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Abstract Multiple sclerosis (MS) is an autoimmune demyelin-
ating disorder of the central nervous system. Only a few bio-
markers are available in MS clinical practice, such as cerebrospi-
nal fluid oligoclonal bands and immunoglobulin index, serum
anti-aquaporin 4 antibodies, and serum anti-John Cunningham
virus antibodies. Thus, there is a significant unmet need for bio-
markers to assess prognosis, response to therapy, or potential
treatment complications. Here we describe emerging biomarkers
that are in development, focusing on those from peripheral blood.
There are several limitations in the process of discovery and
validation of a good biomarker, such as the pathophysiological
complexity of MS and the technical difficulties in globally stan-
dardizing methods for sampling, processing, and conserving bi-
ological specimens. In spite of these limitations, ongoing interna-
tional collaborations allow the exploration of many interesting
molecules and markers to validate diagnostic, prognostic, and
therapeutic-response biomarkers.
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Introduction

Inflammatory neurologic diseases encompass infectious,
postinfectious, autoimmune, and vasculitic diseases. Even neu-
rodegenerative neurologic diseases such as Alzheimer’s dis-
ease, Parkinson’s disease, and amyotrophic lateral sclerosis

have an inflammatory component. For the purpose of this re-
view, we will focus on multiple sclerosis (MS), an autoimmune
demyelinating disorder of the central nervous system (CNS).
Clinically, the MS course may be relapsing-remitting (RRMS)
or progressive and is called secondary progressive (SPMS)
when it follows a RRMS onset, or primary progressive MS
(PPMS) when it is progressive from onset [1]. The earliest
clinical stage of the disease is detectable after a single episode
of neurological dysfunction [clinically isolated syndrome
(CIS)]. MS is considered a predominantly T-cell-mediated au-
toimmune disorder, although B cells have an important contri-
bution in disease pathogenesis [2]. Myelin-specific CD4+ T-
helper (Th) cells type 1 and Th17 cells, as well as CD8+ Tcells
enter the CNS where they encounter their cognate ligand and
initiate an immune response leading to recruitment of other
cells B cells, macrophages, and natural killer cells [3–5],
resulting in tissue damage and neurologic dysfunction [6].
Alterations in apoptosis of autoreactive immune cells have also
been described, leading to persistence of these proinflammatory
cells [7, 8]. Pathologically, inflammation, demyelination, and
axonal loss are observed [9–11], and althoughMS is classically
described as a white matter disease, the gray matter is signifi-
cantly involved [12–14]. Biomarkers may be used to support
the diagnosis, and identify potential converters from CIS toMS
so treatment could be initiated early. As more effective but
potentially more toxic therapies become available we need bio-
markers that predict disease severity and response to treatment
so we can select the appropriate therapy. We also need bio-
markers for predicting risk of adverse events.

There are some biomarkers already in clinical use for MS;
cerebrospinal fluid (CSF) oligoclonal bands and immunoglob-
ulin production have been in use for many years to support the
diagnosis and may help predict conversion of CIS to MS [15].
Levels of anti-aquaporin 4 antibodies in the serum are used to
differentiate MS from neuromyelitis optica (NMO) [16], while
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serum anti-John Cunningham virus (JCV) antibodies are useful
in risk stratification during natalizumab therapy [17].

The pathophysiology of MS involves 3 principal compart-
ments: 1) the peripheral blood, where immune processes are
initiated in the relapsing-remitting phase; 2) the blood–brain
barrier (BBB), which becomes overpermeable to autoreactive
immune cells entering the CNS; 3) the CNS, where acute
lesions indicate sites of inflammation and neural damage,
leading to the manifestation of symptoms and disability.
These compartments can be evaluated via blood tests, CSF
studies, CNS imaging, and sampling of tissue through biop-
sies. Peripheral blood sampling and neuroimaging techniques
are the most feasible and innocuous methods for repeated
testing in MS, but the latter lack pathological specificity and
are relatively expensive.

In this review we will focus on emerging blood biomarkers
that have shown reproducible results and may be closer to
clinical implementation (Table 1). We included emerging
blood biomarkers validated in 2 independent cohorts of pa-
tients, or recent data on known biomarkers proposed to answer
different clinical questions. For biomarkers to become clini-
cally applicable they have to go through discovery, verifica-
tion, clinical validation, then multicenter validation before be-
ing available for implementation. Proximity to clinical appli-
cation was assessed based on the completion phase of this
process. Given the significant heterogeneity in the research
on blood biomarkers, and the fact that many validation studies
investigated simultaneously blood and CSF concentrations of
the same biomarkers, some data CSF biomarker data are con-
sidered as worth mentioning.

