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The ‘heritability’ of domestication and its functional
partitioning in the pig

M Pérez-Enciso1,2,3, G de los Campos4, N Hudson1, J Kijas1 and A Reverter1

We propose to estimate the proportion of variance explained by regression on genome-wide markers (or genomic heritability)
when wild/domestic status is considered the phenotype of interest. This approach differs from the standard Fst in that it can
accommodate genetic similarity between individuals in a general form. We apply this strategy to complete genome data from 47
wild and domestic pigs from Asia and Europe. When we partitioned the total genomic variance into components associated to
subsets of single nucleotide polymorphisms (SNPs) defined in terms of their annotation, we found that potentially deleterious
non-synonymous mutations (9566 SNPs) explained as much genetic variance as the whole set of 25 million SNPs.
This suggests that domestication may have affected protein sequence to a larger extent than regulatory or other kinds of
mutations. A pathway-guided analysis revealed ovarian steroidogenesis and leptin signaling as highly relevant in domestication.
The genomic regression approach proposed in this study revealed molecular processes not apparent through typical
differentiation statistics. We propose that at least some of these processes are likely new discoveries because domestication is a
dynamic process of genetic selection, which may not be completely characterized by a static metric like Fst. Nevertheless, and
despite some particularly influential mutation types or pathways, our analyses tend to rule out a simplistic genetic basis for the
domestication process: neither a single pathway nor a unique set of SNPs can explain the process as a whole.
Heredity (2017) 118, 160–168; doi:10.1038/hdy.2016.78; published online 21 September 2016

INTRODUCTION

It is now widely accepted that animal and plant domestication,
arguably the most important event in the last 13 000 years of humanity
(Diamond, 2002), was no simple process. It involved complex
humanistic, environmental and ecological factors (Larson et al.,
2014; Zeder et al., 2006). The process was likely quite different
dependent on species, with varied contributions of mutualism versus
commensalism and humanistic intention. A common component has
been selected, for both adaptations to human agricultural environ-
ments as well as to preferred phenotypic characteristics that meet
human preferences. In several species spanning the Plant and Animal
Kingdoms, for example, cattle, pig, rice, domestication has occurred at
multiple locations. Further, rather than being an abrupt change,
domestication plausibly involved gradual discontinuities in gene flow
between the domestic and the wild populations (Frantz et al., 2015).
This gene interchange, even if small, has continued to the present day
in some cases like Mediterranean pigs (Ramírez et al., 2014).
Nevertheless, domestication has resulted in a number of commonly

shared phenotypes across animal species. Unsurprisingly, some of the
most salient features modified by human intervention in several
animal species include coat color and behavior, for example, increased
tameness and lack of fear towards humans. Domestic animals are also
characterized by modified feeding habits, growth or reproductive
features, such as the loss of estrus seasonality in ruminants (sheep,
cattle and goat) as well as in pigs or rabbits (Chemineau et al., 2008;

Carneiro et al., 2014). For instance, in terms of feeding, it was recently
found that increased starch digestion capacity has occurred in dogs as
compared with wolves, and that although one gene was convincingly
identified (AMY2B), other unknown genes are certainly involved
(Axelsson et al., 2013). In general, domestication has modified
numerous phenotypes that are polygenic. Even clear domestication-
driven phenotypes may vary within a species. For instance, Freedman
et al. (2014) found that not all domestic dogs exhibited the genetic
mark for increased starch digestion ability. As a result, identifying the
specific causal mutations involved in domestication will remain, for
the most part, elusive (Carneiro et al., 2014). Further, the impact
exerted by recent human-mediated positive selection may act to mask
the earlier genomic signatures of the domestication process. This may
be particularly true for livestock species that have experienced
increasingly strong positive selection over the past couple of hundred
years following the assortment of animals into breeds and the
introduction of sophisticated breeding practices.
Animal and plant breeders have recognized the polygenic nature of

trait variation for a long time and applied the infinitesimal model for
analysis and prediction of complex trait breeding values. This is
equivalent to fitness in a population genetics context. This model
circumvents the need to identify the causal mutations, and can be used
to estimate the proportion of variance explained by genetic factors
without explicit knowledge about what these factors are. The estima-
tion of genetic variance and of heritability exploits the degree of
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resemblance between relatives. Traditionally, these models have been
applied to family data with known pedigrees. However, nowadays, it
has become more common to assess genetic relationships using
molecular markers. Genomic relationships (G) can then be used to
estimate the fraction of phenotypic variance explained by regression
on the markers used to compute G, the so-called ‘genomic herit-
ability’, h2G, for example, de los Campos et al. (2015).
The use of markers to compute relatedness between individuals has

a long history (Thompson, 1975). However, it was only with the
recent advent of large-scale genotyping tools that they have been
applied to replace pedigree-based relationships. As a result, whole-
genome regression was adopted for analysis and prediction of complex
traits in breeding programs as genomic selection (Meuwissen et al.,
2001). So far, these techniques have been applied to classical
quantitative traits such as height in humans (Yang et al., 2010), or
performance in livestock (Hayes et al., 2009) and plant breeding
(Crossa et al., 2010). However, the same principles can be applied to
less conventional traits, such as domestication status. The proposed
approach uses the Genomic Best Linear Predictor G-BLUP
(VanRaden, 2008), extended with addition of a probit link, to regress
domestic status on a set of single nucleotide polymorphisms (SNPs).
The model renders estimates, such as genomic heritability, that can be
used to assess the relative proportion of variance in domestication
explained by regression on the marker set.
In this article we demonstrate how the G-BLUP model can be used

