with NCI and 81 with clinically prob-
able AD [164], a single-center phase 0 study of 10 subjects with
NCI and 10 patients with clinically probable AD [165], and in a
clinicopathological study from a multicenter phase III trial [166].
These studies indicate the utility of these new tracers as markers
for AD.

Non-amyloid PET imaging methods can provide comple-
mentary information, such as assessing neuronal dysfunction
with FDG-PET [167]. In patients with AD, decreased FDG-
PET levels of cerebral glucose metabolism show a typical
regional pattern of posterior temporoparietal to frontal
hypometabolism [168—170]. Similar changes in cerebral me-
tabolism were reported in NCI individuals with an ApoE4
allelle [171, 172], and in MCI [173-180]. FDG PET also
predicted progression from NCI and MCI to AD [181-183].
The relationship between PiB-PET and FDG-PET remains to
be determined in studies involving large cohorts of individuals
with NCI, MCI, and AD. Agreement between these 2
methods is high in differentiating AD from NCI, but lower
in classifying those with MCI [184]. MCI subjects were
noticed to display positive correlations between PiB-PET
and FDG-PET, possibly reflecting increased brain reserve
in nonconverting MCI subjects [185]. Lowe et al. [147]
reported that PiB-PET and FDG-PET had similar diagnos-
tic accuracy, however, PiB PET was significantly better at
separating MCI subtypes. In contrast, others have not ob-
served significant correlations between PiB-PET and FDG-
PET in patients with AD, and cognitive performance cor-
related strongly with FDG-PET but not with PiB-PET
[186]. Amyloid deposition and brain atrophy are common
in older individuals with NCI and MCI [100], and hippo-
campal atrophy can be detected in elderly NCI, MCI and
AD using structural MRI [187-191]. MRI studies demon-
strated that the rate of hippocampal atrophy is associated
with conversion from MCI to AD [189, 192-197].
Globally, cerebral atrophy is observed spreading from
within the MTL (i.e., hippocampal volume and entorhinal
cortex thickness) to the parietal, occipital, and frontal lobes
over the course of the disease, with future MCI converters
most closely reflecting this pattern and exhibiting the
highest rates of change [198-200]. Notably, a significant
positive correlation was reported between rates of whole-
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brain atrophy on volumetric MRI and cortical PiB PET
retention in AD [201-204].

AD is a multiproteinopathy with fibrillar aggregates of both
Af and tau. While Af3 is widely believed to precede tau pa-
thology, when compared with amyloid plaques NFTs correlate
better with cognitive dysfunction in AD [205]. Thus, the re-
cent development of tau-specific tracers has been an important
advance to complement amyloid imaging, although less vig-
orously characterized and validated [206]. Multiple challenges
associated with development of tau ligands relate to different
ultrastructural and isoform composition of tau deposits, and
have been addressed elsewhere [207]. Several groups reported
tau-selective PET radioligands, including [F-18]-labeled THK
compounds [208-217]; PBB compounds [218-220]; and
[F-18]-labeled T807 and T808 compounds [18, 19,
221-224]; and with the tau imaging field developing rapidly
new PET tracers are emerging [225]. Characterization studies
of many of these tau candidate ligands are ongoing in subjects
with NCI and AD, while studies of MCI are just emerging.
[F18]AV-1451 (or [F18]T807) has a promising pattern of re-
tention corresponding to known distribution of NFT in AD
brains [226]. This ligand shows an association with cognitive
impairment [17, 227], greater PET retention in the oldest with
NCI[19], MCI, and AD compared with younger subjects with
NCI [221]. In elderly NCI from the Harvard Aging Brain
Study Cohort, cortical [18-F]AV-1451 PET correlated with
CSF measures of total tau and phosphorylated tau [228].
[18-F]JAV-1451 PET was abnormally high in cortical, entorhi-
nal, and parahippocampal regions (but not in the hippocam-
pus) in individuals with MCI and AD compared with patients
with NCI and greater radioligand retention in the inferior tem-
poral gyrus correlated with impaired cognition [18, 19].
Another study of [18-F]AV-1451 PET (20 patients with
NCI, 15 with MCI, and 20 with AD) observed that retention
was increased in multiple cortical regions in patients with AD
and in the entorhinal cortex in MCI; increased PET retention
correlated with impaired global cognitive performance [229].
It has also been reported that regional [F-18]AV-1451 PET
retention corresponded to clinical manifestation of AD and
increased [F-18]AV-1451 PET signal in the hippocampus cor-
related strongly with regional structural MR (volume) impair-
ment only in the presence of A pathology [230]. Although
these reports indicate that [F-18]AV-1451 may be an addition-
al tool for diagnosing AD, a lack of extensive imaging-to-
postmortem validation impedes further advancement in the
field [206]. Only a limited in number tau ligand autoradio-
graphic investigations using autopsy tissue sections have com-
pared AD with non-AD tauopathy cases. Two studies have
reported that AV-1451 binds preferentially to AD tau isoforms
and displays a binding distribution corresponding better to
NFTs than to AP plaques [231, 232]. While binding to
TDP-43 and o-synuclein pathology was minimal or absent,
these studies identified off-target binding in some areas, which