Description of an “Ideal” Biomarker

A biomarker is “a characteristic that is objectively measured
and evaluated as an indicator of normal biologic or pathogenic
processes, or pharmacological responses to a therapeutic in-
tervention” [18, 19]. An ideal biomarker should be precise,
reliable, and differ between healthy controls and patients with
MS. It should be easily studied in a body fluid that is practical
to obtain and measurable with affordable laboratory proce-
dures. It should be involved in the disease pathogenesis, and
correlate with clinical disease activity and disability progres-
sion. Ideally, it should have a high sensitivity in detecting
relevant disease activity, conserving a high specificity as well.
It is even better if it correlates with radiologic disease activity
markers, such as magnetic resonance imaging (MRI) findings.
In the case of a biomarker of inflammation, it should undergo
rapid normalization under therapy in responders but no nor-
malization under therapy in nonresponders.

Many of these characteristics of an ideal biomarker depend
on the relationship between the pathogenesis of MS and the
biological sample tested. The majority of MS lesions are

usually located in the periventricular white matter of the brain
and superficial regions of the spinal cord, being anatomically
close to the CSF space [20]. Because brain biopsies are typi-
cally not feasible in these cases, CSF is used for measurements
of soluble markers and cell populations by flow cytometry
analysis, polymerase chain reaction studies, and cell function-
al analyses. However, CSF collection is relatively invasive,
being usually collected during the diagnostic phase of MS
[19].

Biomarkers measurable in the peripheral blood through
noninvasive methods are of significant clinical importance in
MS. The main drawback is that much of the disease pathology
occurs in the CNS, which is separated from the periphery by
the BBB. Therefore, events associated with CNS lesions may
not be easily detectable in peripheral blood. Furthermore,
there might be significant variations in many of the soluble
markers, owing to circadian fluctuations, systemic infections,
degradation in the liver, or excretion through the kidney.
However, blood biomarkers provide information about im-
mune triggers in MS and some of the effects of disease-
modifying drugs [19–21]. Notably, the majority of protein
content of the CSF is blood-derived, while the rest is derived
from the brain or produced intrathecally [20].

Biomarkers to Support the Diagnosis of MS and MS
Subtypes

The diagnosis of RRMS requires evidence of dissemination in
time and space, as well as absence of any other explanation of
the clinical findings (usually called MS mimickers). In this
respect there have been significant advances in the diagnostic
criteria merging clinical and radiologic features to diagnose
confidently RRMS [1, 22]. However, progressive forms of
MS could be difficult to diagnose early on, and having a good
biomarker to support the diagnosis would be very useful.

Epidermal and Hepatocyte Growth Factors, CCL4,
and CCL11

Tejera et al. [23] analyzed a set of 30 different plasma
cytokines, chemokines, and growth factors in blood of
129 patients with MS with different clinical forms
(RRMS, SPMS, and PPMS) and 53 healthy controls,
across 2 independent cohorts, using Luminex xMAP
technology. They showed that different MS forms are
associated with distinct profiles of circulating plasma
protein biomarkers, with distinct signatures being com-
posed of chemokines and growth/angiogenic factors, and
proposed the evaluation of a set of 4 circulating bio-
markers (hepatocyte growth factor, eotaxin/CCL11, epi-
dermal growth factor, and macrophage inflammatory
protein-1β/CCL4) as a tool in the diagnosis and more
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personalized therapeutic targeting of patients with MS
[23].

Noncoding microRNAs

In another recent study 3 microRNAs (miRNAs) were differen-
tially expressed in the serum of patients with RRMS compared
with patients with PPMS, and were validated in 2 other indepen-
dent small cohorts within the study, and were useful to differen-
tiate RRMS from PPMS [24]. Notably miR-223 has been impli-
cated in the regulation of CNS inflammasomes [25], and miR-
15b has been described as a promoter for neurogenesis [26].

Other noncodingmiRNAs in peripheral blood, such as miR-
20a-5p [27, 28] and miR-22-5p [28, 29], which are involved in
T-cell regulation, could be promising novel biomarkers to iden-
tify CIS converters and support early MS diagnosis. However,
further replication in larger cohorts is still needed.

