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Abstract The oral microbiome is established within a few minutes after birth and consists of
stable multi-species communities that engage in a dynamic equilibrium with the host immune
system. Dental caries, endodontic infections and periodontal diseases are bacterially driven
diseases that are caused by dysbiotic microbiomes. Over a century ago, the focal infection theory
implicated these infections in the aetiology of several systemic diseases, ranging from arthritis to
neurodegenerative diseases. However, a lack of concrete evidence, combined with the urgency
with which clinicians embraced this approach without regard for appropriate case selection,
led to its demise within 30 years. In the last decade of the 20th century, the concept of peri-
odontal medicine was introduced to explain the correlations that were being observed between
periodontitis and cardiovascular disease, rheumatoid arthritis, Alzheimer’s disease, pulmonary
disease, pre-term delivery of low birth weight infants and metabolic disease. It was proposed that
periodontal pathobionts played a causal role in the initiating or exacerbating certain diseases either
by direct invasion or by stimulating a florid immune-inflammatory response that extended into
the systemic circulation. This review will examine the strength of current evidence in establishing
a causal link between oral pathobionts and systemic disease.
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Abstract figure legend The effects of bacteria associated with dental caries and periodontitis on various systemic diseases:
a review of the currently available evidence.

The oral microbial ecosystem – real estate
and habitats

In the early 1930s, Arthur Roy Clapham coined the word
‘ecosystem’ to describe a community that consisted of
living organisms that interact with each other as a system
and are linked through energy flow and nutritional and
metabolic support (Blew, 1996). The oral cavity is home
to arguably one of the most well studied ecosystems in the
human body. This environment presents several habitats
for both aerobic and anaerobic bacterial colonization:
abiotic surfaces such as the tooth, dental implants and
dental restorations, and biotic environments such as the
subgingival crevice (space between the tooth and the
gumline), keratinized mucosal surfaces on the dorsum
of the tongue, hard palate and attached gingiva, and
non-keratinized epithelial surfaces on the buccal mucosa,
tonsils and alveolar mucosa. The subgingival crevice
provides 12 cm2 of surface area for bacterial colonization
(Hartzell & Henrici, 1916), while both keratinized and
non-keratinized surfaces of the oral mucosa constitute
a real estate of more than 200 cm2 (Collins & Dawes,
1987). Together with the tooth surfaces, there is 500 cm2 of
space available for bacterial colonization. Bacteria colonize
these niches within a few minutes of birth and co-evolve
with shifts in the host through two dentition states,
concomitant changes in food habits, oral hygiene practices
and lifestyle shifts.

Dysbiosis in this system underlies the aetiologies of
some of the most common diseases to affect humans:
caries, periodontal disease and endodontic infections.

Over the past three decades, a robust body of evidence
attesting to the systemic effects of these dysbiotic
communities has burgeoned. However, as we examine the
historical evolution of oral microbiology, it is seen that
this idea had been in vogue during the turn of the 20th
century as well. This review will summarize the historical
as well as currently available evidence regarding the role
played by the oral microbiome in causing disease in the
rest of the human body.

The impact of the focal infection theory on medicine
and dentistry

The focal infection theory (FIT) posits that bacteria
and/or bacterial toxins and metabolic byproducts
can enter the systemic circulation from a clinically
asymptomatic localized lesion that contains pathogenic
bacteria and translocate to distant parts, initiating
disease in these organ systems. The resulting metastatic
disease is chronic, but not infectious. Some examples
of diseases that have been attributed to focal sepsis
are gonococcal arthritis following gonorrhoeal infection,
neuritis, myalgia, nephritis, osteomyelitis, emphysema,
endocarditis, pneumonia, asthma, gastritis, pancreatitis,
colitis, diabetes, goitre, thyroiditis and Hodgkin’s disease
(Roberts, 1921). The central belief of the focal infection
theory is that injury occurs at a site distant from the site of
infection; the focus of infection is usually unrecognizable
or clinically unremarkable, as in infections of the tonsil,
sinus, prostate, appendix, bladder, gall bladder and kidney;
and the secondary disease occurs only in sites that
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are susceptible to the bacterial species or toxins. This
distinguishes it from true ‘infectious diseases’ such as
cholera and typhoid, where the organ damage occurs
secondary to the primary systemic infection.