to estimate the proportion of variance in domestication that can be
explained by regression on SNPs, or genomic heritability. Perhaps
more importantly, we discuss how mixed models can be used to
partition the genetic variance for domestication into components
attributable to sets of variants defined based on annotation (for
example, functional, regulatory, deleterious, and so on). An appeal of
mixed model theory, on which heritability estimation is founded, lies
in its flexibility to accommodate covariance structures in a rather
general form. For instance, h2G can be estimated using different
genome-wide markers (for example, SNP) that can be used to infer
their relevance in discriminating wild from domestic specimens. We
shall exploit these features in this work to partition the amount of
genetic similarity in terms of functional classifications of marker sets.
We present the application of these concepts to whole-genome data

from 47 wild and domestic pigs from Europe and Asia. The pig is a
species with a complex demographic history: their native distribution
ranges through most of Eurasia, and it was independently domes-
ticated in Europe and in Asia from local wild boars, Asian and
European clades diverged ca. 1.2 MYA (million years ago; Larson et al.,
2005; Groenen et al., 2012). To further complicate matters, most
European domestic breeds were crossed with Chinese pigs starting in
the seventeenth century. As a result, as much as 20% of its genome has
been inferred to be of Asian origin (Bosse et al., 2014; Bosse et al.,
2015; Bianco et al., 2015). A central objective of our study was to
investigate whether similar biological conditions were targeted in these
two domestication events and some sort of ‘convergent evolution’ did
occur. We propose to quantify, via the h2G parameter, how much two
conceptual replicates of the same ‘experiment’ (domestication) can be
explained by similar genetic processes.

MATERIALS AND METHODS

Samples
We analyzed complete genome sequence from 47 domestic and wild pigs from
Asia and Europe (Supplementary Table 1). Our aim was to capture signals that
were shared between the different domestic pig lineages. Therefore, the
sampling scheme was designed to be as balanced as possible while

simultaneously aiming at capturing variability within continents and within
domestic status. Among all sequences available, we chose eight wild boars (WB)
from Asia (WA) and eight from Europe (WE), and four samples from four
domestic Chinese (DA) and four European (DE) breeds. In China, we chose
breeds from four distant geographic regions: Tibetan pigs from Tibet (West),
Meishan (East), Hetao (North) and Bamaxiang (South). As for Europe, two
breeds considered as ‘local’ breeds (Spanish Iberian and Hungarian Mangalica)
and two worldwide used breeds (Large White and Duroc) were analyzed. Four
samples from each of the domestic breeds were chosen, except for Mangalica,
for which only three complete sequences were available. Most of the sample
sequences were downloaded from the short read archive (SRA, http://www.
ncbi.nlm.nih.gov/sra; Groenen et al., 2012; Rubin et al., 2012; Esteve-Codina
et al., 2013; Molnár et al., 2014; Ai et al., 2015; Bianco et al., 2015), but five
were specifically sequenced for this study: a wild boar from East Russia
(Primorsky Krai Peninsula, WA6), a Tunisian wild boar (WE8), a Spanish wild
boar from North Spain (Asturias region, WE6) and 2 Iberian pigs (IB2 and
IB3). Supplementary Table 1 presents details from all samples analyzed. The
new sequences were obtained in the Centro Nacional de Análisis Genómico
(CNAG, www.cnag.cat, Barcelona, Spain) using the HiSeq2000 Illumina
platform. Library preparation was done according to the Illumina paired-end
sequencing protocol, with minor modifications. All samples analyzed in this
work had been shotgun sequenced with Illumina technology, although
employing different versions of HiSeq.

Bioinformatic analyses
Samples were sequenced to an average depth of 11× approximately
(Supplementary Table 1). One lane per pig was analyzed; when there was
more than one lane available per sample, the one containing the largest number
of reads was chosen. Raw reads or aligned bam files were downloaded from
SRA (www.ncbi.nlm.nih.gov/sra). For raw reads, alignment was carried out
with bwa –mem option (Li and Durbin, 2009). Alignment was against the latest
pig reference genome v. 10.2. For all downloaded and in-house obtained bam
files, PCR duplicates were removed with samtools v. 1.19 (Li et al., 2009) with
rmdup option. The bam files were then realigned around indels with GATK
IndelRealigner tool (McKenna et al., 2010).
SNP calling was performed with samtools/bcftools suite v. 1.2.1 (Li et al.,

2009) for each individual separately. SNPs were called in positions with depth
bounds between 5x and twice the average depth plus one; further, minimum
mapping (RMS) quality of 20 and base quality of 20 were required. Finally,
SNPs with a minimum quality of 10 were retained. To estimate nucleotide
diversity, in addition to heterozygous positions, the number of bases sequenced
is also required. The new version of samtools provides the ‘homozygous
blocks’, that is, the segments where the sample is equal to the reference. In
principle, this should suffice but, unfortunately, there is no tool to filter
homozygous blocks when both lower and upper depth limits are set. To
remedy this, we extracted the regions with minimum and maximum depth
using samtools depth, further filtering by minimum map and base qualities and
then, using bedtools (Quinlan, 2014), we intersected these regions with the
homozygous blocks provided in the individual gvcf file. This resulted in a
modified gvcf file where both SNPs and homozygous blocks had been filtered
by the same criteria.
Merging individual SNP files can be done with multiple tools (Danecek et al.,