Anti-myelin Oligodendrocyte Antibodies

Anti-myelin oligodendrocyte (MOG) antibodies have been
studied as an early predictor of the subsequent course of de-
myelination in children, showing that its presence is sugges-
tive of acute disseminated encephalomyelitis rather than MS
in the pediatric population (using a serum dilution of 1:160 as
a cut-off for positivity) [30]. However, the usefulness of anti-
MOG antibodies in the adult population is not as clear. In a
study of adults with NMO and suspected limited forms of MS
(optic neuritis and myelitis), MOG antibody titers through
full-length MOG cell-based assay could not help in differen-
tiating between the different clinical phenotypes, including
monophasic and relapsing diseases. Furthermore, low MOG
antibody titers were not always associated with a monophasic
course or better outcome, and persistence of antibodies for
several years was reported in patients with clinical symptom
resurgence [31]. Moreover, the presence of MOG IgG in the
serum of patients with NMO has been described, with incon-
sistent data regarding the coexistence of aquaporin 4 IgG and
MOG IgG in these patients. As MOG IgG has been consis-
tently absent in MS, it still can be a promising biomarker to
help in differentiating between MS and aquaporin 4 IgG-
negative NMO, which is a common clinical scenario [32–34].

Antigen Array Signatures

Quintana et al. [35] studied IgG antigen arrays signa-
tures based on low-affinity autoantibody patterns.
Informative patterns emerged from autoantibodies that
bound peptides of myelin molecules and heat shock
proteins, proteins and lipids that were detectable at
1:10, but not at higher dilutions (low affinity). They
showed that SPMS samples have an immune reactivity
closer to that observed in patients with PPMS. Later

they also showed a significantly higher number of anti-
bodies in pediatric MS compared with other neurologic
disorders, attributing this to the phenomenon of epitope
spreading [36]. In the same study they evaluated the
performance of IgG antigen array reactivity classifiers
in discriminating a monophasic acute demyelinating ep-
isode from MS at the time of an acute demyelinating
attack, with an area under the curve of 0.872 [36]. The
use of antigen arrays has not yet been replicated and
has not shown usefulness in early diagnosis.

Neurofilaments and Other Neurodegenerative
Biomarkers

Neurodegenerative biomarkers usually consist of neuron-
specific proteins released following axonal damage.
Several studies have shown elevated CSF levels of
neurofilaments in MS [37–39]. In CIS, serum and CSF
levels of neurofilament light subunit (NfL) were not
associated with fast conversion to clinically definite
MS (CDMS), but were significantly higher in CIS com-
pared with healthy controls [40]. The axonal Tau protein
was found to be upregulated in patients with RRMS and
those with PPMS [41–46]. Furthermore, CSF levels of
Tau tended to be highest in the early stage of the dis-
ease [43, 47]. However, these markers are not specific
to MS as they are upregulated in many other degenera-
tive, ischemic, and infectious CNS disorders.

Anti-KIR4.1 Channel Antibodies

Some authors have reported a high prevalence of anti-
bodies directed against the glial inwardly rectifying po-
tassium channel KIR4.1 (anti-KIR4.1) in serum of
adults with MS and almost 50 % of children with MS
[48, 49]. However, 2 other studies using a comparable
enzyme-linked immunosorbent assay technique could
not reproduce these findings [50, 51]. Levels of anti-
KIR4.1 antibodies could not differentiate between MS
and NMO, although higher levels of these antibodies
were found in patients with MS during relapses [52].
Thus, more studies are needed to validate anti-KIR4.1
antibody levels as a biomarker in MS.

Serum 24-Hydroxycholesterol

There is recent interest in 24-hydroxycholesterol as a bio-
marker of MS, as modestly decreased levels of this lipid in
serum have been reported in MS—more so in patients with
PPMS and older patients with RRMS than in healthy controls
[53–55], but further replication studies are needed.
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Biomarkers to Predict the Conversion from CIS
to Definite MS

Serum Anti-MOG and Antimyelin Basic Protein
Antibodies

There is general agreement that early initiation of treatment
after CIS could delay conversion to definite MS and mitigate
future disability, so biomarkers that allow identification of
patients at the highest and lowest risk of further attacks and
disability are needed to personalize the treatment plan. In an
initial study, Berger et al. [56] showed that the presence of
serum IgM anti-MOG and anti-myelin basic protein antibod-
ies could predict the risk of conversion from CIS to clinically
definite MS. However, further investigations revealed that
anti-MOG antibodies were only detectable in cases of acute
disseminated encephalomyelitis [30, 57].