@ Springer

requires further investigation [231, 232]. Another investiga-
tion of [F-18]AV-1451 binding using postmortem brain tissue
also reported high specific signal in AD compared with non-
AD tauopathies, however, no correlation was observed with
tau pathology load within groups [233]. [F-18]AV-1451 im-
aging combined with postmortem histopathology of an autop-
sy case carrying the microtubule-associated protein tau
(MAPT) gene mutation showed a strong correlation between
regional tau pathology and antemortem PET retention [234].
The extent to which tau PET radioligands can discriminate
between the accumulation of tau pathology in AD and other
age-related tauopathies remains to be determined [235].

Although amyloid and tau PET imaging represent major
advances in AD, there are still a number of limitations and
unresolved questions. In contrast to their good specificity, the
sensitivity of PiB-PET imaging and related [F-18] ligands is
not well characterized for relatively low but histologically
detectable A3 deposits. Analyses of large numbers of PET-
positive and PET-negative cases, with short imaging-to-
autopsy interval, will be required to establish threshold levels
of A3 and tau pathologies necessary for diagnostic accuracy.
A major challenge for neuroimaging in AD is how to deter-
mine the onset of amyloid and tau accumulation in pathology-
burdened individuals with NCI and MCI, and its association
with cognitive measures and CSF biomarkers. As the field
focuses on PET imaging studies to help determine the clinical
significance of presymptomatic pathology and identify people
at risk for cognitive decline, more studies are needed to com-
pare directly the relative merit of amyloid and tau PET to CSF
biomarkers, MRI, FDG, and clinical measures for earlier de-
tection of AD, to improve the selection of patients for clinical
trials, and for monitoring pathology progression and therapeu-
tic efficacy.

