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Abstract

Echo planar imaging (EPI) is the method of choice for the majority of functional magnetic 

resonance imaging (fMRI), yet EPI is prone to geometric distortions and thus misaligns with 

conventional anatomical reference data. The poor geometric correspondence between functional 

and anatomical data can lead to severe misplacements and corruption of detected activation 

patterns. However, recent advances in imaging technology have provided EPI data with increasing 

quality and resolution. Here we present a framework for deriving cortical surface reconstructions 

directly from high-resolution EPI-based reference images that provide anatomical models exactly 

geometric distortion-matched to the functional data. Anatomical EPI data with 1 mm isotropic 

voxel size were acquired using a fast multiple inversion recovery time EPI sequence (MI-EPI) at 7 

T, from which quantitative T1 maps were calculated. Using these T1 maps, volumetric data 

mimicking the tissue contrast of standard anatomical data were synthesized using the Bloch 

equations, and these T1-weighted data were automatically processed using FreeSurfer. The spatial 

alignment between T2*-weighted EPI data and the synthetic T1-weighted anatomical MI-EPI-

based images was improved compared to the conventional anatomical reference. In particular, the 

alignment near the regions vulnerable to distortion due to magnetic susceptibility differences was 

improved, and sampling of the adjacent tissue classes outside of the cortex was reduced when 

using cortical surface reconstructions derived directly from the MI-EPI reference. The MI-EPI 

method therefore produces high-quality anatomical data that can be automatically segmented with 

standard software, providing cortical surface reconstructions that are geometrically matched to the 

BOLD fMRI data.
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Introduction

Accurate mapping of brain function using magnetic resonance imaging (MRI) requires both 

high-quality functional MRI (fMRI) data to detect activation as well as compatible 

anatomical information to both localize these activations in individual subjects and to 

compare activations within and across populations. Conventionally the functional data are 

acquired using T2*-weighted (T2*w) echo-planar imaging (EPI) (Bandettini et al., 1992; 

Kwong et al., 1992) to track blood oxygenation level dependent (BOLD) contrast changes 

(Ogawa et al., 1992, 1990), whereas the anatomical data are acquired using a measurement 

designed to promote tissue contrast, such as T1-weighted (T1w) Magnetization-Prepared 

RApid Gradient-Echo (MP-RAGE) imaging (Mugler and Brookeman, 1990). With this 

strategy, the functional and anatomical data are acquired with different pulse sequences and 

different image encoding, resulting in different geometric distortions and spatial blurring—

in particular, the EPI data are severely affected by local variations of the static magnetic field 

(B0), caused by differences of magnetic susceptibility such as those arising at air-tissue 

interfaces. As the achievable spatial resolution of EPI has increased in the recent years, in 

part due to the improvement of signal-to-noise ratio (SNR) allowed by high magnetic field 

strengths and accelerated parallel imaging methods, the accuracy of fMRI experiments is 

now increasingly being limited by the registration between the functional and the anatomical 

data rather than the resolution of the EPI acquisitions.

Several techniques have been developed to reduce the geometric distortion of EPI data by 

“dewarping” the distorted images, thus bringing them closer to the anatomical reference 

geometry (Jezzard, 2012). Methods commonly used include direct distortion correction 

using a B0 field map (Chen and Wyrwicz, 1999; Hutton et al., 2002; Jezzard and Balaban, 

1995; Reber et al., 1998) or point-spread function (PSF) mapping (Zaitsev et al., 2004; Zeng 

and Constable, 2002), methods based on acquiring additional EPI frames such as in the 

PLACE method (Xiang and Ye, 2007), image-based warping methods such as the FSL 

(Jenkinson et al., 2012) tool ‘topup’ (Andersson et al., 2003) or other methods based on 

reversing the phase encoding direction (Holland et al., 2010), and methods based on (non-

linear) registration from EPI to anatomical geometry (Gholipour et al., 2008). The benefit of 

B0 field map based correction is limited however by (i) the co-localization of the EPI data 

and the B0 map if the B0 map is acquired separately from the functional data; (ii) the 

intentional smoothing of the field map to reduce secondary artifacts (Hutton et al., 2002), 

which restricts the accuracy of the dewarping; (iii) the loss in spatial resolution caused by 

sub-voxel shifts and resulting resampling and spatial interpolation of the EPI data imposed 

by unwarping methods (Hutton et al., 2002), and (iv) the introduction of spurious 

correlations into the time-series data by this spatial interpolation; (v) the so-called “voxel 

pileup” or distortion singularities occurring in some EPI voxels, which cannot be uniquely 

dewarped but will be smeared in the resulting image, again causing spurious signals in the 
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time-series data. Furthermore, the cross-modal registration between T2*w functional data 

and T1w anatomical data can be problematic due to the different information content in the 

images, further complicating the use of anatomical reference data to help interpret patterns 

of activation measured with EPI.

However, as the spatial resolution of EPI has increased to sub-millimeter voxel sizes and 

surpasses the resolution of time-consuming conventional anatomical imaging, EPI in itself is 

becoming a feasible method also for structural imaging in addition to its common use for 

functional, diffusion, and perfusion imaging. Its applicability to anatomical imaging is 

mostly limited by the attainable tissue contrasts and by potential image artifacts such as 

ghosting. Due to its fast acquisition, EPI combined with appropriate magnetization 

preparation (Gowland and Mansfield, 1993; Stehling et al., 1990) can access quantitative 

tissue properties (such as T1 and T2* relaxation times, in units of ms) through modeling 

(Ordidge et al., 1990), and from these quantitative maps images with desired tissue contrast 

can then be synthesized as required, e.g. as in (Ikonomidou et al., 2005). A specific 

advantage of using T1 maps is that they do not suffer from transmit (B1+) or receive (B1-) 

bias typical for T1-weighted anatomical imaging at high field strengths or with surface coil 

arrays, but only from anatomy-dependent variation of actual T1. Thus images derived from 

T1 maps express stable tissue contrast in the presence of spatially nonuniform image 

intensity bias.

The objective of this study was to develop a geometrically compatible anatomical reference 

for fMRI and other EPI-based data without explicit distortion correction, and that could be 

used in surface-based analysis. For this purpose, we introduce an EPI-based anatomical 

imaging strategy that provides contrast between different brain tissues similarly to the 

conventional MP-RAGE, but with geometric distortions that can be made to exactly match 

those of BOLD fMRI data. We demonstrate that EPI-based anatomical images are of 

sufficient quality and possess appropriate tissue contrast to be automatically processed using 

FreeSurfer (Dale et al., 1999; Fischl, 2012; Fischl et al., 1999), a widely used and validated 

tool for cortical surface reconstruction and anatomical segmentation, with minimal 

adaptations made to the data processing pipeline. Finally we characterize the functional 

localization afforded by the proposed EPI-based surface reconstruction, and demonstrate 

that the entirely EPI-based strategy presents a way to markedly improve the co-localization 

in brain areas that are conventionally challenging for functional-to-structural registration.

Methods

Subjects

This Institutional Review Board approved study included 16 subjects (9 females; average 

age 30 yrs, range 21–40 yrs) with no known neurological illnesses or head trauma. The 

subjects were scanned after MRI safety screening and written informed consent.

Hardware

A 7-T whole-body MRI scanner (Siemens Healthcare, Erlangen, Germany) equipped with a 

32-channel helmet-shaped head coil array for receive and a birdcage transmit coil (Keil et 
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al., 2010) was used in 12 imaging sessions. The remaining four datasets were acquired with 

a 3-T clinical whole-body MRI system (TimTrio, Siemens Healthcare) using a vendor-

provided 32-channel receive coil and built-in body coil for transmit.

Fast variable multi-inversion-recovery time echo-planar imaging (MI-EPI)

Our target was to obtain T1w MRI data using EPI in a relatively short time of ∼3 min, with 

sufficient anatomical contrast such that it could be processed by segmentation algorithms 

developed for conventional T1w anatomical data (such as MP-RAGE). Furthermore, because 

energy deposition and consequently specific absorption rate (SAR) during radiofrequency 

(RF) transmission increase with field strength, the rate of certain high-energy RF-pulses, 

such as adiabatic inversions—which are utilized to invert magnetization homogenously in 

the presence of the spatially non-uniform transmit efficiency caused by dielectric effects—

must be limited to about one inversion pulse every few seconds, especially at ultra-high field 

(7 T and above). In addition, EPI acquisitions are affected by T2*-weighting as well as the 

transmit bias and receive bias due to localized signal reception. To meet these goals and to 

overcome these challenges present in inversion recovery (IR)-based T1w EPI acquisitions, 

we developed a fast variable multiple inversion-recovery time EPI (MI-EPI) sequence where 

inversions are spaced sparsely and used efficiently. Fig. 1 illustrates the approach. From this 

acquisition not only T1w data but also T1 data are attainable, with the benefit of eliminating 

the effects of T2*-weighting on image contrast and the abovementioned biases.

In the imaging sequence, the longitudinal magnetization was first inverted using a 180° 

pulse, after which all imaging slices were acquired using EPI readouts during the recovery 

period; thus, during the inversion recovery each slice was acquired at a distinct time after the 

inversion pulse (TI). To sample a range of TI values at each slice, on every sequence 

repetition the slice acquisition order was permuted such that after NTR repetitions every slice 

was sampled at NTR distinct times along the inversion recovery yielding NTR distinct TI 
values for each slice (Clare and Jezzard, 2001; Ordidge et al., 1990). To increase time 

efficiency and to reduce vulnerability to subject motion, the number of permutations NTR 

was less than the number of slices Nslices; this was achieved by permuting blocks of slices 

(de Smit and Hoogduin, 2005). With Nshift being the block shift factor, every slice sampled 

Nslices/Nshift distinct TIs, e.g. for Nslices = 126 and Nshift = 7, each slice samples 18 different 

TIs through 18 slice order permutations.