Chitinase 3-Like-1 and Chitinase 3-Like-2 Proteins

Chitinase 3-like-1 (CHI3L1) is a member of the family of
chitinases and chitinase-like proteins containing a highly con-
served glyco-18 domain as common feature. For these pro-
teins, chitin is the only documented substrate. CHI3L1 can
bind chitin but lacks chitinolytic activity. In the CNS,
CHI3L1 expression has been mainly observed in astrocytes
of monkeys and humans with lentiviral encephalitis, and pa-
tients with brain infarcts. Increased circulating levels of
CHI3L1 have been reported in a wide variety of heteroge-
neous conditions characterized by chronic inflammation such
as rheumatoid arthritis, inflammatory bowel disease, systemic
lupus erythematous, asthma, and sarcoidosis; nonetheless, its
mechanism of action remains poorly understood, beyond a
suggestion that CHI3L1 may be a tissue remodeling factor.
In patients with CIS, increased CSF CHI3L1 levels was a risk
factor for conversion to definite MS, independent of strong
predictors of conversion to MS such as brain MRI abnormal-
ities and the presence of IgG oligoclonal bands [58].
Furthermore, patients with CIS with high CSF CHI3L1 had
a shorter time to definite MS [58]. Interestingly, patients with
CIS with higher serum levels of CHI3L1 and chitinase 3-like-
1 (CHI3L2) have a higher conversion rate to definite MS, and
converted much faster as well [59].

Chemokines and Their Receptors: C-X-CMotif Ligand 13

Chemokines and their receptors play an important role in the
recruitment of autoreactive immune cells from the periphery
to the CNS and are detectable in MS plaques [60]. Among
these molecules, chemokine (C-X-C motif) ligand (CXCL)13
was found to be upregulated in patients with active MS.
Furthermore, elevated levels of CXCL13 also predict CIS
conversion to clinically definite MS [61–65].

25-OH Vitamin D

Among several studies that suggested a relationship between
vitamin D deficiency and risk of MS, a group studying 100
patients with CIS showed that those with very low (below the
tenth percentile) and low (below the twenty-fifth percentile)
25-hydroxy (OH) vitamin D levels in serum were at higher
risk of conversion to definite MS after a median follow-up of
7.7 years [66].

A large multicenter study of > 1000 CIS cases, with a
median follow up of 4.3 years, showed that lower 25-OH
vitamin D levels in serum were associated with conversion
to definite MS in a univariate analysis, but this association
was mitigated at the multivariate level when controlling for
the presence of oligoclonal bands in the CSF, number of T2
lesions on MRI, and age [15].

Biomarkers of Disease Activity

Serum Apoptotic Molecules and Cytokines

In a study to identify biomarkers of disease activity and pro-
gression in MS, Hagman et al. [67] analyzed the serum pro-
files of cytokines, chemokines, and apoptotic molecules in
CIS, RRMS, PPMS, SPMS, and healthy controls (72 patients
with MS, 17 with CIS, and 21 healthy controls). They corre-
lated their levels with clinical and MRI findings acquired over
a 1-year follow-up. They found increased levels of the apo-
ptotic serum Fas (sFas) molecule in patients with MS with
worsening Expanded Disability Status Scale (EDSS) score
and accumulation of hypointense lesions on MRI. In these
patients, the levels of macrophage migration-inhibitory factor
were higher than in clinically stable patients. The authors sug-
gested that sFas and migration-inhibitory factor can be candi-
date biomarkers of disability progression due to neurodegen-
eration. They also found that increased levels of serum tumor
necrosis factor (TNF)-α and CCL2 seemed to reflect MS-
related inflammatory responses, especially in PPMS, but stat-
ed that their role as biomarkers of clinical disease activity
needs to be evaluated in a long-term study involving a larger
cohort [67].

Neurofilaments and Anti-neurofilament Antibodies

Neurofilaments are important axonal cytoskeletal proteins
where the 68-kDa NfL forms the core of the neurofilament,
while the 190- to 210-kDa heavy neurofilaments (NfH) are
located more peripherally. NF in the serum and CSF were
suggested to correlate with damage to axons and disease ac-
tivity in MS [37, 68].