2011) but they do not consider homozygous blocks properly, as they do not
distinguish between a missing SNP or a homozygous reference genotype. Here
we followed a two-step approach. First, we extracted the consensus fasta from
the gvcf file for each individual and second, we merged all fasta files identifying
the polymorphic positions. This strategy allows us to extract, with modest
memory and CPU requirements, the complete joint SNP file where individual
missing and called positions can be easily tracked. For further analyses,
singletons, SNPs missing in 430% of the samples and sex-linked markers
were discarded. To build the marker relationship matrices, missing genotypes
were imputed with Beagle 4 (Browning and Browning, 2013).

SNP-based relationship matrices
SNP-based relationship matrices (G) were computed from the multiple-
individual vcf file using custom perl and fortran programs, according to the
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following equation (VanRaden, 2008):

gij ¼
Pðxik � 2pkÞðxjk � 2pkÞ

2
P

pkð1� pkÞ
; ð1Þ

where gij is the ij-th individual element of G, xjk is the genotype of j-th
individual at k-th SNP coded for example, as 0,1,2 and pk is the k-th SNP minor
allele frequency. To compute p, we employed the 47 sample data. The SNP list
used in building G permits a fine decomposition of genetic components along
the genome. Here we used the following SNP sets:

1. All autosomal SNPs.
2. Functional decomposition: all SNPs within genes of a given pathway
(see below).
3. Annotation feature: we computed distinct G-matrices using synon-
ymous, non-synonymous, enhancer or transcription factor SNPs (see
below).

For the different SNP filtering steps, we used bcftools (Li et al., 2009) and
vcftools (Danecek et al., 2011), embedded in shell scripts.

SNP annotation
SNPs were annotated with variant effect predictor tool from ensembl (database
v. 79). Pig transcription factors, including chromatin remodeling factors, were
downloaded from animal transcription factor database v. 2.0 (http://www.
bioguo.org/AnimalTFDB/, Zhang et al. 2012). They comprised 1067 genes and
289 641 SNPs were found in our data within these genes. Pig enhancer regions
were downloaded from Villar et al. (2015). These consisted of regions enriched
in H3K27 acetylation (32 979 regions, 1 290 312 SNPs) and H3K4 trimethyla-
tion (10 756 regions, 122 311 SNPs) along the pig genome.

Functional partitioning
The complete data set from NCBI biosystems v. 20150108 (www.ncbi.nlm.nih.
gov/biosystems/) was downloaded, and the human data set was selected. The
downloaded file contained 135 652 records from 2837 pathways and 10 933
genes. The average number of genes per pathway was 47.8 (s.d.= 101.3 genes)
and ranged from 1 to 2141. This database nevertheless contains a variety of
pathway sources that are often redundant, for example, KEGG, wikipathways,
interactome. Subsequently, we pruned the pathways according to size and
redundancy via the following two-step protocol:

1. Very small and very large pathways were deemed to be unin-
formative and too generic (for example, such as metabolism and
disease resistance), respectively. Hence, pathways witho10 and 4150
genes were removed.
2. A pairwise comparison between pathways was computed removing
pathways with an overlap in the number of genes 450%, and the
smallest pathway in terms of genes was removed if the overlap
exceeded 50%.

Following this protocol we retained a final number of 605 pathways and
8972 genes. Next, pig ortholog positions were determined using biomart (www.
ensembl.org/biomart). To compute the G matrix associated to each pathway,
we included all SNPs within the ortholog pig genes in that pathway, using the
gene bounds defined in ensembl database v. 79. We considered genes mapped
only in one of the 18 pig autosomes, that is, we excluded genes in unassembled
contigs, in the mitochondria or in sex chromosomes.
To analyze in detail the ovarian steroidogenesis pathway, we downloaded the

KEGGscape plugin version 0.7.0 (Nishida et al., 2014) using Cytoscape version
3.2.1 (Shannon et al., 2003), which can read and visualise KEGG Markup
Language (KGML) files. We downloaded the KGML file for Sus scrofa ‘ovarian
steroidogenesis’ (SSC04913) and imported it into Cytoscape using the plugin.
This particular pathway annotation shows the signaling and transcriptional
cascade of ovarian steroidogenesis including relevant substrates and metabolites
and the cellular compartments where the various events occur. The heritability

scores for the genes in the ovarian steroidogenesis pathway were continuously
mapped to node color. In circumstances where we had heritability values for
multiple isoforms of the same protein we always selected the most extreme by
heritability score. The mapped figure produced by Cytoscape was pasted into
Powerpoint. Any pathway information lost during Cytoscape import (some of
the flux arrows, the position of the cell membrane) was recreated manually
using the original KEGG pathway as a guide.