Blood-Based biomarkers

The resources and costs related to CSF and imaging bio-
markers make it difficult to incorporate them into routine clin-
ical practice. Thus, there is a focus on the discovery and val-
idation of biomarkers in peripheral blood. As blood collection
is minimally invasive and inexpensive to perform, blood-
based biomarkers, developed and refined based on strong con-
cordance with CSF and brain imaging parameters, would
present a significant breakthrough in moving routine screen-
ing for incipient dementia into community-based clinics.
However, the seclusion of the central nervous system (CNS)
from the peripheral circulatory system is a significant chal-
lenge for blood-based biomarkers to diagnose neurological
disorders such as AD. Nevertheless, discovery- and
hypothesis-based approaches have led to the identification of
numerous biomarker candidates associated with AD in blood,
plasma, and serum.
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To date, plasma A3 and tau levels have not mirrored the
sensitivity and specificity of their CSF counterparts. In general,
A4 or APy levels in plasma are found to be either un-
changed or, in cases where higher plasma levels of either
A4, or APy are reported for AD, there is broad overlap
between patients and controls [236]. With respect to predicting
AD conversion in cognitively normal people, some studies
report that high plasma A4, or a high AB4,/AR4 ratio, is a
risk indicator for future AD, whereas others report the opposite
[237-239]. These equivocal findings suggest that plasma A3
does not reflect brain A3 turnover or metabolism [28]. For
instance, there is no correlation between plasma A3 species
and brain amyloid load as determined by PiB binding [104].
Plasma assays for tau have been hampered by a lack of analyt-
ical sensitivity for accurate measurement. However, the recent
application of digital ELISA technology revealed that plasma
tau levels were significantly higher in patients with AD com-
pared with controls and those with MCI, but with substantial
overlap among the groups, with no correlation between tau
levels in plasma and CSF [240]. In a significant advance for
examining amyloid and tau in blood, Fiandaca et al. [241]
examined these proteins in neurally derived blood exosomes
derived from patients with AD, with FTD, and healthy controls
[241]. Blood exosomal levels of total tau, phospho-tau (T181),
phospho-tau (S396), and A 34, were significantly higher in pa-
tients with AD than in matched controls, with combined levels
showing 96% sensitivity. Moreover, analysis of blood
exosomes in a group of AD patients at two different time points
showed that the levels of these four markers were elevated in
the blood of cognitively normal individuals who later devel-
oped AD, up to 10 years before clinical diagnosis of the disease
[241]. Hence exosomes may provide a blood-based window
into CNS activity and provide a more suitable substrate for
marking preclinical AD stages.

Several studies have reported promising novel blood bio-
markers for AD. Combined multivariate analysis of levels of
120 known signaling and inflammatory proteins in plasma
identified 18 candidate proteins that together identified patients
with AD and predicted future AD in those with MCI with high
accuracy [242]. Another study using plasma from patients with
probable AD and controls found a significant AD-related in-
crease in the ratio of proatrial natriuretic peptide, a vasodilator,
to carboxy-terminal endothelin-1 precursor fragment, a vaso-
constrictor (training set sensitivity = 81%, specificity = 82%)
[243]. O’Bryant et al. [244] performed multianalyte profiling of
396 control and AD serum samples from the Texas
Alzheimer’s Research Consortium and 170 control and AD
plasma samples from ADNI to develop a novel serum plasma
biomarker algorithm based on 11 proteins differentially
expressed between the two diagnostic groups (e.g., C-reactive
protein, adiponectin, and pancreatic polypeptide). When com-
bined with biological (e.g., glucose, cholesterol) and demo-
graphic (e.g., age, apoE status) variables, the biomarker yielded

good accuracy (AUC = 0.88) comparable with the CSF total
tau/A 34, (AUC = 0.92) for these patients [244].

More recently, Doecke et al. [245] identified a plasma bio-
marker panel that consisted of 18 proteins, including cortisol,
ApoE, pancreatic polypeptide, and epidermal growth factor re-
ceptor, that discriminated patients with AD from healthy con-
trols, with high sensitivity and specificity (85% and 93%, respec-
tively). Hu et al. [246] identified 17 proteins and peptides that
were associated with MCI or AD in a test cohort, which yielded
four candidates in the validation cohort. Two of these four
analytes, pancreatic polypeptide and ApoE, were among those
included in the plasma biomarker panel developed by Doecke
et al. [245]. However, Hu et al. [246] found that a different set of
two plasma proteins, pancreatic polypeptide and B-type natriuret-
ic peptide, were correlated with CSF levels of A 34, and total tau/
A4, ratios. This concordance with core CSF biomarkers sug-
gested that these two peptides could be useful blood surrogates
for predicting the progression to clinical AD.