Anti-neurofilament antibodies have also been suggested to
be markers of tissue damage. Anti-neurofilament antibodies
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are detected both in serum and CSF of patients with MS and
they are shown to correlate with brain parenchymal fraction,
T2 and T2 lesion load [69, 70]. In another study, serum anti-
neurofilament antibodies were significantly elevated in PPMS
[71].

Lately, CSF NfL levels showed some prognostic val-
ue in MS, as the levels at diagnosis correlated with MS
severity score, and patients with NfL levels above the
median had 5-fold increased odds of severe MS, includ-
ing conversion to SPMS at 8 to 20 years after disease
onset [72]. In another cohort of patients with CIS, NfH
levels in the CSF correlated with physical disability and
brain volume loss over 1 year [73]. In another cohort of
patients with RRMS followed up for a median of
14 years, CSF NfL levels at diagnosis correlated with
the MS Severity Score in the long term, while cases
with high NfL levels (>386 ng/l) were more likely to
convert into SPMS than those with low levels (<60 ng/
l) [74]. In a cohort of patients with progressive MS,
NfH was a predictor of continuing disability, and NfL
was a predictor of EDSS annual increase [75]. There is
currently a new promising sensitive immunoassay for
quantification of NfL in serum [76]. Serum NfL levels
were reported to predict recovery after an episode of
myelitis in RRMS [72, 77]. Moreover, patients with
CIS had higher levels of serum NfL than controls,
which was also associated with the number of T2-
hyperintense and gadolinium-enhancing lesions, as well
as with increased disability [40].

Although the data on neurofilament proteins as biomarkers
show promise, their prognostic value in individual patients
needs a more extensive validation through prospective cohort
studies.

CHI3L1 and CHI3L2 Proteins

In a prospective study CSF CHI3L1 level was a strong
predictor of disability progression and, in fact, it was
the only significant independent risk factor associated
with the development of disability in multivariate Cox
regression models [58]. CSF CHI3L1 levels above the
170 ng/ml cut-off were conferring, as a unique predic-
tor, a 4-fold increased risk for the development of dis-
ability. High CSF CHI3L1 levels were associated with
earlier disability progression (5-year difference in medi-
an time to reach EDSS 3.0 vs patients with low-protein
values) with a sensitivity > 70 % [58]. In another study,
CSF CHI3L1 levels were associated with brain MRI
abnormalities at baseline and disability progression dur-
ing follow-up [78]. Moreover, other authors reported
that higher serum and CSF CHI3L1 and CHI3L2 were
found in progressive MS than in RRMS and CIS [59].

Proapoptotic Molecules: Fas and Fas Ligand

Several studies demonstrated downregulation of proapoptotic
molecules in active MS, indicating abnormalities in the apo-
ptotic cell death of lymphocytes in MS [79–81]. Increased
mRNA expression of Fas and Fas ligand has been regularly
reported in peripheral blood mononuclear cells in RRMS, but
the data on the sFas have been inconsistent [82–86].

Adhesion Molecules: Soluble Platelet Endothelial Cell
Adhesion Molecule 1, sP-Selectin, and sE-Selectin

Migration of immune cells into the CNS is mediated by adhe-
sion molecules, normally expressed at very low levels on vas-
cular endothelial cells but increase after cytokine stimulation
in MS [87]. There are soluble forms of adhesion molecules as
well, released from endothelial cells, immune cells, and plate-
lets. The soluble adhesion molecules soluble platelet endothe-
lial cell adhesion molecule 1, sP-selectin, and sE-selectin have
been shown to be upregulated in patients with RRMS when
compared with PPMS. The levels of these molecules were
also found to be upregulated during MS exacerbations, sug-
gesting their potential as biomarkers for disease activity [88].
Larger longitudinal studies are needed to confirm the clinical
usefulness of these markers.

Metalloproteases and Nitric Oxide

Matrix metalloproteinases have been shown to contribute to
the inflammatory injury to the BBB and CNS myelin. An
elevated level of matrix metalloproteinase 9 was associated
with active gadolinium-enhancing lesions on MRI in patients
with MS [89, 90]. Similarly, free radicals such as nitric oxide
(NO) that contribute to the neurodegenerative cascade in the
CNS through oligodendrocyte injury, axonal degeneration,
and impairment of nerve conduction were increased in some
acute demyelinating lesions [11]. Elevated levels of NO me-
tabolites nitrite and nitrate are associated with disease activity
[91, 92]. NO synthase was also increased in patients with MS
[93].