Gene ontology enrichment analyses
We employed the GOrilla tool (cbl-gorilla.cs.technion.ac.il, Eden et al., 2009) to
identify enriched gene ontology (GO) terms using two alternative approaches as
follows:

1. Searching for enriched GO terms that appear densely at the top of a
ranked list of genes. In this ‘single list’ approach, genes were ranked
according to the average heritability of the pathway(s) in which they
were annotated.
2. Searching for enriched GO terms in a target list of genes compared
with a background list of genes. In this ‘double list’ approach, genes in
the background list comprised all the 7502 genes under scrutiny,
whereas genes in the target genes comprised 1084 genes from the top
30 pathways (or 5% of 605 total pathways) according to their
heritability in the domestic status (wild versus domestic) analysis.

After running GOrilla, we selected molecular function GO terms with FDR-
corrected P-value o0.001. These resulted in 52 and 73 enriched GO terms
from ‘single list’ and ‘double list’ approach, respectively.

Quantifying genetic variance
We considered the domestic status (wild versus domestic) as the ‘phenotype’ of
interest. For the analysis, the Bayesian approach implemented in BGLR package
(Pérez and de Los Campos, 2014) was employed because of its flexibility. BGLR
implements various methods for genomic regressions, including the so-called
G-BLUP model (VanRaden, 2008) and supports quantitative, binary and
ordinal traits, these two are implemented using the probit link. Given the
low amount of samples, a Bayesian approach is interesting because it allows a
thorough quantification of incertitude via the posterior distribution of variance
components. A principal component analysis decomposition of G was
employed, given its good convergence properties (De los Campos et al.,
2010). Default prior parameters and 150 000 iterations plus 2000 burn-in cycles
were employed.

Population genetic analyses
R (R Core Team, 2014) was used to obtain principal components on matrix G,
as well as its function ‘heatmap’ to represent distances between samples. Fst
Weir—Cockerham estimate between wild and domestic pigs was obtained with
vcftools (Danecek et al., 2011).

RESULTS AND DISCUSSION

Genomic relationship matrix
After quality filtering and discarding singletons, we retrieved a total of
25 109 267 autosomal SNPs that covered 20 033 genes out of all
annotated genes (25 322) by ensembl v. 79. A summary of predicted
annotations is in Supplementary Table 2; among the non-synonymous
SNPs, 10 007 (24%) were predicted to be deleterious by the SIFT
algorithm (Sim et al., 2012).
To gain insight into the fine-grained structure of Sus scrofa (and as a

prior step to estimating heritabilities), we computed the genomic
relationship matrix between samples (G) using all available autosomal
SNPs, after excluding singletons. A heatmap allows us to visualize the
data but also to perform a quality control (Supplementary Figure 1).
Reassuringly, samples from the same origin clustered together despite
the fact that some were sequenced in different facilities and reported in
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independent publications. The only exception is a Tibetan pig (TT3),
but this may be due to within-breed heterogeneity and not to
sequencing bias because this sample was sequenced together with
the rest of Tibetan samples (Supplementary Table 1). As expected,
samples clustered by continent. Within Europe, wild boar (WE),
Mangalica (MG) and Iberian (IB) pigs were the closest populations,
whereas international pig breeds Duroc (DU) and Large White (LW)
clustered apart. In Asia, the portrayed structure is more complex,
especially within wild boars (WA).
Logically, the well-known large geographic divide between the

European and Asian subspecies, estimated in ~ 1.2 MYA, is also
clearly visible in the principal component analysis (Figure 1a). In
agreement with other studies, for example, Frantz et al. (2015), the
first principal component neatly represents either the Chinese or
European origin, proving that continent is the single most influential
factor in explaining genetic structure of S. scrofa. Note that the
international breeds, Duroc and Large White, are shifted towards Asia:
a result of the well-known admixing process with Chinese pigs.
Following on McVean (2009) the percentage of admixing can be
estimated by the relative position of the admixed population in the
first axis, compared with those of the founder populations. This results
in an Asian component estimate of ~ 20% for Large White, which is
quite similar to the figure obtained by Bianco et al. (2015) using high-
density genotyping array data or by Ai et al. (2015) and Bosse et al.
(2015) with sequence. Moreover, Figure 1a indicates that neither
Spanish Iberian nor Hungarian Mangalica have been crossed with
Chinese pigs, as they cluster tightly with European wild boars.
Although the absence of any Asian signature had already been
conclusively shown in Iberian pigs (Ramírez et al., 2014), the evidence
in Mangalica was much more limited (Molnár et al., 2013), but is
conclusively shown in these data.
The main goal of this work was to determine whether there exists a

genetic basis, shared across continents, for the domestication process and
if so, to functionally characterize it at the gene and biological pathway
level. Such a signal, if it exists, is manifestly of lower intensity than the
geography-driven signal. Although the first principal component,
explaining ~31% of variance, discriminates between continents, the
third PC separates domestic from wild pigs, predominantly in Asia, but

explains a much lower fraction of variance, ~ 4% (Figures 1a and b).
Nevertheless, it can be suspected that domestication-affected loci will be
concentrated in genomic regions, assuming that the shared domestica-
tion signal is primarily selection driven, whereas drift affects the whole
genome and likely dominate the changes that have occurred as a result of
the European bottleneck and geographic split.