A newly developed SOMAscan discovery-based platform
was used to analyze 1129 plasma proteins simultaneously in
blood samples from patients with AD and healthy controls
[247]. In the discovery set, a S-protein classifier (SI00A9,
CD84, CD226, AIF1, and ESAM) was identified that discrim-
inated people with AD from healthy controls with a sensitivity
and specificity of 90.0% and 84.2%, respectively,
outperforming CSF tau and A 34, markers from the same cases.
In a validation study, the classifier discriminated controls from
individuals with MCI with 96.7% sensitivity and 80% speci-
ficity [247]. Finally, an unbiased mass spectrometric lipidomics
approach was used to identify a plasma phospholipid panel that
predicted phenoconversion to MCI or AD within a 2 to 3-year
timeframe with > 90% accuracy [248]. Thus, these novel
discovery-based studies in plasma may also prove useful in
the detection of AD in its earliest stages.

The field of blood-based biomarkers lags behind that of CSF
as there is a significant lack of standardization in collection
procedures and analytical platforms, which likely provides
the main source for variability and low reproducibility rates
across centers [241, 247, 249]. In this regard, an initial set of
guidelines was developed to standardize the preanalytical pro-
cedures related to the utilization of blood-based biomarkers
[250]. Once refined, a set of universal guidelines will allow
the field to more accurately assess and cross-validate potential
blood-based biomarkers to home in on a panel that either aug-
ments existing core CSF and imaging parameters or provides
suitable diagnostic accuracy for noninvasive, low-cost screen-
ing for incipient dementia in community settings.

Circulating Autoantibodies as Biomarkers

Blood-based autoantibodies against neuronal proteins associated
with neuroinflammation, vascular dysfunction/blood-brain barrier
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(BBB) disruption, and altered cholesterol/lipid metabolism sug-
gest that autoimmunity markers may correlate with specific stages
in the pathophysiology and comorbidities associated with AD.
The initial indication that autoimmunity could play
role in the pathophysiology of AD was based on the
identification of A autoantibodies in cognitively nor-
mal older individuals [251-253]. Based on these results,
active and passive amyloid immunotherapy has been
tested in patients with AD [254-256]. Although active
immunotherapy did not prove to be an effective treat-
ment for patients with AD, administration of anti-Af3
antibodies is still currently being tested in patients with
AD as therapeutic agents (i.e., aducanumab) [257-259].
The results released from the phase Ib trial for
aducanumab indicate an encouraging reduction in brain
amyloid and slowing of cognitive decline in patients
with CDRs of 0.5 and 1.0 [259]. Nevertheless, while
the scientific community anxiously awaits the results
of passive A3 immunotherapy in phase III trials, other

autoantibodies have been identified as potential diagnos-
tic biomarkers for AD [260, 261].

The use of protein, peptides, and even peptoid arrays has led
to the identification of autoantibodies specific to patients with
AD. Autoantibodies against targets involved in synaptic activity,
including neurotransmitters and receptors, are associated with
cognitive decline, suggesting their use as signals of brain mal-
function [262-271] (Table 1). With respect to inflammation, the
relationship between neurodegeneration and autoimmunity was
recently genetically confirmed in an epidemiological study where
specific single-nucleotide polymorphisms in TREM2 (triggering
receptor expressed on myeloid cells 2) and complement factors
were shown to overlap between AD and immune diseases [272].
These findings suggest that alterations of the BBB and activation
of neuroinflammation are intrinsic components of AD patho-
physiology. In this regard, autoantibodies against glial fibrillary
acidic protein and S1003 have been associated with leakiness of
the BBB and peripheral immune cell access to the CNS [263,
273]. Autoantibodies against other proteins that modulate the

Table 1 Autoantibodies found
associated with Alzheimer’s

disease

Biological function Target protein References
Synaptic transmission Dopamine [262, 263]
Serotonin [262, 263]
Glutamate [262, 263]
Hydroxytryptamine [262, 263]
Adrenergic receptors [264, 265]
N-methyl-D-aspartate glutamate receptors [266-268]
Nicotinic acetycholine receptor [269]
Amphiphysin-1 [270]
Proopiomelanocortin [271]
Inflammation Glial fibrillary acidic protein [263, 273]
S10083 [263,273]
Galectin 1 [271]
MAPKAPKS [271]
Blood-brain barrier/endothelial Rabaptin 5 [274]
Angiotensin-2 type-1 receptor [275]
Metabolism Oxidized low-density lipoproteins [278]
Phosphorylcholine [277, 279, 280]
Gangliosides GM1 And GQl1b [276, 281]
Aldolase [282-284]
ATP synthase 3 [282-284]
Mitochondrial ribosomal protein L34 [271]
Pentatricopeptide repeat domain 2 [271]
Gene expression FERM domain containing 8 [271]
CYorf9 [271]
Centaurin, alpha 2 [271]
Dnal homolog subfamily C [271]
Ankyrin repeat and KH domain containing 1 [271]