Neurotrohpins

The expression of some neurotrophins that can stimulate re-
generation and promote repair has been described in MS le-
sions [94]. Low levels of brain-derived neurotrophic factor
have been reported in blood and CSF [95, 96]. The levels of
brain-derived neurotrophic factor, neural cell adhesion mole-
cule, and ciliary neurotrophic factor in the CSF of patients
with MS have been associated with disease activity [96, 97].
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NfL

CSF levels of NfL are elevated in all stages of MS, without
initial marked differences between RRMS and progressive
MS. However, in RRMS the concentration of NfL is CSF
and serum is consistently higher in patients who are in clinical
exacerbation or who have gadolinium-enhancing lesions on
MRI, while in progressive MS, NfL levels are elevated, irre-
spective of MRI activity, but this information still needs to be
replicated in larger cohorts [40].

RNA Profiles: “MSa and MSb” Gene Signatures

In a transcriptomics study, an RNA profile (from pe-
ripheral mononuclear cells) identified 2 subsets of pa-
tients with MS differing in disease activity. An in-
creased expression of genes involved in the “T-cell re-
ceptor” and “B-cell receptor” signaling pathways was
found in a subset of patients called “MSa” as compared
with their counterpart, the “MSb”. The MSa signature
included genes found in the nuclear factor of activated
T cells, integrin-linked kinase, phosphatidylinositol 3-ki-
nase, and epidermal growth factor. The MSa and MSb
gene signatures were associated with disease outcome,
with the MSb patients being 40 % less likely to have a
relapse. None of the available clinical and paraclinical
data was different between the 2 MS subsets after
correcting for testing of multiple hypotheses, except
for a difference in disease duration at the time of sam-
pling in patients treated with glatiramer acetate [98].

Noncoding miRNAs

Several noncoding RNAs in serum were also explored as bio-
markers of disease activity inMS. A recent study reported that
elevated levels of miR-92a-1 and miR-454 correlated with
increasing disease severity disability [99, 100].

Cholesterol

Some researchers reported in patients with MS a relationship
between disease progression and elevated serum levels of tri-
glycerides, low-density lipoprotein, and total cholesterol,
while high-density lipoprotein levels correlated with lower
lesion volume load on MRI [101]. Furthermore, others
showed a positive correlation between serum LDL levels
and the number of active white matter lesions in patients with
CIS [102]. However, the normal biological variability of the
lipid profile in serum makes it difficult to validate these mol-
ecules as biomarkers in MS [103].

Tryptophan Metabolism and the Kynurenine Pathway

Alterations in tryptophan metabolism through the kynurenine
pathway have been reported in patients with MS and other
neurologic disorders [104, 105]. Some researchers examined
the transcription of the tryptophan-depleting enzyme
indoleamine 2,3 dioxygenase (IDO) in sera of stable patients
with MS, patients during an acute MS relapse before and after
treatment with corticosteroids, and healthy controls. IDO ex-
pression was increased during a relapse (before treatment with
corticosteroids) compared with stable patients with MS. After
treatment with glucocorticoids, clinical improvement oc-
curred along with a significant reduction in IDO gene expres-
sion and IDO catalytic activity [106].

25-OH Vitamin D

Among other studies, an analysis of > 450 patients with CIS
followed up to 5 years in 1 of the Betaferon/Betaseron trials
showed that higher serum 25-OH vitamin D predicted less
disease activity. They suggested that a 20 ng/ml increment in
the mean serum vitamin D levels within the first year predict-
ed a 57% lower rate of new active lesions, 57% lower relapse
rate, 25 % lower increase in yearly T2 lesion volume, and
0.41 % lower loss in yearly brain volume [107]. Another
group explored the data of 65 patients of the phase II CIS trial
of atorvastatin (STAyCIS) and reported that each 25 nmol/l
higher 25-OH vitamin D level was associated with 7.8 ml
higher gray matter volume (95 % confidence interval 1.0–
14.6), suggesting a potential impact on neurodegeneration
and disability progression [108].