Heritability and the contribution of potentially non-neutral SNPs
We considered domestication status as a binary phenotype (wild or
domestic) for which the genetic basis can be inferred as for any other
complex trait using the genomic relationship matrix G, as described in
methods. There are numerous approaches for quantifying the genetic
variance using high-density genotyping data. In this case, we applied a
Bayesian method because it allows us to easily compute the uncer-
tainty associated with the estimates; this is important given the small
sample size.
The Eigen-value decomposition of G employed allowed us to

quantify the contribution of each principal component to variance
in the liability scale (Janss et al., 2012). Figure 2 shows the absolute
value of the regression coefficient on each PC. Compared with
geographic origin, which can be basically explained from its first
PC, domestication is a much more subtle and complex process. It
needs a large number of components to be explained. As could be
guessed from Figure 1b, PC3 is the most important to infer domestic
status, but there are also other PCs of interest. The posterior
distribution of heritability using all autosomal SNPs is plotted in
Figure 3a. Given that the prior for h2G was 0.5, but only 4% of the
posterior distribution mass is below that value, the analysis reveals a
clear genetic component for the domestication status (Figure 3a).
Next, we investigated the effect of different SNP sets based on SNP

annotations obtained using variant effect prediction. Various SNP
subsets were used for computation of separate G-matrices (Table 1)
and estimating h2G using each G matrix in turn, that is, only one
matrix was fitted at a time. There were few differences across SNP
partitions (Table 1), suggesting that there is not enough power in the
experiment to discriminate between SNPs and/or that the differences
among the SNP effects are small. Furthermore, linkage disequilibrium
will act to smooth any effect across nearby SNPs, meaning that
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functionally distinct SNP sets may explain similar proportions of
variance. For instance, synonymous and non-synonymous SNPs will
be in tight disequilibrium within the same gene, and lead to similar
variance partitioning, even if they are functionally different.
As expected, the best fit was with the complete data set (all SNPs).

However, the most noticeable aspect was the finding of similar h2G
estimates using the 9566 potentially deleterious SNPs (according to the
SIFT algorithm) or using the whole 25 million SNP data set. In
contrast, h2G estimates were somewhat lower with other functionally
different subsets, and variances 35% larger than when all SNPs were
used (Table 1; Figure 3a). In particular, it is noteworthy that we did
not find an increased heritability using regulatory variants such as
enhancer SNPs or transcription factors. Therefore, contrary to what
has been often advocated (Pai et al., 2015), recent evolution may have
been mediated to a larger extent by changes in potentially deleterious
changes in amino acid sequence than by regulatory motifs. Certainly,
this does not preclude that regulatory changes are important in
domestication (Carneiro et al., 2014), but rather hints that its global
effect, weighed by frequency, could be no higher than those of

deleterious protein sequence changes. Certainly, this is a hypothesis
that needs to be verified with larger data sets and more detailed
analyses.

Pathway-guided partitioning of heritability
A convenient property of the theory applied here is its flexibility, as the
same procedure can be applied to any SNP set, which simply results in
different G-matrices. Further to quantifying the importance of each
mutation type, we were also interested in assessing the contribution of
each pathway to ‘domesticability’. Figure 3b shows the h2G associated
with each of the 605 pathways that fulfilled our conditions, namely
minimum number of genes of 10, maximum number 150 and limited
overlap (see Materials and methods for details). All 605 pathways
together involved 8972 or about 35% of all annotated genes in the pig
genome. Clearly, not all pathways were equally relevant and this was
not a consequence of different number of SNPs per pathway, as we did
not observe a large correlation between h2G and number of markers
(Supplementary Figure 2). We interpret this result as a consequence of
domestication having affected non-random regions of the genome,
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particularly coding regions and where pathway is a meaningful
analysis unit.
The top 5% pathways in terms of their genomic heritability are

listed in Supplementary Table 3. Some pathways are associated with
disease resistance. This presumably reflects annotation bias and prior
investment in human biomedical studies and is probably irrelevant in
our context. However, we found a number of pathways consistent
with expectation based on earlier studies into the consequences of
animal domestication. These relate to reproductive performance,
metabolism, body conformation and coat color. For instance, the
second most relevant pathway is ‘Ovarian steroidogenesis’, comprising
genes critical to reproductive performance. Prolactin signaling path-
way is another significant pathway related to reproduction. Additional
pathways worth mentioning are related to appetite, feed efficiency and
glucose metabolism (signaling by leptin, type II diabetes), coat color
(melanogenesis) or muscle differentiation (YAP1 stimulated gene
expression, SRF and miRs in smooth muscle differentiation and
proliferation, Syndecan-2-mediated signaling events). The presence of
the YAP1 pathway in Supplementary Table 3 is of particular interest;
YAP1 is a member of the HIPPO pathway that governs mammalian
organ size, and the process of livestock domestication has led to
systematic increase in muscle mass and modifications in size to a range
of other metabolic tissues and organs. The original discovery of
YAP1’s role in organ size was made in liver and gut (Camargo et al.,
2007), but this finding has subsequently been expanded to heart and
skeletal muscle (Wackerhage et al., 2014). In summary, given that
domestication has influenced many aspects of reproduction, growth
and feeding, it is therefore reassuring that some of the pathways with
highest heritability are related to these phenotypes.