The adiabatic inversion of proton magnetization was accomplished by using an effectively 
spatially non-selective (i.e., slab-selective using a 300 mm thick slab) time-resampled 

frequency-offset-compensated inversion (trFOCI) pulse (Hurley et al., 2010) at the 

beginning of each sequence repetition. Because high-spatial resolution EPI requires a high 

parallel imaging reduction factor (R), the fast low-angle excitation echo-planar technique 

(FLEET, Chapman et al., 1987) was adopted for auto-calibration signal (ACS) acquisition 

for GRAPPA (generalized autocalibrating partially parallel acquisition, Griswold et al., 

2002) kernel training to provide resilience against motion effects and dynamic magnetic 

field variation during the reference data acquisition (Polimeni et al., 2016).
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T1 estimation

We now define two different “repetition times”: the time between two successive inversion 

pulses (also referred to as the sequence repetition time), TR, and the time period elapsing 

between consecutive slice-selective excitation pulses (α pulses) targeting a particular slice, 

TRα. The MI-EPI sequence produces image slices that not only differ in their TI values, but 

also the TRα and the delay time (TD, defined as the time between the readout of a slice and 

the subsequent inversion pulse) both vary throughout the acquisition. For instance, for Nshift 

= 2, if a slice is initially scanned at the very beginning of the inversion recovery period, on 

the next sequence repetition it will be scanned as the second to last slice, with almost two 

TR periods between successive excitation pulses—otherwise TRα is constant, with TRα < 

TR by the time spent acquiring Nshift slices. The delay time TD for each slice therefore also 

changes with each sequence repetition. As a consequence, during every inversion recovery 

each slice has distinct image contrast and therefore contains distinct information about the 

tissue; by accumulating many repetitions with different slice orderings these contrast 

variations can be used to estimate parameter images from the entire volume. Here our 

primary interest was in obtaining the longitudinal relaxation times (T1), however we are also 

able to extract a residual image (called S0) consisting of proton density (ρ) and effective 

transverse relaxation time (T2*) weighted signal equivalent to what is observed in typical 

BOLD fMRI acquisitions.

Because the slice data is sampled non-uniformly in time, instead of fitting the MI-EPI data 

to a closed-form inversion recovery equation, practical with many other IR-based sequences 

(Barral et al., 2010; Dixon and Ekstrand, 1982), we used a signal evolution model based on 

the Bloch equation description of recovery of longitudinal magnetization, and simply 

matched the computed parameter templates to the imaging data—similar to what is 

performed in MR Fingerprinting (Ma et al., 2013). In the signal model, we assumed 

complete spoiling of transverse magnetization prior to the slice acquisitions. We made the 

following simplifications: each voxel was assigned only one set of modeled parameters, 

implying mono-exponential relaxation; cross-talk between slices was omitted; slice profiles 

were taken as perfectly rectangular, flip and inversion angles as ideal; and noise was 

assumed zero-mean. Before modeling, the source data were gently apodized using a Tukey 

window in the readout direction to reduce Gibbs ringing along the sharp edges near bright 

signal from cerebrospinal fluid.

The basic model contained all dummy scan and image acquisition RF pulses played during 

the acquisition. The simulation was repeated for every slice at every TI acquired for a raster 

of T1 and residual S0 values (where S0 represents the signal acquired from equilibrium 

magnetization sampled using the flip angle and echo time (TE) of the experiment and 

contains primarily ρ and T2* weightings), resulting in predicted signal intensities for each 

slice acquisition time for all combinations of the S0 and T1 parameter values. The trFOCI 

pulse provides almost ideal inversions, however the slice-selective excitation flip angle 

varies across the volume when using conventional excitation pulses at 7 T. Because of our 

Bloch simulation approach, the resulting spatially varying flip angle could affect the 

estimated parameter values, including the T1 value. To quantify the effect of the spatially 

varying flip angle, we performed a sensitivity analysis by fitting T1 to example in vivo data 
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assuming three distinct values for the flip angle—45°, the nominal 90°, and 135°. To 

investigate the impact of fat saturation related magnetization transfer (MT) effects (Shin et 

al., 2009) on the quantitative interpretation of the parameter value estimates, we performed 

additional tests by including in the model (when considering data acquired with fat 

saturation) fictitious nonselective nuisance pulses of a constant flip angle (αnuis) occurring 

before every α pulse at the time of the fat saturation pulse in the imaging sequence; in 

addition to MT, these pulses portray also other potential residual effects of the fat saturation 

on the water protons. The stop band ripple and MT of the (off-resonance) slice-selective 

excitation pulses (Dixon et al., 1990) were not taken into account. Note that these nuisance 

pulses were only included in these tests and were not included by default in the MI-EPI 

modeling, except as explicitly indicated.

We used a simple brute-force exhaustive search algorithm to find the best match between 

experimental and simulated data at every voxel in the least squares sense, resulting in a 

volume of images of T1 and S0 values. To reduce the search time, a multi-scale approach 

was utilized to more quickly determine the optimal parameter values: the search began with 

a wide range of parameter values using a coarse sampling, and the range was made 

progressively narrower while sampling the parameter values more finely. The search was 

initialized with a T1 value range of [1, 8192] ms with a 256 ms spacing, and S0 value range 

of [1, 8192] and spacing 256. With each level of the optimization, the space was divided in 

half along each parameter dimension, centered at the previous optimum. At the final level 

both T1 and S0 values were quantized in steps of 4 units (i.e., the T1 value was quantized in 

steps of 4 ms). This search procedure was written in MATLAB (version R2012b, 

MathWorks Inc., Natick, MA) and fits were computed offline.

T1w image synthesis

Our objective was to enable automatic processing of anatomical brain data—including 

segmentation, surface reconstruction, and parcellation—starting from high-resolution EPI 

data. The method of choice for the automatic processing was the FreeSurfer software suite, 

where the expected input is an MP-RAGE-like image, thus the EPI-based images should 

bear similar characteristics. T1w MP-RAGE anatomical images include a clear separation 

between white matter (WM), gray matter (GM) and cerebrospinal fluid (CSF), and flat local 

intensity profiles within the tissue classes, especially within WM. Furthermore, the data are 

often devoid of major imaging artifacts, with the exception of some motion effects, edge 

ringing, and (especially when using local transmit coils (Fujimoto et al., 2014)) signal 

enhancement in large arteries due to inflow. Thus, the target EPI image should:

• have similar T1-weighted tissue contrast to T1w MP-

RAGE,

• have spatially uniform WM intensities,

• have few artifacts, excluding the geometric distortion that 

we wish to retain, and preferentially also

• distinguish GM from the surrounding tissue (dura mater).
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Although the negative of the T1 map already shows a rough resemblance with MP-RAGE, it 

contains some artifacts and tissue inhomogeneity after the T1 fitting procedure, and plainly 

does not closely resemble an MP-RAGE image. The specific tissue contrast achieved by 

MP-RAGE depends not only on the inversion time to null CSF but also on the train of 

excitation pulses that help suppress the CSF signal recovery, providing more practical image 

contrast than what can be achieved by treating the T1 map as an image. Therefore, an 

alternative image synthesis method that can achieve the favorable image features of an MP-

RAGE was used and the following describes our approach to reach for the above goals.

The parameter maps enable the synthesis of e.g. purely T1w images at arbitrary TI, or the 

weighted combination of the T1 and S0 information. Here, we used the T1 maps and a Bloch 

equation model to synthesize images with suitable anatomical contrast that mimic 

conventional MP-RAGE data by calculating voxel intensities that would be produced by a 

standard MP-RAGE protocol. We then preprocessed the images to suppress outlier voxels 

that resulted from fitting errors, using the information in the T1 and S0 maps, in order to 

force the intensities within each tissue class to be more spatially homogeneous. Full details 

of this synthesis and preprocessing are provided as Supplementary Material.

Acquisition protocols

MI-EPI—The 7-T MI-EPI data were acquired using four slightly different protocols, 

summarized in Table 1, at a nominal voxel size of approximately 1×1×1 mm3. All protocols 

were designed to minimize the TE to maximally suppress T2* weighting in the images. 

Protocols A and B utilized fat saturation to suppress chemical shift artifacts from the fat 

layer around the head, and protocols C and D included runs with and without fat saturation 

to explore the potential unwanted MT effects caused by the fat saturation pulses (Shin et al., 

2009). Protocols C and D additionally utilized a modified version of the pulse sequence with 

an increased spoiling moment to suppress transverse magnetization from the inversion 

preparation which can cause stimulated echoes (Haacke et al., 1991). Either two (protocols 

A and B) or three (C and D) dummy scans, without slice order permutation, were included 

to stabilize the longitudinal magnetization when transitioning from auto-calibration signal 

acquisition to the acquisition of the imaging data, facilitating the parameter fitting, which 

assumes unperturbed initial magnetization.