Biomarkers of Therapeutic Response

Anti-Interferon Neutralizing Antibodies

It has been established in clinical practice that anti-interferon
(IFN)-β antibodies herald a lack of therapeutic effect of inter-
ferons in RRMS, although this biomarker identifies only a
group of nonresponders to MS treatments [109].
Interestingly several human leukocyte antigen class II alleles
and short nucleotide polymorphisms have been associated
with anti-IFN-β neutralizing antibody titers [110, 111], al-
though these data still need to be validated for use at the
individual level. A recent prospective European MS cohort
suggested that an early increase in binding antibody titers
could reliably predict the development of anti-IFN-β neutral-
izing antibodies; moreover, the authors reported CXCL10 as a
promising predictor of neutralizing antibody-associated
IFN-β response attenuation [112]. Furthermore, some patients
develop such neutralizing antibodies only transiently, making
the judgment of their future response to IFN debatable.
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However, in a post hoc retrospective analysis of the BENEFIT
trial it was shown that in early MS, early high levels of anti-
IFN-β1b neutralizing antibodies predicted a high rate of per-
sistence of the antibodies later on, suggesting an early differ-
entiation of persistently neutralizing antibody-positive pa-
tients from transiently positive patients [113].

Concentrations of Interleukin-17 in Serum

There has been mounting evidence for involvement of inter-
leukin (IL)-17 in the pathogenesis of MS [114, 115]. High
concentrations of IL-17F before initiation of therapy were
reported to be associated with lack of response to IFN-β
[116]. However, in a better-powered study, levels of IL-17F
measured at baseline and at 6 months after initiation of treat-
ment did not correlate with clinical or radiologic failure on
treatment after 2 years [117]. Only extremely high levels of
IL-17F (>200 pg/ml), which were found in few patients
(4.4 %), were associated with nonresponsiveness to IFN-β
treatment.

Noncoding miRNAs

Levels of miRNAs in the blood also might be potential bio-
markers of response to IFN-β [118, 119]. A prospective study
showed that changes in miR-26a-5p concentrations in serum
could serve as biomarkers of the effects of IFN-β therapy, and
could have a good predictive value in identifying responders
at the individual patient level [120].

Anti-natalizumab Antibodies

Several groups reported the clinical relevance of persisting an-
tibodies against natalizumab [121, 122]. These antibodies are
formed early during treatment, persist in around 6% of patients,
and are related to a decrease in treatment efficacy and adverse
reactions to natalizumab. However, any new disease activity
would generally be obvious clinically and radiologically in this
group of patients, as relapses and new active or enhancing
lesions rarely occur during such treatment in daily practice;
therefore, there might be a limited role for anti-natalizumab
antibodies as a biomarker in clinical practice [123].

Serum TNF-Related Apoptosis-Inducing Ligand

TNF-related apoptosis-inducing ligand (TRAIL) is a member
of the TNF superfamily expressed in soluble and membrane
bound forms from lymphocytes and monocytes in an
activation-dependent manner [124]. It has been shown that
soluble TRAIL inhibits proliferation of activated T cells
[125, 126], and inhibition of TRAIL outside the CNS wors-
ened experimental autoimmune encephalomyelitis [127].
Increased expression of TRAIL mRNA has been reported in

peripheral blood mononuclear cellss of patients with RRMS
treated with IFN-β who responded to treatment. Based on
these observations it has been suggested that TRAIL could
be used as a biomarker reflective of response to treatment with
IFN-β in MS [128, 129].

B-Cell Activating Factor

As a member of the TNF family, B-cell activating factor
(BAFF) is a major survival factor for B cells, which, classi-
cally, has been postulated to be involved in the development
of many autoimmune and inflammatory conditions [130]. One
prospective study of 170 patients with RRMS and 49 healthy
controls, with a mean follow-up of 2.3 years, reported that
plasma BAFF levels were significantly higher in stable pa-
tients with MS compared with controls. Nevertheless, stable
patients with MS had significantly higher serum BAFF levels
than patients with recent preceding relapses. Interestingly,
treatment with IFN-β but not glatiramer acetate raised
BAFF levels, and treatment of the relapses with high-dose
intravenous steroids did not significantly change plasma
BAFF levels in 65 % of patients [130]. Notably, a previous
study in 73 patients with RRMS, 8 patients with melanoma
treated with IFN-α, and 26 healthy controls, showed that
IFN-β significantly increases serum BAFF levels [131].