While this theory has been in vogue since Hippocrates
reported curing arthritis by extracting a tooth (Francke,
1973), the modern form experienced a period of
popularity during the early 20th century, beginning with
a lecture at McGill University by Dr William Hunter,
a British physician who denounced the preservation of
a carious tooth by building what he called ‘a veritable
mausoleum of gold fillings, crowns and bridges over a mass
of sepsis’ as the cause of a multitude of systemic diseases
(Hunter, 1900). Although some investigators believe that
his words were misquoted, and that he was referring to
ill-fitting crowns and dentures, influential physicians like
Russell Cecil and Charles Mayo, who were significant
thought leaders of the time, recommended that all teeth
be extracted either to prevent or to treat any number of
conditions ranging from allergy to schizophrenia, and thus
earned the sobriquet ‘one hundred percenters’ (Dussault
& Sheiham, 1982; Murray & Saunders, 2000). Together
with tonsillectomy, full mouth extractions became routine
treatment options for diverse conditions ranging from
arthritis deformans to blindness (Billings, 1930; Bocca
et al. 1989). Two events may have played a significant
role in creating this generation of edentulous individuals.
The first was an influential book by W. D. Miller in 1880
The Micro-Organisms of the Human Mouth: The Local and
General Diseases Which Are Caused by Them, in which he
introduced the term ‘oral focal sepsis’ and recommended
dental fillings or root canal therapy to treat tooth decay,
which he said was a bacterial disease (Miller, 1880). The
second was the development of the dental X-ray, which
revealed the presence of peri-apical radiolucencies in
asymptomatic teeth and periodontal bone loss. A novel
research strategy called ‘reverse investigation’, where the
research is instigated by a conclusion and is focused on
gathering evidence to support this conclusion, was used
to generate evidence to support this theory (Ingle et al.
2008).

Soon, the infected periodontal pocket drew attention as
yet another, larger nidus of infection. It was held that
teeth with ‘pyorrhoea’ (periodontitis) ‘shower bacteria
into the blood stream’ even during everyday activities
such as chewing or tooth brushing, and that these bacteria
were identifiable in the circulation close to the source
(peri-apical veins) and in distal blood vessels (median
basilic veins) following tooth extraction or chewing
on hard candy (Fish, 1940). Rosenow proposed that
oral bacteria or their toxins preferentially segregate to
areas predominantly composed of mesenchymal tissues,
notably joints, muscles and neuronal sheaths (Rosenow,
1930). He believed that their ‘unique functions of repair,
regeneration and scavenging of waste products’ increased

their susceptibility to bacteria and bacterial toxins.
Rosenow proposed that certain pathogens demonstrated
a predilection for specific target tissues (the theory of
‘elective localization or dissemination’) and that bacteria
were capable of spontaneously changing to another species
(transmutation). Transmutation was held to be the reason
why results could not be replicated between researchers
and labs. Thus, through case reports of diseases being
identified in individuals with infected root canals or teeth
with ‘pyorrhoea’ (periodontitis), animal experiments that
demonstrated induction of lesions of the ‘heart muscle
and endocardium, lesions of the kidney, focal and diffuse,
lesions of the adventitia of the blood vessels, and iritis’
by ‘organisms taken from the dental path’ (Hartzell &
Henrici, 1916), and selective or complete edentulation
of subjects with arthritis and vascular disease, several
researchers demonstrated the aetiological role of oral
bacteria in systemic diseases (Klotz, 1913; Hartzell &
Henrici, 1916).

However, it was soon apparent that the routine removal
of teeth could not predictably cure circulatory, neuro-
degenerative, or kidney diseases. Patients demonstrated
a worsening of arthritic symptoms and, not surprisingly,
developed digestive complications following therapeutic
edentulation (Cecil & Angevine, 1938; Vaizey &
Clark-Kennedy, 1939), and in many cases, were cured
of their psychiatric ailments even in the absence
of edentulation (Wessely, 2009; Shorter, 2011). As
medical experimentation and animal model research grew
more sophisticated, significant flaws were identified in
Rosenow’s, Hartzell and Henrici’s, and Price’s studies,
notably the lack of controls and the massive doses of
bacterial inoculum used. More importantly, a concerted
effort by the clinical endodontic community to establish
that root-canal treatment resulted in resolution of dental
and peri-apical infection led to the demise of the focal
infection theory. Thus, focal infection was disregarded as
a scientific theory for several decades.