Fst and heritability are distinct metrics
Population structure is generally measured with statistics such as
Wright’s fixation index or Fst. It can be thought that Fst and h2G are
equivalent metrics reflecting the same phenomena. Yet, importantly,
Fst between domestic and wild populations and h2G for domestic status
captured different signals (Figure 4); the correlation coefficients (ρ)
between the two were positive, but moderate across either windows
(ρ= 0.38) or pathways (ρ= 0.29). The reason is that only the first
principal component of the matrix G can be interpreted in terms of
Fst in a straightforward manner (McVean, 2009). Furthermore, Fst
can be wholly explained by frequency differences between populations,
whereas no explicit interpretation based on frequencies is known
for h2G. Estimating h2G involves weighing all principal components and

treating each one as a random regressor. Although h2G depends on
variability, there was no clear relationship between h2G estimates and
other known parameters. We employed a multiple regression to
investigate the main factors influencing h2G across windows. As can be
seen in Supplementary Table 4, Fst was the single most influential
factor, but not the only one. In particular, diversity and Tajima’s D in
the wild population were also significantly associated with heritability
estimate.
Nevertheless, Fst is a popular measure of differentiation widely used

to infer selection, although see Vilas et al. (2012) for some caveats on
its use, and so we compared the results obtained with either Fst or h2G.
Following the same logic as for h2G, we ranked pathways according
to their Fst, averaged across SNPs in that pathway (Supplementary
Table 5). Not unexpectedly, given their modest correlation (Supple-
mentary Figure 2), there was limited agreement between the two
metrics. Only five pathways were shared (marked with * in the
Supplementary Tables 3 and 5). The single most consistent pathway
both in terms of Fst and h2G was glycosphingolipid biosynthesis.
Glycosphingolipid molecules are predominantly found in nervous
tissue and they are involved in protection against infectious diseases.
Remarkably, this pathway was also among the 14 most differentiated
ones in human populations, as reported by Daub et al. (2013).

A closer look at reproductive pathways
We analyzed in more detail the ovarian steroidogenesis pathway due to
its importance in all domestic animals. Although this pathway was
identified using the heritability approach, note that ‘Steroid hormone
biosynthesis’, identified by Fst criterion, comprises ovarian steroido-
genesis (Supplementary Table 5). Ovarian steroidogenesis pathway
consisted of 34 pig genes with coordinates in any of the autosomes
(sex and unassembled contig locations were discarded) and containing
more than five non singleton SNPs. It involved 37 733 SNPs. In this
pathway (Supplementary Table 6), we find highly relevant genes such
as follicle-stimulating hormone beta subunit (FSHB), Insulin-like
growth factor 1 (IGF1), IGF1 receptor, follicle-stimulating hormone
receptor (FSHR) among others (Supplementary Table 6). Importantly,
these four genes are also much more differentiated between domestic

Table 1 Heritability (median posterior distribution and s.d.) using

different SNP subsets

SNP subset No. SNPs Median h2
G S.d. h2

G

All autosomal 25 109 276 0.78 0.14

Synonymous 6 175 640 0.68 0.20

Non-synonymous 43 254 0.70 0.19

Tolerated non-synonymousa 31 145 0.70 0.19

Deleterious non-synonymousa 9566 0.78 0.14

Enhancersb 1 294 669 0.67 0.21

Transcription factorsc 1 290 312 0.67 0.21

Potentially regulatoryd 1 707 865 0.72 0.18

aAccording to SIFT algorithm implemented in ensembl’s variant effect predictor
(database v. 79).
bObtained from Villar et al. (2015).
cUsing SNPs in TFs obtained from animal transcription factor database (www.bioguo.org/
AnimalTFDB/, Zhang et al., 2012).
dComprises miRNAs, UTR, upstream, downstream and non-mediated decay transcript variants.
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Figure 4 Heritability in domestic status versus Fst between domestic and
wild populations across pathways.
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and wild pigs (Fst= 0.08) than genome-wide average (Fst= 0.02).
FSHB and FSHR are genes well-known to be critical for reproductive
performance (Laan et al., 2012); FSHB encodes the beta polypeptide of
FSH and FSHR is its cognate receptor, together they drive egg and
sperm production in a hormonal pathway that also incorporates
signaling from luteinising hormone. It has previously been documen-
ted in sheep that the domestic breeds have an extended reproductive
cycle compared with progenitor mouflon and that this is reflected in
altered patterns of circulating FSH (Lincoln et al., 1990).
These genes were also among those with largest gene heritability

in the pathway, that is, the heritability obtained when the G was
computed using the SNPs within that gene (Supplementary
Table 6). In agreement with genome-wide analyses (Figure 4), there
was a positive correlation (0.47) between Fst and h2G. Nevertheless,
there were some outliers like SCARB1 gene, which showed moderate
h2G and low Fst. Further analysis showed that SCARB1 contained
highly differentiated SNPs (24 had Fst40.10) but, combined with
slightly negative Fsts, made it a global Fst near zero, whereas
heritability depends as well on other parameters (Supplementary
Table 4). Next, to visualize whether there was a relation between
heritability and biological function, we downloaded the S. scrofa
‘ovarian steroidogenesis’ pathway (SSC04913) from KEGG, imported
it into Cytoscape, and we colored each gene according to its associated
heritability (see Materials and methods). The resulting graph
(Supplementary Figure 3) makes it clear that both ovarian cell types
(interstitial theca and granulosa) appear modified by domestication.
However, four serial components (FSHB, FSHR, GNAS and ADCY6)
of the granulosa cell-specific pathway suggest modification of signaling
in these cells is particularly convincing (bottom panel). Therefore, this
analysis suggests a differential effect of domestication along the ovarian
steroidogenesis pathway.