Conventional anatomical data—To compare the EPI results with conventional data, 

additional imaging scans were obtained. The imaging data included a custom 

implementation of a T1w multi-echo (ME) MP-RAGE (van der Kouwe et al., 2008) scan 

with TR = 2530 ms, TI = 1100 ms, α = 7°, and first and second TEs 1.76 and 3.70 ms. The 

nominal spatial resolution was 0.75 × 0.75 × 0.75 mm3 in a 320 × 320 × 224 matrix, 

GRAPPA in-plane acceleration factor was 2, BW 651 Hz/pixel, and esp. 6.2 ms. The 

sequence was modified to utilize the same trFOCI pulse (Hurley et al., 2010) used in the MI-

EPI sequence, described above. The MEMP-RAGE scan was not acquired from one of the 

subjects (MI-EPI protocol C) due to time limitations. The MEMP-RAGE data were also 

processed using FreeSurfer with the default pipeline except that the images were first 

corrected for spatial intensity bias (using SPM12, segmentation tool (Ashburner and Friston, 

1997)) characteristic to 7 T measurements, especially prominent in the temporal lobes 

Renvall et al. Page 7

Neuroimage. Author manuscript; available in PMC 2017 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(Hurley et al., 2010), caused by the dielectric effect that reduces the flip angles of the 

excitation pulses in a geometry-dependent manner.

Functional data—To evaluate and compare the functional-to-anatomical registration 

accuracy derived from the MI-EPI data and from the MEMP-RAGE data, resting-state fMRI 

data were acquired from four subjects in separate runs. The subjects were instructed to lay 

still in the scanner with their eyes open, no task or stimulation was presented. The 7-T 

BOLD-weighted acquisition consisted of a single-shot gradient echo (GRE) EPI protocol 

with the following parameters in two subjects: nominal voxel size = 1.1 × 1.1 × 1.1 mm3, 

TR = 1.7 s, TE = 26 ms, α = 65°, matrix = 174 × 174, readout BW = 1512 Hz/pixel, esp = 

0.79 ms, no partial Fourier, in-plane R = 4, Nslices = 87, and utilizing Simultaneous Multi-

Slice sequence with blipped-controlled aliasing (Setsompop et al., 2012) multi-band factor 

(mb) = 3, and shift factor FOV/3, fat saturation enabled, 160 samples were acquired. This 

protocol resulted in partial brain coverage. The full cerebrum of one subject was covered 

using the following acquisition parameters: voxel size = 1.04 × 1.04 × 1.04 mm3, TR = 2.38 

s, TE = 24 ms, α = 80°, matrix = 184 × 184, readout BW = 1430 Hz/pixel, esp. = 0.82 ms, 

partial Fourier acquisition factor (pF) = 7/8, R = 4, Nslices = 123, mb =3, shift factor = 

FOV/3, fat saturation, 136 volumes. Additionally, phase differences between gradient echo 

images acquired at TE = 4.6 ms and 5.62 ms, with the shim currents and slice orientations of 

the functional and anatomical EPI data, were used to derive B0 field maps.

3-T acquisitions—The feasibility of 3 T for the MI-EPI-based cortical surface 

reconstruction was piloted, and preliminary evaluations are presented below. The following 

sequences and parameters were used. MI-EPI: voxel size = 1.04 × 1.04 × 1.04 mm3, TR = 

10.77 s, TE = 33 ms, α = 90°, matrix = 184 × 184, esp = 1.04 ms, in-plane R = 3, readout 

BW = 1182 Hz/pixel, phase-encoding BW = 15.7 Hz/pixel, Nslices = 126, pF = 7/8, Nshift = 

3, acquisition time 7 min 55 s. GRE-EPI: voxel size = 2.00 × 2.00 × 2.00 mm3, TR = 4.35 s, 

TE = 33 ms, α = 90°, matrix = 92 × 92, esp = 0.69 ms, in-plane R = 2, readout BW = 1646 

Hz/pixel, phase-encoding BW = 31.5 Hz/pixel, Nslices = 68. MEMP-RAGE: voxel size = 

1×1×1 mm3, TR = 2.53 s, 1st–4th TE = 1.64, 3.50, 5.36, and 7.22 ms; α = 7°, matrix: 256 × 

256 × 176, readout BW = 651 Hz/pixel, esp = 10.3 ms, in-plane R = 2, acquisition time 6 

min 3 s. The spatial distortions (in units of mm/Hz) of the EPI protocols in the phase 

encoding direction were approximately equal (1 mm / 16 Hz).

Image analysis

Cortical surface reconstruction and brain segmentation—The synthesized T1w 

EPI images were automatically processed by the default processing pipeline of FreeSurfer 
version 5.3 (http://surfer.nmr.mgh.harvard.edu). FreeSurfer, i.a., segments and identifies the 

subcortical brain structures, creates surface models for WM–GM (white surface) and GM–

CSF (pial surface) boundaries, and parcellates the cortical sheet to different named folds and 

various brain areas. In addition to the white and pial surfaces, surfaces in the middle of gray 

matter (midgray surface) were computed (using the FreeSurfer tool mris_expand).

Comparison of MP-RAGE and EPI—To examine the surfaces generated from EPI 

acquisitions in reference to the MEMP-RAGE, the (BOLD-weighted) S0 maps of each 
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subject were registered to both the synthetic T1w EPI and the MEMP-RAGE data using two 

volumetric (SPM12 co-register tool (Ashburner and Friston, 1997) and FSL FLIRT 

(Jenkinson and Smith, 2001; Jenkinson et al., 2002)) and a boundary-based affine 

registration method (FreeSurfer tool bbregister (Greve and Fischl, 2009), with 12 degrees of 

freedom targeting the white surface). The same boundary-based registration procedure was 

repeated for the resting-state GRE-EPI BOLD-weighted data to confirm that the registration 

accuracy was similar for the BOLD-weighted S0 maps and the native BOLD-weighted GRE-

EPI data. Although the S0 maps are naturally in perfect alignment with the T1w data derived 

from the MI-EPI acquisition, for all analyses we estimated the registration of the S0 maps to 

both the EPI-based and MPRAGE-based anatomical data to allow for potential registration 

errors to impact the evaluation of both anatomical datasets equally. Registrations from all 

tested methods were visually evaluated, and the boundary-based registrations were further 

systematically analyzed. Using the boundary-based registration, the S0 intensities were 

projected onto the white, midgray, and pial surfaces (using FreeSurfer program 

mri_vol2surf) derived from both the MEMP-RAGE and EPI acquisitions, and the individual 

subjects' S0 values on the native-space surfaces and the distribution of S0 values pooled 

across subjects in surface-based atlas space were quantified.

Comparisons were also made using the quantitative T1 maps generated from the MI-EPI 

data by projecting the T1 maps onto surfaces derived from both the MEMP-RAGE and EPI 

acquisitions, again using the registration to each anatomical dataset calculated using the 

BOLD-weighted S0 maps. The T1 maps were used in these characterizations and 

quantification because (i) they are devoid of B1 biases and can therefore serve as a 

visualization aid even in the brain regions of low signal levels in S0/BOLD, (ii) the absence 

of biases results in homogeneous representation of the registration quality across the brain, 

and most crucially (iii) T1 is quantitatively distinct in WM, GM, and CSF within the entire 

brain—unlike the S0 and BOLD data—and can therefore distinguish tissue boundaries. 

Thus, the spatial variability of T1 values in the surface projections is expected to provide a 

more robust means to characterize the anatomical accuracy of surface reconstructions.

To test the quality of the MI-EPI-based surface reconstructions, the spatial consistency of T1 

values sampled onto the surfaces across subjects was evaluated: the individual subjects' data 

were projected onto the average brain (fsaverage in FreeSurfer), and the data at each vertex 

(pooled across subjects) was transformed into a probability distribution function (using 

ksdensity in Matlab) from which the highest probability was chosen as the population T1. 

Standard deviations were also computed as well as significance estimates for the T1 

discrepancy between MI-EPI and MEMP-RAGE surface sampling (using Kolmogorov-

Smirnov test, p < 0.05).

To compare our proposed strategy of generating surfaces directly from EPI data that are 

distortion-matched to the functional data with the conventional strategy of dewarping the 

EPI data to match with surfaces generated from MP-RAGE data, we applied standard 

geometric distortion correction techniques to the EPI data using B0 field maps. In summary, 

we dewarped the BOLD, S0 and T1 data using the ‘epidewarp.fsl’ utility in FreeSurfer that is 

a wrapper around FSL Prelude (Jenkinson, 2003) and Fugue (Jenkinson, 2001; Jezzard and 

Balaban, 1995) programs; see Supplementary Material for more details. Because dewarping 
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causes image resampling, it results in intrinsic resolution loss (i.e. blurring) due to the image 

data interpolation, which we quantified in relation to the full-width-at-half-maximum 

(FWHM) of corresponding Gaussian smoothing kernels; the details are provided in the 

Supplementary Material.

The image intensity sampled at a specified depth of the cerebral cortex is expected to be 

uniform across the brain, exhibiting relatively low spatial variability compared to the 

difference in intensities between the GM, WM, and CSF, especially within a specific cortical 

area. We quantified the accuracy of sampling as the homogeneity of signal of native BOLD-

weighted data, S0 data, and the quantitative T1 data as sampled by the MI-EPI and MEMP-

RAGE midgray surfaces. We included also MEMP-RAGE sampling of the dewarped EPI 

data in these analyses (although the interpolation step in the dewarping, mentioned above, is 

expected to reduce the spatial variability of image intensities). As a measure of homogeneity 

we used the coefficient of variation computed from 34 cortical atlas areas defined in the 

“Desikan-Killiany” atlas (Desikan et al., 2006) included in FreeSurfer.