MAPKAPKS = mitogen-activated protein kinase-activated protein kinase 5; ATP = adenosine triphosphate
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BBB have also been identified (Table 1) [274, 275]. Detection of
autoantibodies is also associated with metabolic dysfunction and
oxidative stress [276-281] (Table 1). Autoantibodies against pro-
teins involved in energy metabolism, such as aldolase and aden-
osine triphosphate synthase 3, have also been shown to be sig-
nificantly higher in the sera of patients with AD than in healthy
individuals [282-284]. The role of the antigenic proteins and the
role of autoimmunity in the pathophysiology of AD is still un-
clear, but there is enough evidence to suggest that further studies
could lead to the establishment of an autoimmune panel with
increased specificity and sensitivity for differentiating among
AD, normal aging, and other dementing disease processes.

Blood Metabolites

Lipids, amino acids, vitamins, and cholesterol are plasma
metabolites that have been associated with AD [285].
Higher levels of cholesterol are associated with increased
metabolism of amyloid precursor protein [286].
Consistently, a high cholesterol level in serum is associated
with higher risk of cognitive impairment and AD. By con-
trast, reduced levels of plasma antioxidants, such as vita-
min E, C, D, and others, correlated with both vascular
dementia and AD [287, 288]. Recently, a panel of 24 plasma
metabolites was developed as diagnostic biomarkers of AD
that included phosphocholine metabolites and amino acids
[289]. The differential abundance of the 24 metabolites
accounted for a 90% sensitivity as biomarkers for the preclin-
ical stage of AD. The authors anticipate challenges associated
with validation and reproduction of the results obtained in
different cohorts [289]. Differential comorbidities, especially
metabolic disorders such as diabetes and hyperlipidemia, may
also contribute to the lack of specificity and sensitivity desired
for the use of metabolic biomarkers as a diagnostic tool.
Moreover, current instrumentation and analytical software
limitations preclude the analysis of the whole metabolome.
Despite these technical obstacles, the combination of identi-
fied metabolites and autoantibodies could be a robust analyt-
ical panel for the preclinical diagnosis of AD.

Conclusion

Several potential disease-modifying drugs have been devel-
oped for AD based on translational rationales, yet have
failed to show any effect on disease progression or cog-
nitive function in clinical trials. However, these failures
may simply be due to the fact that the patients with AD
being treated are already too advanced to derive a clinical
benefit. Thus, well-validated biomarkers for early detection
and accurate diagnosis of the preclinical stages of AD will
be crucial for therapeutic advancement. While positive

amyloid or tau tracer retention on PET imaging, low
CSF concentrations of Af34,, and high CSF concentrations
in total tau and phospho-tau are accurate biomarkers for
the progression to AD, the ultimate AD biomarker panel
will likely show improved reliability for detecting preclin-
ical AD through the inclusion of novel markers that are
more precisely associated with confirmed pathophysiologic
mechanisms. In this regard, it is imperative to recognize
AD as a multifactorial disease arising from heterogeneous
etiologies, and that a combinatorial approach of imaging
and fluid biomarkers reflecting disease pathogenesis inte-
grated with genetic screening and sensitive neuropsycho-
logical testing will be required. In addition, the establish-
ment of standards for sample collection and the unified
calibration of specific instrumentation will be necessary
to avoid multicenter variability. Altogether, the results de-
scribed here illustrate that the field is inching closer to the
development of a reliable and accurate diagnostic tool that
will lead to the discovery of efficient therapeutic strategies
for combating the onset of dementia.
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