Biomarkers to Predict the Risk of Adverse Effects
of Disease-Modifying Therapy

Anti-JCVAntibodies in Serum

During treatment with natalizumab, the presence of anti-JCV
antibodies in blood is associated with the development of
progressive multifocal leukoencephalopathy (PML) [132,
133]. JCV antibody serum index enables stratification of the
risk of PML in JCV-seropositive patients [134], as is currently
used in clinical practice. In patients without immunosuppres-
sant use prior to natalizumab, a low anti-JCV antibody index
confers a low risk of PML. Increasing titers of anti-JCV anti-
bodies, exposure to a previous immunosuppressant, and
prolonged use of natalizumab increase dramatically the risk
of PML, especially after 2 years of treatment. Therefore, anti-
JCVantibodies in serum currently have an established role as
a biomarker for risk stratification in patients treated with
natalizumab.

L-Selectin-Expressing CD4+ T Cells in Peripheral Blood

Aiming to advance the ability to predict PML risk during
treatment with natalizumab, the results of a study using flow
cytometry in peripheral mononuclear blood cells suggested
that the frequency of L-selectin-expressing CD4+ T cells was
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lower in patients who had received long-term treatment with
natalizumab than in those patients not exposed to natalizumab,
or healthy controls [135]. Furthermore, among a subgroup of
patients who developed PML, a significant 9-fold decrease in
the number of L-selectin-expressing CD4+ T cells was found
in their blood samples taken before development of PML.
Through a validation study in an independent cohort of pa-
tients, the same group reported that a low frequency of L-
selectin-expressing CD4+ T cells in patients treated with
natalizumab increased a patient’s relative risk of PML 55-
fold [136]. However, recent data from a cohort of patients
treated with natalizumab indicated that L-selectin is not a use-
ful biomarker of PML risk [137]. Future research would have
to clarify the usefulness of such a biomarker to predict the risk
of PML in patients treated with natalizumab.

Discussion

MS biomarker research is an area of intense interest, as is
evident by the number of publications on the subject. In this
review we focused specifically on peripheral blood as an eas-
ily accessible tissue that is amenable to repeat sampling. A
large number of interesting molecules and markers are emerg-
ing that have not been discussed in this review as we focused
on the few biomarkers that have been replicated inmore than 1
study.

Clinical implementation is clearly the goal of biomarker
research, but several steps have to occur between discovery
and implementation: namely, the finding must be verified,
replicated, and then clinically validated. Technical aspects re-
lated to the methods of collection, measurement, and quality
controls have to be instituted. Ideally, the techniques should be
easily standardizable and affordable. Recently, there have
been efforts to standardize the tools necessary for biomarker
research and creating guidelines for biobanking [138–140]
and quality controls [International Society for Biological and
Environmental Repositories, http://www.isber.org]. The
creation of these guidelines and multicenter collaborations
will pave the way for more rapid implementation of
biomarkers for MS and other inflammatory neurologic
diseases.

Important limitations for the development of biomarkers
include the critical need for quantitative, standardized out-
come measures for MS disease activity and progression, and
validated definitions of treatment response. Using only clini-
cal evidence of disease activity is clearly insensitive as we
know from MRI studies that inflammation can be present in
the absence of clinical signs. Future studies may need to in-
clude MRI to distinguish groups with active versus stable
disease. Multicenter collaborative efforts and the use of well-
characterized cohorts that include banked longitudinal blood

and other bio-fluid samples would go a long way towards
advancing the field.

Advances in understanding the pathophysiologic mecha-
nisms of MS are helping to identify novel candidate bio-
markers. However, technological advances (e.g., proteomics,
molecular profiling, immunophenotyping, and microarray
gene and antigen analysis) allow simultaneous testing of mul-
tiple biomarkers. Implementation of international exchange of
biological samples for the purpose of cross-validation and the
use bioinformatics may lead to the developments of bio-
markers panels that could be clinically useful.

Conclusion

MS is a complex disease where the primary area of pathology
is not easily accessible, thus requiring investigators to sample
surrogate material such as the CSF or the blood. But, in spite
of these limitations, some biomarkers are emerging that may
have value for diagnosis, predicting disease progression, and
therapeutic response. Validation and replication studies are
still needed, but ongoing collaborations will help move the
field forward.

Required Author Forms Disclosure forms provided by the authors are
available with the online version of this article.
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