A common use of cortical surface reconstructions is the prediction of cortical area 

boundaries from geometric features of the folding pattern by aligning the surface to a 

common space or atlas. However, the geometric distortions of the EPI data will influence the 

geometry of these features and therefore will influence the surface-based alignment to an 

atlas space, thus the distortions may affect the area boundary predictions. To quantify the 

agreement between the area predictions generated from MI-EPI-based surfaces and 

conventional MP-RAGE-based surfaces, we directly compared the cortical parcellations 

produced automatically by FreeSurfer (the “Desikan-Killiany atlas” (Desikan et al., 2006)). 

We quantified whether the MI-EPI-based atlas predictions were compatible with the MP-

RAGE-based atlas predictions by first projecting the parcellation generated from the MI-

EPI-derived surfaces onto the conventional MP-RAGE-derived surfaces (using the vertex 

correspondence produced by the FreeSurfer longitudinal processing stream (Reuter et al., 

2012), as performed previously (Fujimoto et al., 2014)), then calculating the Dice coefficient 

of the mesh vertices contained within each label to determine the spatial overlap between the 

MI-EPI-derived labels and the MP-RAGE-derived labels.

Furthermore, because anatomical data are often volumetrically normalized to an atlas space, 

we tested whether the T1w-EPI could be transformed onto the MNI305 space using the 

spatial normalization tools provided in SPM12 v.6225 (Ashburner and Friston, 1997). The 

default parameters of the Normalize function were employed to perform the non-linear 

transformation between the EPI data and atlas space.

Quantification of regional T1 values—As the MI-EPI methodology provides 

quantitative T1 estimates, we computed the T1 values regionally within the cortex based on 

the FreeSurfer parcellations. To avoid partial volume effects that might contaminate the T1 

values in voxels sampling either the pial or the white surface, we considered only those 

voxels identified as cortical GM that did not intersect either the pial or the white matter 

surface, i.e. voxels that were cleanly within cortical GM. These voxels were grouped 

according to the cortical regions defined in the FreeSurfer Destrieux atlas (Destrieux et al., 

2010) and the T1 values were obtained from the T1 distribution using a smoothing kernel (in 
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Matlab, ksdensity, bandwidth set to 50 ms) resulting in a probability distribution function. 

The regional T1 was determined as the value at the maximum probability.

Results

Fig. 2 (A and B) presents the data and model fits for exemplar WM, GM, and CSF voxels. 

The sharp decrease in signal intensity at the last TI in the plot of the voxel sampling the CSF 

reflects the irregular TRα value occurring after the slice acquisition order cycles from the 

beginning of the inversion recovery period to the end. With standard closed-form parametric 

curve fitting approach this last point would be discarded as an outlier, whereas the Bloch 

equation model both captures and can make use of the sample recorded at this discontinuity.

Fig. 2C shows a number of frames from an original image set (a sample of image data from 

all the slices as well as all the TI sampling points are presented in the Supplementary 

Material, Fig. S2), from which the S0 and T1 parameter maps were computed. To 

qualitatively verify the fit, T1-weighted EPI images were reconstituted using the same TI 
values as were used in the acquisition and are shown for comparison in Fig. 2D. The images 

2C and 2D thus show the progression of image intensity as a function of TI value, as in Fig. 

2B, but for all voxels within an image slice. Overall, the model closely replicates the original 

signal of the component images. The model fitting also suppresses noise present in the 

original data by finding the parameter values that provide the lowest least-squares error over 

the entire collection of acquired images.

Fig. S3 summarizes the results of the sensitivity analysis illustrating the effect of non-ideal 

flip angle in the T1 estimation. Tissues with moderate or short T1 (WM and GM) are almost 

unaffected by the transmit bias that causes flip angle differences across the head—the 

discrepancy in fitted T1 values for both WM and GM when assuming a flip angle of 45° or 

135° degrees was below or ≈10 ms. However the estimated T1 in the CSF regions is 

unreliable as expected due to the prolonged T1 value of CSF compared to the sequence 

repetition rate TR—hundreds of ms discrepancy are seen between the range of assumed flip 

angles. Fig. 3 shows parameter maps T1 and S0 computed from data acquired with and 

without fat saturation pulses. It also illustrates how the inclusion of nuisance pulses in the 

model affects the parameter value estimates and quantitative interpretation of the data. The 

exact values of the nuisance pulses required to correct the T1 values depend on the tissue 

(since MT effects are tissue dependent), although a closer match with the true values for a 

subset of tissues can be obtained by an appropriately selected constant value. The image 

αnuis in Fig. 3, resembling a MT contrast image, shows the virtual nuisance pulse flip angle 

required in the modeling of a fat saturated acquisition to match the T1 values of an 

acquisition without fat saturation. Based on the αnuis map, an αnuis of about 8° appears to 

increase the T1 values of GM to the values without fat saturation—the resulting image is 

shown. However, the 8° virtual pulse is not sufficient to correct the T1 values in WM and 

drives the T1 of CSF further away from its true value, because little MT takes place in CSF 

(due to the lower proportion of macromolecules compared to GM and WM). Thus, with 

these 8° nuisance pulses the resulting T1 estimates are still biased to be somewhat low in 

WM and too high in CSF. However, the image intensity values of the synthetic images 

analyzed below are to some extent insensitive to the exact T1 values estimated due to the 
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specific parameter values of the MP-RAGE protocols used here. For this reason, in the 

following the synthetic T1w images were generated from the T1 maps calculated without the 

use of any nuisance pulses, for all protocols.

To illustrate the overall suitability of the MI-EPI data for automatic image analysis, Fig. 4 

includes cross-sections of the FreeSurfer surface reconstructions of T1w images from both 

MI-EPI and MEMP-RAGE data. The surfaces are overlaid on the skull-stripped volumes of 

a representative subject in three orthogonal planes at approximately corresponding locations 

across the two anatomical images; Fig. S4 in the Supplementary Material includes a collage 

of all subjects having both MI-EPI and MEMP-RAGE data.

The Bloch equation model decomposes the MI-EPI data into the two parameter maps, S0 

and T1, with S0 having tissue contrast similar to BOLD-contrast-weighted fMRI data. Fig. 5 

shows the boundary-based 12-parameter affine volume registration results of conventional, 

native BOLD-weighted data with partial brain-coverage to MI-EPI-based and MEMP-RAGE 

reference images, and, for comparison, the registration of the S0 data derived from the MI-

EPI acquisition to the T1w EPI and MEMP-RAGE data, with the corresponding white and 

pial surfaces superimposed. Additionally, the registrations were also computed using two 

affine volume-matching methods, FSL FLIRT and the SPM12 co-registration tool, both with 

12 degrees of freedom and normalized mutual information (Studholme et al., 1999) as the 

cost function. Although the imaging parameters vary to some extent between the native 

BOLD and derived S0 images, the contrast and registration results are remarkably similar. 

The S0 images registered using volume-matching approach in Fig. 5 were visually 

examined, resulting in worse co-localization with MEMP-RAGE images than when 

registering with the method employing a boundary-based cost function—the EPI–EPI 

registrations appeared very similar for all methods, with boundary-based registration 

performing better overall.

To evaluate the quality of the surface reconstructions generated from MI-EPI data and their 

ability to track the cortical folding pattern in the target EPI volumes, we projected the EPI 

data onto the reconstructions, then compared the spatial variability of the projections to the 

spatial variability of the projections onto the conventional MEMP-RAGE-based surface 

reconstructions. For this evaluation, we first registered the S0 images to both types of T1w 

anatomical data, synthetic T1w EPI and MEMP-RAGE, using alignment tools developed for 

registering BOLD data to anatomical data; the content of the S0 and native BOLD-weighted 

data are visually identical, the correlation coefficient of voxel intensities computed with the 

brain mask was evaluated to be r = 0.85, and we have previously demonstrated that S0-based 

fMRI also resulted in similar activation pattern to native BOLD data in response to visual 

stimulation (Renvall et al., 2014a); thus the S0 images are expected to yield similar 

registration results to native BOLD-weighted data. (We did not assume that the registration 

between S0 and synthetic T1w from EPI data was simply the identity in order to allow these 

evaluations of both the MEMP-RAGE and MI-EPI surfaces to include the potential effects 

of registration errors especially due to T2*-related intensity modulation.) Because the S0 

images and quantitative T1 maps are derived from the same MI-EPI data and therefore are 

naturally in alignment, the registration matrix computed from the T2*-weighted S0 data was 

used to identically project both the S0 images and T1 maps onto the surface reconstructions. 
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For this evaluation, only boundary-based registrations were considered as they provided the 

best results overall, especially for aligning T2*w data to MEMP-RAGE images.

The resulting projections of the S0 images and quantitative T1 maps onto both the T1w 

MEMP-RAGE and the MI-EPI-based cortical surface reconstructions are compared in Fig. 

6. The computed transformation resulting from the registration of S0 image to the synthetic 

T1w image is, as expected, approximately but not exactly the identity, and a relatively good 

registration is found between the S0 and MEMP-RAGE data. The figure shows that sampling 

on surfaces based on both reference images yield smoothly varying S0 signal intensities and 

T1 values over a large portion of the cortex, which indicates that FreeSurfer can derive 

usable, accurate surfaces from EPI data. With the affine registration, the S0 signal intensity is 

less homogeneous on the MEMP-RAGE-derived surfaces than on the MI-EPI surfaces, and 

it appears that e.g. the MEMP-RAGE pial surface more often dips into the CSF in the S0 

image due to distortions that cannot be compensated by utilizing an affine linear coordinate 

transformation. Thus, with MEMP-RAGE surfaces, functional activation from within the 

cortical gray matter may not be projected onto the surface and the MEMP-RAGE surfaces 

would be more likely to sample nearby tissues compared to the MI-EPI surfaces. This effect 

is also evident in the T1 values projected onto the surfaces, where the MI-EPI surface clearly 

samples fewer voxels where the T1 value is above ∼2 s, which is the upper bound for GM at 

7 T. (In this example the maps are derived from a fat saturation-enabled protocol, variant A, 

where the T1 of GM appears even lower; see also Figs. 8 and 9.)