Periodontal medicine: resurrecting the focal infection
theory?

The endodontic community has remained steadfast in
its rejection of the infected root canal as a cause of
distant, non-infectious disease (Ingle et al. 2008). The
position of the American Association of Endodontists
(AAE) has been that (i) bacteraemia occurs as part of
normal daily activity such as chewing and tooth brushing;
(ii) there is no evidence on the inoculum size needed
to generate a metastatic disease – the only consistency
between the turn of the century animal studies (Rosenow,
Price, Henrici and Hartzell) was that the inoculum sizes
were unrealistically large; and (iii) dental extractions
produce a larger circulatory bacterial load than end-
odontic therapy. The AAE does, however, recognize that
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untreated peri-apical infections may cause distant disease
by releasing bacteria and bacterial products into the
circulation.

On the other hand, untreated periodontal disease has
continued to be examined as a source of circulatory
bacteria. This became especially important when the
American Heart Association released a position paper on
the role of oral streptococci in bacterial endocoarditis
(Rammelkamp et al. 1957). The last decades of the
20th century saw the emergence of new techniques
for bacterial identification and classification, especially
oral microorganisms. Non-targeted molecular assays such
as 16S sequencing revealed the presence of novel and
hitherto unsuspected organisms in the oral cavity (Paster
et al. 2001; Kumar et al. 2003), while innovations
in culturing and microscopical approaches allowed
the identification of uncommon phenotypes in known
species (Beighton et al. 1991; Kell et al. 2015). Several
systemic pathogens, ranging from respiratory pathobionts
such as Hemophilus influenzae, Pseudomonas aeruginosa
and Acinetobacter baumanii to gut pathogens such as
Trophyrema whipplei (Liljemark et al. 1984; Zinkernagel
et al. 2003; Persson et al. 2008; Kumar et al. 2011; Mason
et al. 2014), have been identified in significant numbers
in the periodontal pocket. Explorations of atheromatous
plaques, knee implants, placenta, amniotic sac, the
tracheobronchial tree, joint cavities and the pancreas
have revealed the presence of periodontal pathogens, for
example Porphyromonas gingivalis, Treponema denticola,
Fusobacterium nucleatum and Campylobacter rectus, in
these areas, especially in regions that were previously
considered sterile (Bearfield et al. 2002; Leon et al.
2007; DiGiulio et al. 2008; Aagaard et al. 2014). These
advances in microbiological methodologies and clinical
techniques produced data that suggested that the oral
cavity could indeed act as a reservoir of bacteria that
might metastasize to distant sites in the body and cause
disease in susceptible individuals. The World Workshop in
Periodontics introduced the term ‘periodontal medicine’
in 1996 to describe the role played by periodontitis in
exacerbating or initiating systemic diseases (Offenbacher,
1996). Thus, the last two decades have seen what may be
considered a resurrection of the focal infection theory;
however, investigators are using an abundance of caution
in advocating therapy based on these links.

While several lines of evidence are emerging to suggest
that periodontitis may be linked to osteoporosis, diabetes,
atherosclerotic circulatory disease, rheumatoid arthritis,
pregnancy-related complications, pulmonary disorders,
pancreatic cancer, chronic renal disease, obesity and
Alzheimer’s disease, there is little evidence at this point in
time that oral bacteria or bacterially driven pathways play a
role in all of these linkages. Therefore, in this review, we will
focus only on studies that have examined the contributions
of oral bacteria to periodontal-systemic disease.