A global functional outlook
The pathway-guided approach identified pathways involved in some of
the biological changes known to be caused by domestication
(Supplementary Table 3). Yet, it also follows from these analyses that
domestication is complex and mediated through numerous signals.
Our analyses tend to rule out a simplistic genetic basis of the
domestication process: neither a single pathway nor a unique set of
SNPs explains the process as a whole. To get a more holistic view, we
carried out a gene ontology enrichment analysis using GOrilla
according to the ordered list of genes, ranked according to the average
h2G of the pathways in which they were annotated, and following a
single or double list approach (see Materials and methods).
Supplementary Table 7 shows the list of 30 GO terms found to be
in either the top 10 enriched from each single or double list approach
or in the intersection of the two approaches at Po0.001. We found
nuclear hormone receptors were prominently enriched by this
approach. Nuclear hormone receptors are considered key hubs in
gene regulatory networks. They are ligand-activated transcription
factors that sense an environmental or metabolic signal through
binding to the ligand of interest in the cytoplasm, then enacting an
appropriate gene expression response after translocation to the
nucleus. Identified ligands include thyroid and steroid hormones,
fatty acids and other key molecules that allow the fine regulation of
development, homeostasis and metabolism.

GENERAL DISCUSSION

Using genome-wide sequence, we have addressed the process of pig
domestication in the two continents simultaneously. The study was
designed to capture the shared signals between disparate breeds that

have few phenotypic characteristics in common, except for the fact of
being domestic. To characterize the genetic basis of domestication, we
have capitalized on well-known robust approaches in quantitative
genetics but that have not been applied in this context. We have
shown that treating the status of domestics versus wild as a binary trait
and assuming an infinitesimal genetic basis reveals genetic phenomena
that are not detectably by the usual differentiation statistics. In this
sense, a high heritability in jointly analyzing two separate events, such
as domestication in Asia and in Europe, can be interpreted as the
method being able to identify subjacent shared biological processes
(for example, reproduction) that are however modified by different
SNPs or genes of the same pathway. We have employed a threshold
model, which is suited for binary traits where the probability of
outcome (that is, phenotype of either class) depends on an underlying
normally distributed genetic merit. In this scenario, we justify the
threshold model by assuming the presence of a large number of
variants that have been collectively selected during independent
domestication processes. Although we have applied this strategy to
domestication treated as a binary status, the same principle could be
applied to other questions such as, for example, polledness in
ruminants or average quantitative phenotypes by breed.
Importantly, Fst and genomic heritability are distinct metrics. Fst

measures the proportion of genetic variance that can be explained as
between-population variance. This statistic treats all individuals within
a group (for example, domestic) as alike and individuals of different
groups as different. On the other hand, the genomic heritability
approach incorporates, via genomic similarity, variations and differ-
ences in genotypes between and within groups in a more continuous
fashion. Therefore, we argue, the genomic heritability approach seems
specifically suited for low differentiation and complex scenarios such
as the one studied here, where structuring is caused primarily by
geography rather than by the domestication process. Furthermore, as
with any mixed model approach, any number of environmental or
genetic effects could be included into the model. For instance,
different G-matrices corresponding to any number of pathways or
SNP sets could be jointly estimated, provided larger sample sizes than
the one studied here are available.
The interpretation of heritability, although debatable (Tenesa and

Haley, 2013), has a straightforward interpretation as a proportion of
variance when applied to standard quantitative phenotypes. The
parameter is related to response to selection and to the correlation
of phenotypes between relatives. In the context of this work,
heritability can be considered as a measure of differentiation,
complementary to that of Fst. However, this relation is not so
straightforward (Figure 4). McVean (2009) did show that the first
principal component of G is proportional to Fst, but the computation
h2G of involves weighing all principal components and, as shown
(Figure 1), domestication in pigs is not explained by only the first PC,
due to the deep genetic divide between Asian and European S. scrofa.
This likely explains that the correlation between Fst and h2G was only
0.38 in 100 kb windows genome wide. We propose that h2G in the
context of this research is best understood as a measure of how much
a given SNP set has been collectively influenced (that is, change in
allele frequency) by domestication. We do not claim though that the
most relevant SNP sets are causative, as this could be due to linkage or
other factors, for example, intermediate allele frequency SNPs are
more informative and hence more prone to have an increased weight
in G. In turn, we do claim that the h2G metrics can shed light on the
underlying genetic phenomena. In this respect, a relevant result from
our analyses is that non-synonymous potentially deleterious variants
may have had a larger role in the domestication process than
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previously thought (Figure 3a; Table 1), although we do not disregard
the relevance of regulatory mutations. Importantly, this was also
suggested for domestication in dogs (Cruz et al., 2008) and, more
recently, by Renaut and Rieseberg (2015) in crops. Note, however, that
other evidence supports that regulatory mutations are relevant in other
species, such as in rabbit domestication (Carneiro et al., 2014), so
quantifying the relevance of each mutation type is an open question.
Although the genetics of domestication has been a hot topic for a