The intensities of the S0, T1, and BOLD data on the white and pial surfaces depend not only 

on the quality of registration but also on the exact location along the transition between 

neighboring tissues where FreeSurfer places the surface reconstructions. The midgray 

surface serves as a less biased although less sensitive reference for assessing the surface 

placement. Therefore, we also consider the derived midgray surface, lying midway between 

the white and pial surfaces. On the midgray surfaces too, the S0 and T1 projections are 

relatively homogeneous on the MI-EPI surfaces, with more variability on the MEMP-RAGE 

surfaces. The bottom panels in Fig. 6 show that the MEMP-RAGE surfaces are actually off 

from the S0 and T1 information mostly in select regions of the brain, whereas the MI-EPI 

surfaces remain accurate.

Beyond affine registration, accurate registration of BOLD EPI data with MEMP-RAGE 

surfaces requires additional distortion correction or non-linear registration, which may 

reduce geometric differences but will cause spatial resolution loss because of the resampling 

the BOLD data. We quantified the interpolation blurring expected in our EPI data caused by 

the B0 fieldmap-based distortion correction in terms of the equivalent 1-dimensional 

Gaussian smoothing kernel across the brain. The spatial pattern of the interpolation blurring 

closely reflects the pattern of voxel shifts derived from the susceptibility-induced 

inhomogeneity of B0, as shown in Fig. S5. The average interpolation blurring was equivalent 

to a 1.2 ± 0.2 mm (FWHM) wide Gaussian smoothing (mean ± std. across voxels within a 

brain mask for the EPI protocol with 1.04 mm isotropic resolution). Note that the maximum 

interpolation blurring is set by the scale of the voxel grid, such that more interpolation 

blurring in units of mm would be possible for a larger voxel size. Beyond this unavoidable 

resolution loss, the accuracy of the geometric correction depends on the resolution of the B0 
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field map and how it is preprocessed (e.g., how much explicit smoothing is applied to reduce 

artifacts). To quantify the accuracy of the dewarped EPI data we computed the spatial 

variability of both the native and dewarped EPI data projected onto the MI-EPI-based and 

MEMP-RAGE-based surfaces. The results are shown in Fig. 7, where it can be seen that 

both the native BOLD data and the MI-EPI-based T1 map do vary slightly less on the 

MEMP-RAGE midgray surface after fieldmap-based dewarping, however the least amount 

of variation was consistently measured for the EPI-based midgray surfaces sampling the data 

in the original geometry on a majority of the cortical parcellations. Therefore MI-EPI-based 

surfaces are able to more consistently sample the cortical gray matter across the brain in the 

EPI data than the MEMP-RAGE-based surfaces, even after dewarping the EPI data, 

indicating that native BOLD EPI data are more accurately aligned to the distortion-matched 

MI-EPI-based surfaces than the dewarped BOLD EPI data are to the MEMP-RAGE-based 

surfaces.

Fig. 8 presents the distribution of S0 and T1 values sampled on the cortical surfaces pooled 

across subjects (estimated from data acquired using protocols with fat saturation). 

Probability distribution functions (PDFs) were estimated independently for data sampled by 

the white, pial, and midgray surfaces for each subject, then these subject-specific PDFs were 

averaged across all subjects and the standard deviations between subjects are indicated by 

the shading surrounding each curve. The MI-EPI-based surface sampling provides 

systematically sharper probability distribution functions for all the surfaces for S0 and 

especially T1, whose value is more specific to the tissue type. Fig. S6 in the Supplementary 

Material reproduces Fig. 8 for one representative subject.

A degree of variability is to be expected in the PDFs because the gray matter is not uniform, 

and the T1 values differ across regions of the cortex. Fig. 9 shows the inflated surface of an 

average brain template onto which the T1 values of brain parcellations are overlaid (showing 

the average of the three subjects scanned with a protocol without fat saturation). The T1 

values in the middle of cortical gray matter ranged from 1550 to 1900 ms, however the 

values should not be considered strictly quantitative because sources of MT and off-

resonance effects other than fat saturation remain unaccounted for. The pattern of T1 values 

found here expectedly resembles the cortical myelin content (Glasser and Van Essen, 2011; 

Sereno et al., 2013), as high myelin content reduces the T1 of GM.

Fig. S7 includes T1 maps of another individual subject viewed from different directions to 

demonstrate the surface placements on MI-EPI and MEMP-RAGE. Especially the 

superomedial, anterior, and inferior parts of the brain, in addition to the central sulcus, 

benefit from the use of MI-EPI surfaces as compared with the MEMP-RAGE as evidenced 

by the clear contamination of CSF in the voxels sampled by the cortical surface models. The 

FreeSurfer-generated brain segmentations are also included. Supplementary Fig. S8 shows 

T1 sampling of the superior half of the right hemisphere of different surfaces from all of the 

subjects having both MI-EPI and MEMP-RAGE data. In Fig. 10, these data are merged, 

such that the T1 corresponding to the maximum probability density at each vertex is shown, 

together with standard deviation and estimate of the T1 values being statistically 

significantly different on the MI-EPI and MEMP-RAGE surfaces at every vertex (not 

corrected for multiple comparisons). Additionally, the difference of T1 sampled by MEMP-
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RAGE and MI-EPI surfaces is presented. The results are consistent with the subject shown 

in detail in Fig. S7. Fig. 10 then can serve as a guide for determining where in the cortex the 

MI-EPI would be a viable option to improve surface-based data analysis.

To quantify the extent to which the generated MI-EPI-based surfaces could be employed for 

the common task of surface-based atlasing and cortical area prediction, we directly 

compared the cortical parcellation of the MI-EPI-based surfaces and that of the MEMP-

RAGE-based surfaces. The resulting Dice coefficients for each cortical label, which quantify 

agreement between the corresponding labels from the two surface reconstructions, are 

presented in Fig. 11. Overall the overlap between parcels generated from the MI-EPI-based 

surfaces and the MEMP-RAGE-based surfaces was high, with an average overlap over 85%. 

As expected, agreement between the MI-EPI-based and MEMP-RAGE-based surface was 

lowest in regions of pronounced B0 inhomogeneity, such as the frontal and temporal poles, 

which are proximal to the air-tissue interfaces of the frontal sinuses and ear canals, 

respectively; however the overlap in these regions is still over 65%, suggesting that while 

geometric distortion is inevitable in EPI data it is still possible to perform surface-based 

atlasing using these reconstructions as part of EPI-surface-based fMRI data analyses. 

Nevertheless, care must be taken when employing geometric features derived from any EPI-

based anatomical models—see Discussion for comments on which applications are best 

suited to EPI-based surface reconstructions.

Because the MI-EPI data provide T1-weighted anatomical maps with clear gray–white–CSF 

contrast that are exactly distortion-matched to the BOLD-weighted fMRI data, the MI-EPI 

data can also be used to map the BOLD fMRI data volumetrically into a common atlas space 

without using an anatomical reference such as an MP-RAGE dataset as an intermediary 

stage. Fig. S9 illustrates the T1w EPI data normalized to the MNI atlas (as previously 

demonstrated (Beissner et al., 2014)), thus eliminating the need to register the BOLD fMRI 

data to a mismatched conventional anatomical image volume in order to map the fMRI data 

into atlas space.

To demonstrate that the discrepancies between the surfaces generated from the MI-EPI data 

and those from the MEMP-RAGE data are predominantly driven by local B0 distortions in 

the EPI data, the displacement of each surface mesh between corresponding vertices 

projected along the image encoding directions is presented in Fig. 12. Corresponding 

vertices on the surface meshes were identified in both surfaces using the FreeSurfer 
longitudinal processing stream and the 3D Euclidian distance along with the distances 

projected along the readout, phase encoding (PE), and slice directions were computed 

between the vertices and the distance map was overlaid on the inflated brain representation. 

The Euclidian distance is a conservative estimate of the surface displacement because two 

vertices that are close-by in 3D can actually be a long distance apart along the surface, e.g. 

on different banks of a sulcus. As expected, the greatest discrepancies between the relatively 

undistorted MEMP-RAGE and the distorted EPI surfaces were along the PE direction. The 

cross-sectional images in Fig. 12 further illustrate the discrepancies between the samplings 

of the T2* data by the MEMP-RAGE and MI-EPI based surfaces. The white arrow in Fig. 12 

shows an instance of the typical difference, where B0 field inhomogeneity distorts the EPI 

images, and where the MI-EPI surface still aligns with the T2* data.
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The 1-mm MI-EPI data analyzed here was based on 7 T acquisitions, which provide high 

sensitivity even for small voxel sizes. To demonstrate that this EPI-based surface 

reconstruction strategy can also be adopted in fMRI studies conducted at more conventional 

field strengths, Fig. 13 shows the surface placement results from a single 3 T scan utilizing 

Nshift = 3, with total scan time ∼8 min, as a proof of concept that the surface reconstructions 

of 1 mm MI-EPI data are feasible at lower fields as well.