The microbial ecosystem in periodontal disease

The oral cavity is an open microbial ecosystem in that, at
any given time, it is home to several allochthonous species
(transient visitors) in addition to autochthonous members
(stable colonizers). Together, over 20 billion organisms
can be found in this environment (Loesche, 1982),
representing nearly 700 different species (Aas et al. 2005).
These organisms live in a state of dynamic equilibrium
with the host immune system, a situation that is
reflected as clinical health. When the micro-environment
changes, as a function of systemic antibiotics that
negate the protective influence of commensals, reduced
oxygen tension due to increase in biofilm thickness,
altered host defences, or nutritional, metabolic and
structural stresses within the ecosystem, a dysbiosis
occurs in the indigenous microbiome, reducing the
abundance of the commensal population and creating
a pathogen-rich ecosystem (Socransky & Haffajee,
2005). The florid immune-inflammatory response to
this pathogenic colonization leads to destruction of the
attachment between the tooth and the gingiva, and loss
of structures that anchor the tooth to the jawbone.
Together, these two events result in a deepening of the
gingival sulcus, which is the space between the tooth
and the gingiva (Listgarten, 1986). This inflamed sulcus,
now called a periodontal pocket, provides an anaerobic,
protein- and haem-rich, oxidant-rich niche that promotes
colonization by anaerobes, many of which are pathogenic
to humans. At a conservative estimate, there are over
10 billion bacteria in 1 mg of dental plaque (Gibbons
et al. 1964). Since these bacteria are packed into the
space between the tooth and the sulcular epithelium, the
breakdown of epithelial integrity caused by inflammation
results in seeding of the systemic circulation with these
pathogens when the biofilm is disrupted. The diseased
periodontal pocket also contains significant levels of
inflammatory mediators, especially those that mediate
chronic inflammation. Tumour necrosis factor α, inter-
leukins 1, 2 and 8, and prostaglandins can be released
into the circulation from the diseased periodontium
(Offenbacher et al. 1993; Hernichel-Gorbach et al. 1994),
and may contribute to systemic inflammation.

As was demonstrated during the turn of the 20th
century, newer studies have confirmed that simple oral
hygiene procedures can translocate bacteria, bacterial
products, toxins and inflammatory products to other sites
in the body (Carroll & Sebor, 1980; Baltch et al. 1988),
especially in individuals with oral infections. For example,
in children with extensive dental decay, the frequency of
bacteraemia following tooth brushing has been reported
to range from 17 to 40% (Roberts et al. 1997), 100%
following dental extraction (Heimdahl et al. 1990), 70%
after professional dental cleaning (Lofthus et al. 1991),
97% following injection of dental anaesthetics and 20%
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following root canal treatment (Debelian et al. 1995). In
immunocompetent individuals, the transient bacteraemia
is eliminated from the circulation. However, individuals
with a compromised immune system, e.g. diabetics
and people with upper respiratory disease, may not
exhibit similar abilities to clear the systemic bacteraemia,
rendering them more susceptible to disease. The disrupted
immune-inflammatory axes in these individuals may also
result in profuse amounts of bacterial products (e.g.
lipopolysaccharide and endotoxin) as well as host response
mediators to be released into the circulation, triggering
inflammatory responses in the target organs. Thus, the
underlying pathophysiology of systemic diseases caused
by periodontal infections may be metastatic infection,
metastatic injury or metastatic inflammation.

Periodontal disease and pulmonary diseases

While pneumonia can be caused by infection with
a bacterium, virus, fungus or parasite, the most
common type is bacterial pneumonia. Typically, the
lower respiratory tract is protected from microorganisms
by the cough reflex, ciliary movement of the lining
cells, and innate immune mediators (Levison, 1994),
which are capable of dispersing salivary bacteria aspirated
during sleep or from accidental swallowing. However,
impairment of these defences (as in long-term smoking,
diabetes, chronic obstructive pulmonary disease or
immunosuppression, and during intubation or prolonged
post-operative hospital stay) can result in nosocomial
pneumonia (Toews, 1986; Sinclair & Evans, 1994).
Cross-sectional studies have demonstrated that in dentate
patients, poor oral hygiene and non-compliance with
dental hygiene visits increase the risk for developing
pneumonia, indicating that oral pathobionts may be a
potential link between oral and lung diseases (Terpenning
et al. 1993). Hospitalized subjects suffering from
pneumonia have been shown to harbour the respiratory
pathogens Klebsiella pneumoniae, Escherichia coli, Pseudo-
monas aeruginosa, Staphylococcus aureus, Haemophilus
influenzae and H. parainfluenzae (Scannapieco et al.
1992; Russell et al. 1999; Scannapieco, 2006), while peri-
odontal pathogens, for example, P. gingivalis, F. nucleatum,
Prevotella oralis, Campylobacter gracilis, Fusobacterium
necrophorum and Aggregatibacter actinomycetemcomitans,
have been identified in lung aspirates of subjects with
pneumonia (Yuan et al. 1992; Zijlstra et al. 1992; Lorenz &
Weiss, 1994; Shinzato & Saito, 1995). Furthermore, peri-
odontal treatment and improved oral hygiene decreased
the incidence of pneumonia in children and hospitalized
adults (Yoneyama et al. 1996; Scannapieco & Binkley,
2012).