while, studies in livestock using complete genome sequence are still
scarce. In pigs, Rubin et al. (2012) used complete genome sequence
with the purpose of studying domestication. These authors combined
both pool and individual sequencing and used an excess of homo-
zygosity in domestic breeds as a proxy for selection targets. They
reported a list of 228 highly differentiated SNPs between wild and
domestic pigs that were in coding sequence (Supplementary Table 3).
We retrieved 146 of these SNPs that fulfilled the required conditions of
missing rate and quality in our data (see Materials and methods). We
clearly found a higher Fst for this subset of SNPs (average Fst= 0.17,
s.d.= 0.13) than for genome-wide SNPs (Fst= 0.03, Supplementary
Figure 4). Therefore, most of these SNPs are promising diagnostic
markers for the wild/domestic status. In contrast, the 157 916 SNPs
within the selective regions also reported by Rubin et al. and found in
our data, did not show any increased differentiation between wild and
domestics (mean Fst= 0.029). Certainly, hard selective sweeps causing
a decrease in nucleotide diversity may not necessarily result in an
increased differentiation. An explanation can be that Rubin et al.
focused on international European breeds, whereas here we combine
both Asian and European breeds. In our opinion, it is likely also that
low diversity regions are shared across populations, as found in Bianco
et al. (2015).
More recently, Frantz et al. (2015) reported an analysis of 100 Asian

and European complete pig genomes. They looked for potential
selective signals that were shared between Asian and European
populations. The most significant one was on SSC4, 82.37–
82.39 Mb. This region does not contain any known gene but is close
to gene PLAG1 (SSC4: 82, 606, 862–82, 608, 850 bp), which is under
strong selection in European domestics (Rubin et al., 2012; Frantz
et al., 2015). To contrast these results, we carried a 100 kb genome-
wide analysis with our approach and we found that the window
containing PLAG1, made up of 891 SNPs, has a h2G = 0.69; this is the
493 largest heritability out of the 23 395 windows analyzed (2% upper
distribution of h2G). The mean window heritability was 0.41
(s.d.= 0.12). Therefore, our analysis also supports an important, but
not exclusive, role for PLAG1 region in domestication. Other genes
that have been consistently affected by domestication are coat color
genes such asMC1R or KIT (Giuffra et al., 2002; Fang et al., 2009). We
did not find any SNP on MC1R in our data, but 782 SNPs in the KIT
gene. The associated heritability with KIT SNPs was moderate
(h2G = 0.51). Interestingly, despite the average domestic/wild Fst was
similar to the genome-wide value (Fst= 0.02), its distribution was
highly skewed (Supplementary Figure 5): there were 27 SNPs with
Fst40.20, and 79 with Fst40.10. Therefore, an average low herit-
ability does not preclude that some smaller regions or SNPs may be
under selection.
A major drawback of the window-based approach, that is, a typical

whole-genome scan, is difficulty in integrating functional information.
In particular, it can be challenging to deal with the fact that genes act
in a concerted manner. This is well recognized and previous works, for
example, Daub et al. (2013) and Ha et al. (2015) have employed a
pathway-centered approach, but it is not clear though how to
incorporate this fact into a coherent statistical inference framework.

Daub et al. chose a function of the most differentiated SNP per gene,
whereas Ha et al. (2015) used a gene-based score test; in either case the
authors combined all genes in a pathway to obtain a pathway score.
Certainly, additional limitations in this kind of studies are incorrect
annotation and incomplete assemblies, which are normally more
serious in complex repetitive gene families such as olfactory receptors
or in the SLA region. In particular, about 14% of current porcine
assembly is of low quality, according to (Warr et al., 2015). Ongoing
annotation initiatives in livestock genomes such as FAANG (Andersson
et al., 2015) and new assemblies should alleviate this problem.
In agreement with Edwards et al. (2015), we also believe mixed

model and related theory is a most appropriate tool to accomplish a
multiple gene/region analysis. Here, we computed genomic relation-
ships using the SNPs located within all genes in a given pathway, and
computed a genomic heritability associated to each pathway. As
genetic response is a function of heritability, the framework used here
seems a logical and justified choice. By using this method, we were
able to retrieve pathways (ovarian hormones, leptin receptor, organ
size among others), which play key roles in phenotypes well-known to
have been modified by domestication (Supplementary Table 3).
To conclude, we present a novel application of standard statistical

tools in animal breeding to study population genetic events from a
novel perspective. Here we argue that shared genetic signals underlying
complex, disparate and independent domestication events exist and
that its relevance can be quantified. We hypothesize that some sort of
convergent adaptation has occurred. Nevertheless, although genetic
markers on the whole are powerful to detect whether a specimen is
wild or domestic, the genetic contribution of any single marker is
weak and is difficult to reach definitive answers on the effect of few
genes or pathways. For the future, as the number of sequences
increase, more sophisticated analyses could be performed, such as a
multi-trait analysis where domestication in different continents is
regarded as correlated traits. Such an analysis would yield continent-
specific heritabilities and genetic correlations that may shed light on
the extent of convergence between continents.
In all, despite the small sample utilized, our analyses do hint at some

interesting results that merit further exploration with larger data sets and
in additional species. In particular, it seems that deleterious mutations
are at least as relevant as regulatory positions to explain domestication in
the pig. Further, when genes are investigated in pathway units, some
reproductive (ovarian steroidogenesis) and feeding (leptin regulation)
pathways seemed especially relevant to explain the domestication
process.
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