Discussion

The interpretation and visualization of fMRI activation generally rely on localizing EPI data 

on an anatomical template. Moreover, accurate alignment between anatomical and functional 

data is required to perform surface-based fMRI analyses and to benefit from surface-based 

atlasing. The commonly used anatomical imaging methods acquire images in different 

geometries from the fMRI data, which requires strict image registration accuracy—

especially in high-resolution fMRI applications. In this work we show that affine 

registrations from fMRI to anatomical space by state-of-the-art methods result in 

inaccuracies and sampling of unwanted tissue classes. The use of the same or similarly 

distorted EPI acquisitions for both fMRI and anatomical imaging is hypothetically 

advantageous for the analysis of fMRI, but has remained impractical due to the low image 

quality and unsuitable contrast present in conventional EPI. Furthermore, the additional 

anatomical details and image inhomogeneities present in the EPI images complicate tissue 

segmentation and generating surfaces directly from fMRI data, notwithstanding the success 

of boundary-based registration of functional data to anatomical images that also exploit the 

tissue contrast in the BOLD data. The recent improvements in acquisition quality resulting 

from the advances in image processing, RF coil technology, and the improved SNR and 

prolonged T1 resulting from the ultra-high magnetic field (enabling more samples being 

acquired from the steep early portion of the T1 relaxation curve that is useful for T1 fitting) 

were exploited to facilitate the use of EPI for anatomical reference.

Here we have demonstrated that EPI acquisition combined with magnetization preparation, 

tissue parameter modeling, and modeling-based contrast synthesis was capable of producing 

anatomical-like high-resolution images that could be processed automatically to capture the 

cortical surfaces, brain segmentation and cortical parcellation, using FreeSurfer. However, at 

7 T, our inversion recovery sequence had to be designed around the limitations of 

permissible radiofrequency energy deposition (viz. SAR). A simpler technique in which 

each EPI slice is acquired with a single TI value to provide T1w contrast could facilitate 

image registration between BOLD EPI and T1 anatomical data, as has been proposed 

previously (see, e.g., Tootell et al., 1997), but this approach would be extremely time 

inefficient given the minimum time interval required between inversion pulses, and would be 

vulnerable to spatial intensity bias and unwanted T2* weighting that would affect the 

accuracy of a cortical surface reconstruction. Thus, an approach was adopted here where 

each inversion was utilized by a number of slice acquisitions making better use of the time 

between inversion pulses for noise averaging and to fit T1 in order to reduce sources of bias 

and unwanted contrast. The drawback of the approach was that every slice had its own 

unique TI during each inversion recovery. By shifting the slice acquisition order by one slice 

between sequence repetitions, a uniform set of TIs could be acquired for every slice. This, 
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however, would have taken a prohibitively long time. Instead, here the slice order shifting 

was performed such that the order was shifted by blocks of several slices at a time, resulting 

again in non-uniform set of TIs at every slice, but nevertheless the data could be successfully 

modeled yielding parametric maps of the whole imaging volume.

While the quality of the EPI images appears sufficient, it is in relation to the segmentation 

and cortical reconstruction software used. Thus, our results partly demonstrate the 

robustness of FreeSurfer to the small differences in tissue contrast seen in the EPI data 

compared to the contrast seen in the MEMP-RAGE data for which FreeSurfer has been 

designed. In this regard, comparing the reconstructions of MI-EPI and MEMP-RAGE 

images is biased in favor of MEMP-RAGE, in part because any prior information exploited 

by FreeSurfer to perform the segmentation is based on the assumption that the input data 

was acquired with a conventional MP-RAGE acquisition. On the other hand, the accuracy of 

automatic brain segmentation and parcellation from the MI-EPI data is only provisional 

because the FreeSurfer priors for the identification and segmentation of anatomical 

structures have been created for and from non-EPI data and further investigation and 

development is required to confirm the accuracy of current priors and atlases applied to the 

EPI data, or to generate an EPI-based anatomical database. The information content in the 

MI-EPI acquisition is rich, which should allow for the creation of different maps of tissue 

properties in perfect spatial alignment, facilitating the creation of an EPI-based atlas.

In this work, a set of image synthesis parameters was used that reproduces some of the MP-

RAGE image contrast features. We intended to use the FreeSurfer software suite as 

provided, in order to confirm that the analysis was not adjusted to suit the data but that the 

data is suitable for the typical analysis. However, these parameters may not provide optimal 

delineation of different tissues and surface reconstruction, especially if modifications to the 

FreeSurfer software were also to be permitted. As mentioned, a wide variety of synthesizing 

parameters could have resulted in images that yield accurate surface reconstructions, and the 

ones adapted in this work are only one such set. The commonly used MP-RAGE parameters, 

as recommended for FreeSurfer, also resulted in reasonable synthetic images especially for 

the non-fat-saturation protocols, but in general the artifact level for these EPI-based 

synthetic images was higher than for the parameter set chosen. Actual imaging protocols are 

often constrained by practical limitations such as SAR or scan time—also translating into 

subject motion—that synthesis is oblivious to. Thus, to better replicate the MP-RAGE image 

features based on EPI data, consequently improving the surface reconstruction quality, the 

longer TR alternative was selected for the syntheses. The synthetic images are derived from 

the quantitative T1 maps provided by the MI-EPI method, which themselves can be used as 

input to FreeSurfer for anatomical segmentation, however the T1 maps viewed as images can 

have lower contrast-to-noise ratio than the synthetic images generated using the nonlinear 

mapping between T1 value and T1w intensity provided by the Bloch equations (Fischl et al., 

2004; Fujimoto et al., 2013).

Apart from synthesis, the method provides quantitative T1 maps. However, the quantitative 

accuracy was compromised by MT effects largely due to fat saturation pulses. In addition, 

the (off-resonance) slice-selective excitations of slices other than the one being scanned 

(Santyr, 1993) contribute to biased T1 estimates. To improve the quantitative usability, fat 
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saturation should be disabled or the spectral saturation should be replaced by some other 

suppression method.

From quantitative perspective we showed that using fat saturation is not optimal. Scanning 

without fat saturation brings about the familiar chemically-shifted fat ring, which obfuscates 

the estimation of the true T1 values, therefore more elaborate fat suppression techniques are 

needed if quantitative accuracy is required throughout the brain, i.e. also at the location of 

the fat ring. The lack of motion correction is another limitation of the current method. As the 

parameter fitting relies completely on modeling the spin history, changes in head position 

will complicate the T1 fitting. Also, as a 2D-method that uses three minutes' worth of data, 

some motion blur is apparent in subjects who have moved during the scan; the loss of 

resolution was noticeable in some cases, but it did not invalidate the surface reconstruction. 

Furthermore, the fitting now only included one compartment per voxel. This assumption 

does not account for the several different parameter combinations existing within every 

voxel. A related limitation concerns voxels with tissues portraying a short T1. The relaxation 

might be characterized well by slices that sample the beginning of the inversion recovery, 

but slices that are acquired further away from the inversion, especially while using a large 

slice shift factor in the protocol, may not capture the shortening of the voxel's collective T1, 

as those signals have already recovered at the time of sampling.

Our MI-EPI protocols included 18 different contrasts each, which is clearly superfluous as 

two parameters can be robustly obtained from a much smaller number of data samples even 

in the presence of noise. Nevertheless, in order to accurately estimate T1 values across the 

entire brain with the many T1 values encountered in the various tissues, a wide range of TI 
values is required, and even through three well-chosen TI values might suffice to estimate a 

given T1 value, no three TI values could provide accurate fits for every brain region. Also, 

the most valuable information is acquired soon after the inversion pulses, and the long tail of 

measurements mostly samples only small changes in the signal level, and is not necessary 

especially since the Bloch model does not require “complete” recovery of longitudinal 

magnetization. Nevertheless, the long tail ensures that the S0 estimates are accurate. Using a 

very large shift factor in permuting the slice acquisition order is, however, not useful because 

the data for modeling different slices does not allow consistent quality for fitting T1. With 

further optimization, more time-efficient slice ordering schemes could be designed without 

compromising quality. The proposed acquisition method is immediately compatible with 

Simultaneous Multi-Slice imaging (Setsompop et al., 2012), which would significantly 

reduce the time consumed to scan the whole volume, and would enable reducing the shift 

factor (down to 1) while still reducing scan time. Alternatively, the TR could be reduced by 

sampling only the beginning of the T1 relaxation, i.e. not acquiring every slice after each 

inversion. At 7 T, decreasing the TR would, however, require cooling pauses to space out the 

inversion pulses in time, undoing some of the benefits. Alternatively, the volume could be 

read out several times after an inversion (Marques et al., 2010; van der Kouwe et al., 2014), 

effectively providing more data for a single data fit, or enough information to acquire a time 

series of parameter images and several native contrasts (Freeman et al., 1998; Gowland and 

Mansfield, 1993; Look and Locker, 1970; Renvall et al., 2014c). At 3 T, on the other hand, a 

reduced TR would be practical due to the lower SAR; sampling at a lower block shift factor 

would also be essential, since the T1 relaxation is quicker, and a smaller spacing is required 
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between samples to obtain an accurate T1 map. Based on preliminary measurements, two 

averages with a shift factor of 5 is already capable of producing usable parametric maps at 3 

T, but transferring the said TR and shift factor reduction techniques to 3 T may well provide 

for this method to be applicable at 3 T without compromising scan time.

The method presented includes a computationally expensive modeling stage, and the slow 

generation of the parameter maps prevents real-time quality assurance of the data during 

scan time. To speed up the image reconstruction and potentially allow for on-line assessment 

at the scanner console, new fast template matchers used e.g. for MR Fingerprinting could be 

applied to these data in the future (Cauley et al., 2015).