The studies reviewed above and several others have
suggested that oral bacteria may cause respiratory diseases
when (i) oral bacteria or respiratory pathogens from oral

reservoirs are aspirated into the lower respiratory tract,
(ii) salivary enzymes released during chronic periodontal
disease or smoking modify the oral mucosa and lead
to increased adhesion by respiratory pathogens, and/or
(iii) circulating pro-inflammatory cytokines released as
a consequence of periodontal inflammation modify the
respiratory mucosa (Li et al. 2000; Paju & Scannapieco,
2007).

The consensus report of the Joint European Federation
of Periodontology/American Academy of Periodontology
Workshop on Periodontitis and Systemic Diseases states
that while there is insufficient evidence to date to infer
causal relationships in most systemic diseases due to
a paucity of prospective studies, it is highly likely that
organisms originating in the oral microbiome can cause
lung infections (Linden et al. 2013). A recent finding
from the Women’s Health Initiative Observational Study
was that while periodontal disease was not independently
associated with lung cancer in non-smoking post-
menopausal women, in smokers this risk was increased
beyond what could be expected from the sum of the each
effect separately (Mai et al. 2014).

Periodontal disease and cardiovascular diseases

Cardiovascular disease is an umbrella term that
encompasses a range of conditions, from high blood
pressure to acute myocardial infarction, angina and stroke.
The central pathophysiology of these diverse diseases is
the atheromatous plaque. The infection hypothesis of
atherosclerosis sprang up in the early 19th century, when
Gilbert and Lion identified that systemic inoculation of
the bacterium Bacillus typhosus could induce fatty sclerosis
in the aortal wall in rabbits (Nieto, 1998). Osler, who is
credited with the infection hypothesis of atherosclerosis,
listed major wear and tear, acute infections, ‘intoxications’
(smoking, diabetes mellitus, obesity) and high blood
pressure as the four major causes (reviewed by Nieto,
1998). In the early 1970s, several studies demonstrated that
viral infections could induce damage to the endothelium
and activate acute inflammatory mediators. Together
with formation of foam cells, these events could lead to
creation of thrombi and unstable atheromatous plaques
(Fabricant et al. 1978; Hajjar et al. 1986; Etingin et al.
1990; Laitinen et al. 1997). It has also been demonstrated
that cross reactivity between bacterial heat-shock proteins
and human Hsp60 could initiate an autoimmune response
that culminates in atherosclerosis (Wick et al. 1997; Kol
et al. 1998).