Scrutinizing the synthesis of MP-RAGE-like EPI images highlights the need for care also in 

interpreting MP-RAGE surfaces and their comparability. Especially, a signal cancelation or 

low intensity line artifact appears between tissue boundaries for images acquired during 

inversion recovery when the longitudinal magnetization of one tissue is positive and 

longitudinal magnetization of adjacent tissue is negative, which can lead to a signal null at 

the tissue interface. An example of this boundary nulling can be seen in Fig. 2C between 

GM and CSF, indicated by an arrow. The artifact is not necessarily visible in all voxels and 

depends on voxel size and how the boundary falls in the voxel, but the cancelation still 

occurs and affects voxel intensities and consequently surface placement, also potentially 

explaining in part the discrepancies of surface placement between morphometric sequences, 

e.g. MEMP-RAGE and MP2RAGE (Fujimoto et al., 2014). In regard to our synthetic EPI 

images, both the MP-RAGE-like and fluid attenuated, we were careful to choose the 

synthesis parameters to avoid the cancelation but the MEMP-RAGE images acquired with 

the applied (standard) protocol may be susceptible to this effect as CSF is nearly nulled but 

the longitudinal magnetization possibly remains negative by a small margin. For this reason, 

using the tissue parameter image(s) as such (instead of synthetic or parameter-weighted 

images) could improve the definition of tissue boundaries, because e.g. T1 is always positive 

with no cancellation. More importantly, different contrast mechanisms may interact to 

obfuscate the true tissue borders. For example, T2* contrast between neighboring tissues 

could influence the estimated tissue borders, especially at higher field strengths where T2* 

weighting becomes more pronounced even for the short TE values utilized in standard MP-

RAGE protocols. Therefore, actual tissue parameters rather than contrasts might provide for 

more reliable brain segmentation and surface reconstruction, and also improve the 

quantitative comparability and interpretability of tissue characterization (Fischl et al., 2004; 

Fujimoto et al., 2013; Tardif et al., 2015). The MI-EPI provides for a relatively fast way of 

obtaining such quantitative information, and the completely co-registered parametric 

imaging data could be extended to include T2* estimates by incorporating multi-echo 

readouts. Nevertheless, the nonlinear mapping of quantitative T1 values into synthetic T1w 

images still provides strong tissue contrast with relatively low noise. Future work will be 

required to evaluate not only the tissue contrast seen in quantitative parameter maps but the 

within- and between-tissue noise as well, which also has a strong influence over 

segmentation performance.

The normal practice of registering fMRI data to MP-RAGE reference images resulted in 

substantial sampling errors in large areas of the cortex in individual subjects. Thus, 
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restricting fMRI analyses within a GM mask, for instance, may not protect from 

supracortical physiological noise. In addition, the spatially consistent sampling errors seen 

across subjects suggest that in the affected regions functional maps would have been 

displaced consistently and averaging over subjects would not have remedied the error, rather 

the data as a whole would have been biased to sample unwanted tissue and be contaminated 

by, e.g., CSF fluctuations. The spatial pattern of sampling errors when registering to MP-

RAGE images found in this study closely resembles the spatial pattern of inferior SNR in 

fMRI found in a very large cohort of subjects (Yeo et al., 2011), which is consistent with the 

known property that due to strong physiological noise fluctuations CSF has poorer SNR than 

e.g. GM. Using the EPI-based reference image dramatically reduced the sampling error, thus 

showing, not only individually but in the group, the advantage of using EPI-based surfaces 

over MP-RAGE surfaces.

An additional useful feature of the MI-EPI approach is that it can produce both T2*w images 

(i.e., the S0 maps) and quantitative T1 maps that are naturally in perfect register. This T2*w 

image exhibits similar tissue contrast to BOLD-weighted fMRI data, and can therefore in 

practice facilitate intra-modal registration of the time-series BOLD fMRI data to the 

anatomical reference data comprised of the synthesized T1w images (computed from the T1 

maps) and the corresponding cortical surface reconstructions.

We have almost exclusively addressed the use of matching-geometry and conventional 

anatomical reference images in fMRI from the perspective of boundary-based registration 

methods. However, the use of an EPI-based reference image may be even more crucial when 

using volumetric registration. It is clear that functional data align better to conventional 

anatomic reference image data using boundary-based than volumetric registration. However, 

the EPI-based reference image aligned remarkably well using both volumetric and surface-

based approaches. As we demonstrate in Fig. S9, the EPI reference may be compatible with 

volumetric spatial normalization, and EPI-based anatomical images may not require a new 

dedicated atlas but can potentially normalize to the conventional MNI space.

This work shows that it may be beneficial to use anatomical EPI data for surface-based 

analysis of other EPI data, such as BOLD fMRI or diffusion MRI. It is clear, however, that 

for other uses, such as morphometry (e.g., measuring cortical thickness changes) or 

parcellating brain regions based on intracortical contrast (Dinse et al., 2015; Sereno et al., 

2013), low-distortion acquisitions like MP-RAGE—where the geometry is not biased by B0 

inhomogeneity and/or B0 shim imperfections—remain preferable in terms of precision and 

geometric accuracy. However, whereas minimally-distorted anatomical images are good for 

creating atlases, EPI images may not be as good because they are more sensitive to local B0 

inhomogeneity and B0 shim performance and therefore do not reflect the geometry of the 

underlying anatomy as well. Nevertheless, Fig. 11 demonstrates that the automatic cortical 

surface parcellation provided by FreeSurfer estimated from the EPI surfaces closely matches 

the parcellation estimated from MEMP-RAGE surfaces, suggesting that studies requiring 

cortical surface reconstructions for estimating cortical areas based on the folding pattern can 

have high confidence in the area predictions in regions away from strong B0 inhomogeneity. 

Still, changes in scan parameters, slice alignment, as well as the subject-to-subject variation 

of anatomy have large impacts on the distortions—the reason the EPI-based anatomical 
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imaging was developed. In practice strongly distorted images or volumes with through-plane 

dropout will also deteriorate the MI-EPI data and surfaces cannot be created for those areas. 

(Although no fMRI signal would be expected in those locations either.)

A key application for the proposed technique is surface-based analysis of high-resolution 

EPI data, including functional, diffusion, or perfusion imaging. Because of the many 

challenges to acquire accurate, high-resolution data, the blurring induced by dewarping EPI 

data to match the anatomical reference can be a setback and obviate the effort to achieve 

small voxels (Stelzer et al., 2014). Since the distortion is predominantly along the phase 

encoding direction, dewarping can lead to anisotropic voxels and may introduce spurious 

correlations into the time-series data. For new surface-based analysis techniques such as 

“laminar” cortical depth analyses that have been applied to high-resolution function (De 

Martino et al., 2013; Polimeni et al., 2010), diffusion (Kleinnijenhuis et al., 2015; McNab et 

al., 2013) and perfusion (Guidi et al., 2015) data use the gray matter boundary surfaces as 

reference points and therefore require accurate placement of these surfaces for proper 

identification of cortical layer positions, as well as isotropic voxels to minimize sampling 

biases.

One postprocessing strategy for removing distortions from EPI in order to better align to an 

anatomical reference is to acquire pairs of EPI volumes with reversed phase encoding 

polarity and calculate a non-rigid alignment between the two (using tools such as FSL's 

topup (Andersson et al., 2003)). This alignment procedure implicitly seeks matching 

features in the image pairs to calculate the transformation. However, by anatomically 

segmenting the EPI data first, features including the gray-white interface can be extracted 

and used to drive the alignment either between two frames of EPI data or to calculate a non-

rigid transformation directly to the MP-RAGE data used as anatomical reference. Inversely, 

to ensure the proper use of anatomical labels, the BOLD EPI and T1w EPI geometrical 

equivalence and the similarity of the T1w EPI and MP-RAGE contrasts can be combined in 

a hybrid approach to align MP-RAGE to the BOLD geometry through a non-rigid 

registration between the T1w contrast images.

Another limitation of the method concerns matching the distortions in the high-resolution 

anatomical EPI and the required fMRI EPI. Not all fMRI protocols can be easily adapted to 

1-mm MI-EPI protocols with matching geometric distortion, which requires identical slice 

orientation, phase-encoding direction, and bandwidth per distance in the phase encoding 

direction. Our 3-T protocols employing isotropic 1 and 2 mm resolutions were distortion 

matched, as presented in the Methods, with a ΔB0 of 16 Hz producing a voxel displacement 

of 1 mm, while maintaining an acceptable TE of 33 ms and R = 2 for the BOLD data.

Furthermore, for conventional fMRI studies utilizing lower spatial resolution, any 

anatomical data with voxel sizes larger than 1 mm may result in inaccuracies in the tissue 

segmentation and surface reconstruction; in these cases a distortion-matched 1 mm MI-EPI 

acquisition can be acquired for segmentation and surface reconstruction, as demonstrated in 

Fig. 13 (BOLD). This strategy can therefore enable anatomically matched segmentation and 

surface reconstruction derived from MI-EPI for a broad range of fMRI studies.
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Conclusions

Here we presented an inversion-recovery EPI-based pulse sequence, the fast variable multi-

inversion EPI (MI-EPI) sequence, from which quantitative T1 and residual BOLD-like S0 

(T2*-weighted) maps could be obtained. These maps were found by fitting Bloch 

simulations to the acquired data, resulting in the global optimum (in least-squares sense) 

being found at every voxel. The T1 and S0 maps were used to synthesize T1-weighted 

anatomical reference images in the EPI geometry. The T1w EPI images were successfully 

automatically processed with FreeSurfer, enabling surface-based analysis of fMRI data 

natively in the EPI space, providing an anatomical reference generated entirely from EPI 

data that can be distortion-matched to fMRI data for improved registration accuracy. The 

EPI-based surfaces were shown to more faithfully represent the tissue boundaries seen in the 

fMRI geometry than the conventional MP-RAGE-based surface reconstructions, even after 

conventional B0 fieldmap-based distortion correction of the fMRI data, thus can provide 

more accurate fMRI analysis and prevent errors in the interpretation of activation loci, 

especially for high spatial resolution fMRI studies where registration accuracy can be a 

limiting factor.
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Highlights

Anatomical T1-weighted image contrast in echo planar 

imaging (EPI) data

Accurate cortical surface reconstructions directly from EPI 

images using FreeSurfer

Anatomical reference data distortion matched to fMRI data

Improved accuracy of image registration

Reduced errors in identifying e.g. cortical gray matter
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Fig. 1. 
Schematic of the variable TI MI-EPI acquisition. After the ACS acquisition, each sequence 

repetition begins by a non-selective inversion followed by the echo planar acquisition of the 

imaging volume. After every inversion, the slice acquisition order is permuted by shifting 

the order by one or more slices at a time. A constant readout flip angle (α) is used for the 

slice-selective excitations. In this illustration, the block shift factor Nshift = 2.
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Fig. 2. 
Data and fits to the Bloch equation model of three distinct tissue classes. (A) Data are shown 

in the order they are sampled during the acquisition for a single inversion recovery period 

TR. (B) The same data sorted according to TI and vertically reflected left of the zero-signal 

crossings to visualize the inversion recovery. Note the notch at the end of the CSF curve, 

caused by the discontinuity in the effective TRα and the less complete recovery of CSF after 

each inversion recovery period (due to the long T1 value of CSF). (C) The measured data 

and (D) the corresponding images reconstructed from the model of the parameter image 

composition. The white arrow points to a signal cancelation effect at the GM-CSF tissue 

boundary (see Discussion).
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Fig. 3. 
Parameter maps and synthetic images based on MI-EPI acquisition. S0 and T1 parameter 

images are shown for acquisitions with and without fat saturation (protocol variant C) 

displayed with matching grayscale values. The αnuis image represents the spatial distribution 

of the effective flip angle of the virtual nuisance pulse whose inclusion equalizes the T1 of 

the fat saturation scan with the scan without fat saturation (the result is smoothed to better 

visualize spatial trends) and the αnuis = 8° panels show what the fat saturation images appear 

when an 8° virtual pulse is applied to the whole brain. The “Fat sat.”, “No fat sat.” and 

“αnuis = 8°” panels have the same grayscale mapping (for S0 and T1 separately). The fluid 

attenuated and simulated MP-RAGE panels exemplify the synthetic images created and used 

in the further analyses.
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Fig. 4. 
Comparison of T1w EPI and MEMP-RAGE images and surface reconstructions. Axial, 

coronal and left hemisphere sagittal slices are shown for a representative subject at 

approximately same locations for both image modalities. The images are in their own post-
FreeSurfer image matrices instead of co-registered in order to show both image modalities 

neutrally. Black and white lines shown on the images represent the white and pial surfaces, 

respectively.
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Fig. 5. 
Correspondence between BOLD and S0 images, and performance comparison between 

different registration methods. The conventional, native BOLD and the derived S0 images 

registered to the MI-EPI-based T1w and MEMP-RAGE FreeSurfer reconstructions are 

shown with the corresponding white and pial surfaces indicated with black lines. BBR 

(boundary-based registration), FSL, and SPM indicate the spatial registration methods and 

software packages that were used in aligning the T2* data to the T1w anatomical reference 

images. White arrows point to locations where the boundary-based co-registration slightly 

outperforms one or both of the volumetric methods.
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Fig. 6. 
Surface-based sampling of S0 and T1 on MI-EPI and MEMP-RAGE surfaces. The S0 image 

was registered (via boundary-based registration) to the two different anatomical data and the 

same registration was applied to the T1 volume to show how BOLD data would be sampled 

on the different surfaces. White, midgray, and pial surface samplings of the lateral view of 

the right hemisphere of one subject (MI-EPI protocol variant A) are shown, as well as the 

sagittal cross sections including the S0 and T1 data with white and pial surface contours 

overlaid. The color scale is the same for all S0 images and for all T1 maps. The white arrows 

point to example locations where the MEMP-RAGE tissue boundary reconstructions are 

misaligned with BOLD-like EPI data, whereas the EPI-based reconstructions are in better 

alignment.
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Fig. 7. 
Signal homogeneity sampled on the midgray surfaces. The coefficients of variation (CV) 

were computed for the left hemisphere of the FreeSurfer Desikan-Killiany atlas areas of a 

representative subject. The MI-EPI and MEMP-RAGE surfaces were used as indicated to 

sample either the original or, in case of MEMP-RAGE, dewarped native BOLD and T1 data; 

boundary-based affine registrations were employed. Additionally, the CVs of S0 data are 

shown to help concretize the similarity of the BOLD and S0. The MI-EPI surface sampling 

produces lower or similar CV, thus higher or equal precision, for almost every cortical label, 

measured either from BOLD or T1 data. As a “bias free” measure, the T1 plots show that the 

CV for data sampled by MI-EPI surfaces remains low and almost constant for all areas, 

more variability was measured from MEMP-RAGE sampling even when distortion 

correction was applied.
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Fig. 8. 
Distribution of parameter values sampled by the cortical surface reconstructions. The S0 

(left) and T1 (right) panels show the parameter value distributions from voxels intersecting 

the white, midgray, and pial surfaces for MEMP-RAGE (red) and MI-EPI (blue) 

reconstructions. The vertical extent of the shaded red and blue areas represent the standard 

deviations of the distributions across all subjects scanned with fat saturation enabled.
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Fig. 9. 
Variability of T1 between cortical regions. The lateral and medial views of the inflated 

cortical surface computed for the template average subject (FreeSurfer fsaverage) are shown. 

The grayscale overlay represents the T1 value within each parcel of the automatic FreeSurfer 
parcellations such that each parcellation shows the T1 value of that area. The T1 values were 

defined for each subject as the values corresponding to the peaks of the probability 

distribution functions within each parcellation. The maps show the mean across the three 

subjects scanned without fat saturation (protocol variants C and D). The dashed and solid 

lines show the consistency of the probability distribution functions of the precentral gyrus 

and the middle anterior cingulate, respectively, from the three subjects.
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Fig. 10. 
Group results of T1 sampling on MI-EPI and MEMP-RAGE surfaces. A: All individual 

subjects' right hemisphere surface samplings were projected onto an average brain surface 

and the T1 values corresponding to the maximum of the probability distribution across 

subjects (left) and standard deviation (right) are shown on the inflated brain mesh. Surface 

locations sampling significantly different (Kolmogorov-Smirnov test) T1 values on the MI-

EPI and MEMP-RAGE surfaces are indicated by pink color overlaid on the inflated surfaces 

(middle). B: The pial surface differences were computed, T1(MEMP-RAGE) – T1(MI-EPI), 

and are overlaid on the average brain inflated surface (left), or with only the significantly 

different patches (right). Borderlines on top of the maps indicate the edges of the annotated 

brain areas according to the FreeSurfer Destrieux atlas. The T1 value differences were 

truncated to the range shown; substantially greater positive differences were present in the 

data, where the MEMP-RAGE surface clearly samples CSF whereas MI-EPI surface does 

not. The smallest ΔT1 was ∼ −900 ms. Many regions of pronounced T1 differences lie at 

crowns of gyri proximal to peripheral CSF.
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Fig. 11. 
Agreement between each label in the cortical surface parcellations, generated via surface-

based registration to an atlas space, from the MI-EPI-based and conventional MP-RAGE-

based surface reconstructions. Dice coefficients computed for each of the 34 surface labels 

of the FreeSurfer “Desikan-Killiany atlas”, aparc, averaged across both hemispheres in one 

subject, quantifying the overlap or intersection of the sets of surface vertices contained 

within corresponding labels computed automatically from the MI-EPI-based and MP-

RAGE-based surface reconstructions. Higher coefficient values indicate greater overlap (i.e., 

better agreement) between corresponding parcels. The high degree of overlap demonstrates 

that the labels derived from the MI-EPI-based surfaces are consistent with those estimated 

from the conventional MP-RAGE-based surfaces.
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Fig. 12. 
Correspondence between MEMP-RAGE and MI-EPI surfaces. Top: The discrepancies of the 

pial surface placements of MEMP-RAGE and MI-EPI surface reconstructions are shown for 

the lateral view of the left hemisphere of a representative subject. A vertex correspondence 

was computed for the surface models, as described in the text, and the discrepancy is shown 

for the three orthogonal, differently encoded directions. Bottom: Boundary-based affine 

registrations were computed between the T2* (S0) image and two T1w images, and the 

surface reconstructions were inverse-transformed to the T2* EPI space; the white surface 

contours are overlaid on the sagittal and axial slices as indicated. The white arrow points to a 

location where the MEMP-RAGE surface is misplaced with respect to the T2* EPI slice.
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Fig. 13. 
MI-EPI and MEMP-RAGE comparison from 3 T data. A compilation of comparisons 

performed for 7 T data are shown for a single subject scanned at 3 T. T1w – FreeSurfer 
surface reconstructions (as in Fig. 4), BOLD (here 2 mm isotropic resolution), S0 – 

boundary-based registration to BOLD and S0 data (Fig. 5), T1, white, midgray, pial – surface 

placement on T1 map (Fig. 6). Overall the comparison between MI-EPI surfaces and 

MEMP-RAGE surfaces derived from 3 T data is consistent with that seen in the 7 T data.
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