While the role of oral haemolytic streptococci in
the aetiology of subacute bacterial endocarditis was
well established, the role of periodontal disease in its
aetiopathogenesis was not as well known until the late
1990s, when correlations were observed between tooth
loss and cardiovascular disease (Mattila et al. 1989;
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Mattila, 1993; Mattila et al. 1998). Since two infectious
diseases, caries and periodontitis, can result in tooth loss,
the relative contributions of these two oral infections
were examined by Grau et al. (2004), who found that
in subjects with periodontitis the risk for stroke was
400% greater than in those with caries. Desvarieux et al.
(2003) found a correlation between intimal thickening
of the carotid artery (a metric of atherosclerosis) and
periodontal pathogens but not health-compatible
organisms in over 600 individuals. DNA from the
oral pathogens Tannerella forsythia, F. nucleatum, Pre-
votella intermedia, Porphyromonas gingivalis and A.
actinomycetemcomitans has been identified in carotid
atheromas (Cairo et al. 2004), providing further evidence
of bacterial translocation. Systemic antibody levels to
periodontal pathogens correlated with the incidence of
coronary heart disease and subclinical atherosclerosis
(Beck et al. 2005; Pussinen et al. 2006) Animal studies
on apolipoprotein E-knockout (ApoE−/−) mice have
demonstrated a role for dendritic cells in translocation of
oral bacteria to the vasculature. Furthermore, treatment
of chronic periodontitis was shown to decrease systemic
markers of inflammation and improve endothelial
dysfunction (Tonetti et al. 2007). The joint workshop of
the European Federation of Periodontology and American
Academy of Periodontology (EFP/AAP) concluded that
while there is evidence to support the hypothesis
that translocated oral microbiota may induce systemic
inflammation that influences atherothrombogenesis, and
that this biological mechanism is supported by in vitro
experiments, animal models and clinical studies, ‘inter-
vention trials to date are not adequate to draw further
conclusions’ (Tonetti et al. 2013). The present consensus
thus appears to support a temporal relationship between
periodontal and cardiovascular diseases, with oral bacteria
playing either a direct or an indirect role in disease
causation.

Periodontal disease and pregnancy outcomes

The infection hypothesis of adverse pregnancy outcomes
postulates that preterm delivery of a low birth-weight
infant may occur as a result of either a local or systemic
maternal infection. In the early 1990s, bacterial vaginosis
was shown to contribute to preterm delivery of a low
birth-weight infant (Kurki et al. 1992; Hillier et al.
1995). The dental community was already aware that
the abundances of certain bacteria, notably the group of
organisms collectively known as black pigmented bacteria,
are higher in subgingival crevice during pregnancy,
possibly because of the increased availability of oestradiol
(Kornman & Loesche, 1980). Together, these two findings
opened up several lines of research to examine the role
of periodontal pathogens on neonatal health. The results
have extremely equivocal (Mitchell-Lewis et al. 2001;

Sanchez et al. 2004; Dasanayake et al. 2005; Noack et al.
2005; Michalowicz et al. 2006; Offenbacher et al. 2006;
Seymour et al. 2007; Novak et al. 2008). Pre-term birth and
low birth weight have been associated with high levels of
Tannerella forsythia, Campylobacter rectus, Prevotella inter-
media, Prevotella nigrescens and Porphyromonas gingivalis
in maternal subgingival plaque (Mitchell-Lewis et al.
2001; Sanchez et al. 2004; Offenbacher et al. 2006).
Porphyromonas gingivalis has been detected in both
amniotic fluid and subgingival plaque of 31% of women
with threatened pre-term labour (Leon et al. 2007). Recent
evidence has identified F. nucleatum in the placental
microbiome (Aagaard et al. 2014) and has implicated this
organism in the aetiopathogenesis of pre-term deliveries
(Han et al. 2004). Two mechanisms have been proposed
and tested to explain the correlation between adverse
pregnancy outcomes and periodontal infection.

(i) Intrauterine inflammation. It has been shown that
periodontal bacteria elicit high levels of prostaglandin
E2 (PGE2) and cytokines in circulation and in the
placenta (Madianos et al. 2001; Liu et al. 2007).
Taken together with the fact that periodontal therapy
reduces this pathogen load and is accompanied by
a 3.8-fold decrease in pre-term births (Offenbacher
et al. 2006), these results suggest that circulating
periodontal pathogens may trigger an inflammatory
response in the uterus, which could contribute to
pre-term birth.

(ii) Fetal response to maternal pathogens. Aagaard
et al. (2014) using a deep-sequencing strategy, have
demonstrated that the placenta is not a sterile
environment, as was previously believed, but in
fact plays host to several oral organisms. Pre-term
babies, but not full-term infants, demonstrated higher
levels of circulating antibodies to C. rectus (an oral
pathobiont that has been demonstrated to cross the
placental barrier) (Madianos et al. 2001), suggesting
another possible mechanism by which certain oral
bacteria contribute to pre-term birth.

However, studies using targeted assays to examine
the presence of selected oral organisms, including a
large-scale investigation on 823 pregnant women, found
no association between presence or levels of subgingival
periodontal pathogens and adverse pregnancy outcomes
(Noack et al. 2005; Michalowicz et al. 2006; Novak et al.
2008). Furthermore, periodontal therapy did not result
in improvement in pregnancy outcomes. However, in
light of evidence that the placental microbiome is already
established in early pregnancy, it would be surprising
indeed if periodontal therapy during the second trimester
did change pregnancy outcomes. It is important to
examine this temporal relationship using prospective
studies that provide periodontal therapy before the
beginning of pregnancy.
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Periodontitis and rheumatoid arthritis

Rheumatoid arthritis (RA) is a disease that occurs
when normal immune function becomes dysregulated,
leading to the production of self-reactive antibodies
(autoantibodies) which ultimately result in a chronic
autoimmune inflammatory disease that is characterized
by inflammation of synovial cavities, and progressive
degeneration of cartilage and bone.

This debilitating disease affects more than 30% of
individuals over 65 years of age. Infectious agents, such as
the Epstein–Barr virus, cytomegalovirus, certain species of
Proteus, and Escherichia coli have been implicated in the
pathogenesis of this disease for a long time, and molecular
mimicry (especially between bacterial heat-shock proteins
and human Hsp60) has been suggested as a mechanism
for creating the autoantibodies (Auger & Roudier, 1997;
Kamphuis et al. 2005). Two lines of evidence have emerged
to support a role for the gut microbiome in the etiology of
this disease:

(i) Animal studies using germ-free and gnotobiotic
animals (those that are colonized by selected, specific
species) have revealed that a dysbiosis in the gut
microbiome resulting in an increase in the levels
of pathobionts and a decrease in commensals, pre-
disposes arthritis-prone mice to inflammatory joint
disease (Wu et al. 2010; Scher et al. 2016), This
finding lends support to the molecular mimicry
hypothesis which implicates the microbial production
of cross-reactive epitopes in the creation of a
pathogenic immune response against self-antigens.

(ii) There is evidence for a gut–joint axis from human
studies, which demonstrated that the presence of
organisms like Tropheryma whipplei in the intestine
is sufficient to cause joint disease in susceptible
individuals (Moos & Schneider, 2011). Further,
bacterial sequences that mimic key motifs in the
RA-related human antigens have been identified at
significantly higher levels in both gut and oral micro-
biomes of individuals with RA.

It has been known for some time that an autoimmune
response to citrullinated proteins underlies the aetiology
of RA. Citrullination is a physiological process that
is important for neuronal development and chromatin
remodelling; however, it is also upregulated during
apoptosis, intracellular stress and inflammation, events
that are typically seen during a response to a bacterial
infection. Peptidyl deiminase is an enzyme that is involved
in deimination of arginine residues (citrullination).
P. gingivalis, an oral pathogen, has been implicated in the
aetiology of this disease for over two decades, since it is
the only organism known to produce peptidyl deiminase.
This organism citrullinates fibrinogen, enolase, vimentin

and collagen II (Marotte et al. 2006; Lundberg et al. 2010;
Gilliam et al. 2011; Kinloch et al. 2011). It has been shown
that infection with P. gingivalis precedes onset of RA and
that autoantibodies to citrullinated protein (ACPA) titres
are higher in aggressive periodontitis (Hendler et al. 2010).
Moreover, patients with both RA and periodontitis are
more likely to be ACPA positive (Dissick et al. 2010).

While there is an emerging body of evidence to
suggest an association between RA and periodontal
pathogens, non-causal confounding factors cannot be
ignored. Both diseases have several aspects in common,
notably an inflammatory phenotype that is characterized
by high levels of cytokines, matrix-metalloproteinases,
neutrophil-derived mediators and oxidative stress. Also,
several contributory factors, especially smoking and lower
socio-economic status, are common to both diseases. Poly-
morphisms in interleukin genes and Fc-γ receptor, as well
as over-expression of the MHC class II HLA-DRB1 allele,
are implicated in the aetiopathogenesis of both diseases
(Marotte et al. 2006; Song et al. 2013; Mikuls et al. 2014).

Periodontitis and diabetes

Studies on the inter-relationship between diabetes and
periodontitis began over half a century ago, when it
was seen that Pima Indians with Type 2 diabetes had
more widespread periodontitis, which was also more
severe when compared to normoglycemic individuals.
Periodontitis became known as the sixth complication
of diabetes (Loe, 1993), and several lines of evidence
demonstrated that the advanced glycation end products
(AGEs) influence immune-inflammatory homeostasis
in the periodontium. AGEs are formed when lipids
and proteins combine with reducing sugars (all mono-
saccharides and some di- and oligosaccharides), and
undergo a series of irreversible molecular rearrangements.
The gingival epithelium, endothelium, immune cells
and fibroblasts all carry receptors for AGE, known as
RAGE. The AGE–RAGE interactions lead to impaired
barrier function, among other defects. It is held that
these AGE–RAGE interactions are responsible for lowered
immunity, higher cellular oxidant stress, lowered wound
healing potential, and pro-inflammatory phenotypes that
increase the risk for periodontitis. Treatment of peri-
odontal disease was shown to reduce glycaemic levels,
improve glycaemic control and decrease the amount
of hypoglycaemic medication required to titrate blood
glucose levels (reviewed by Lalla & Papapanou, 2011;
Taylor et al. 2013).

While all of these investigations were unanimous about
the changes in subgingival microenvironment wrought
by hyperglycaemia, the studies that explored the effect of
this glucose-rich, pro-oxidant, protein-rich and anaerobic
environment on the periodontal microbiome were not as
conclusive. While some early studies found an increase
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in selected bacterial species in diabetics, they either did
not report the periodontal status of the individuals, or did
not have a control group, or did not report the statistical
test used to validate their results (reviewed by Ohlrich et al.
2010; Taylor et al. 2013). Therefore, it was assumed that the
periodontal destruction in diabetics was largely due to its
effects on the host, rather than a greater-than-ordinarily
virulent microbiome. However, evidence is emerging to
indicate that the periodontal microbiome in diabetics is
distinct from that of normoglycaemics (Casarin et al. 2013;
Zhou et al. 2013). While there is convincing evidence to
support the effect of periodontal disease on glycaemic
control, the mechanisms underlying this are not well
studied. Furthermore, while the effect of AGE–RAGE
interactions on the subgingival pathophysiology has been
investigated in depth, the effect of diabetes on the oral
microbiome definitely warrants further investigation.

Periodontitis and Alzheimer’s disease

Alzheimer’s disease is a chronic neurodegenerative
disorder that leads to progressive cognitive deterioration,
and is the leading cause of dementia in individuals over
65 years of age. It has been known for several decades
that infections by viruses, notably, human herpes simplex
virus 1 (HSV-1), and bacteria such as Helicobacter pylori,
Chlamydophila pneumoniae and Borrelia burgdorferi may
affect the neuronal axis through central nervous system
(CNS) infection, inflammation or by creating auto-
immune antibodies that target the brain. The effect of these
organisms on initiation or exacerbation of Alzheimer’s
disease has also been investigated, and there is a robust
body of evidence from both human and animal studies
to support the infectious aetiology of Alzheimer’s disease
(Jamieson et al. 1992; Balin et al. 1998; Malaguarnera et al.
2004; Letenneur et al. 2008).

Periodontal pathogens such as Treponema denticola
and Porphyromonas gingivalis have been identified in
the cerebrospinal fluid and neuronal ganglia (Riviere
et al. 2002; Poole et al. 2013). Animal studies have
demonstrated that in susceptible hosts, P. gingivalis crosses
the blood–brain barrier, and leads to complement C3
activation with bystander neuronal injury (Poole et al.
2013). This has been proposed as a mechanism by
which periodontal disease may contribute to initiation
or progression of Alzheimer’s disease.

In summary, a century of research and clinical
correlations have identified a role for periodontal diseases
in influencing systemic disease. While the very nature
of multifactorial, chronic diseases has made it difficult
to establish a definitive causal role for periodontal
pathobionts in systemic infection, the body of literature
supporting an aetiopathological role for these organisms
is too substantial to be ignored as merely coincidental.
Therefore, well-controlled, large-scale prospective study

designs or highly representative animal-model studies
are much needed to explore the relationship between
a dysbiotic oral microbiome and systemic disease at a
mechanistic level.
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