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Abstract

A prototype cone-beam CT (CBCT) head scanner featuring model-based iterative reconstruction 

(MBIR) has been recently developed and demonstrated the potential for reliable detection of acute 

intracranial hemorrhage (ICH), which is vital to diagnosis of traumatic brain injury and 

hemorrhagic stroke. However, data truncation (e.g., due to the head holder) can result in artifacts 

that reduce image uniformity and challenge ICH detection. We propose a multi-resolution MBIR 

method with an extended reconstruction field of view (RFOV) to mitigate truncation effects in 

CBCT of the head. The image volume includes a fine voxel size in the (inner) nontruncated region 

and a coarse voxel size in the (outer) truncated region. This multi-resolution scheme allows 

extension of the RFOV to mitigate truncation effects while introducing minimal increase in 

computational complexity. The multi-resolution method was incorporated in a penalized weighted 

least-squares (PWLS) reconstruction framework previously developed for CBCT of the head. 

Experiments involving an anthropomorphic head phantom with truncation due to a carbon-fiber 

holder were shown to result in severe artifacts in conventional single-resolution PWLS, whereas 

extending the RFOV within the multi-resolution framework strongly reduced truncation artifacts. 

For the same extended RFOV, the multi-resolution approach reduced computation time compared 

to the single-resolution approach (viz. time reduced by 40.7%, 83.0%, and over 95% for an image 

volume of 6003, 8003, 10003 voxels). Algorithm parameters (e.g., regularization strength, the ratio 

of the fine and coarse voxel size, and RFOV size) were investigated to guide reliable parameter 

selection. The findings provide a promising method for truncation artifact reduction in CBCT and 

may be useful for other MBIR methods and applications for which truncation is a challenge.
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1. Introduction

Accurate and reliable detection of intracranial hemorrhage (ICH) is essential to the diagnosis 

of a number of neurological pathologies, including traumatic brain injury, hypertensive 

intracerebral hemorrhage, hemorrhagic stroke, ruptured aneurysm, and cerebral amyloid 

angiopathy (Kidwell and Wintermark 2008, Parizel et al 2001). Non-contrast multi-detector 

CT (MDCT) is the current frontline imaging modality for detecting acute ICH (40–80 HU 

contrast of fresh blood to brain) (Kidwell and Wintermark 2008, Dublin et al 1977). For 

patients in the intensive care unit (ICU) or neurological critical care unit (NCCU), transport 

to a MDCT suite requires time and dedicated personnel, often with risk to the patient. For 

example, a mean round-trip time of 50–80 min outside the critical care environment and a 

71% incidence of adverse events have been reported for such transport (Masaryk et al 2008, 

Smith et al 1990, Indeck et al 1988).

Cone-beam CT (CBCT) has a number of characteristics that make it potentially well suited 

to imaging acute ICH at the point-of-care. These include small footprint, open geometry, 

portability, low cost, and volumetric acquisition from a single rotation. In the past decade, 

CBCT imaging technology has been developed for a variety of applications, including 

dedicated musculoskeletal imaging (Koskinen et al 2013, Carrino et al 2014), breast imaging 

(Boone et al 2001, Yang et al 2007), maxillofacial imaging (Penninger et al 2011, Xu et al 
2012), and interventional C-arms (Siewerdsen et al 2009, Navab et al 2010, Schafer et al 
2011, Dang et al 2012). However, the detection of acute ICH requires a high level of contrast 

resolution (40–80 HU), spatial resolution (0.5–10 mm), and image uniformity, which poses 

major challenges to the current generation of CBCT systems.

Recent work has led to the development of a prototype CBCT head scanner suitable for 

detection of acute ICH. The scanner prototype was designed and optimized according to a 

task-based image quality model (Xu et al 2016c, 2016b). A fairly comprehensive artifact 

correction framework was developed to mitigate effects of x-ray scatter, beam hardening, 

detector lag, and veiling glare (Sisniega et al 2015). Furthermore, a model-based iterative 

reconstruction (MBIR) method was developed with statistical weights modified to account 

for the change in variance following artifact corrections, providing improved noise-

resolution tradeoffs compared to analytical and conventional iterative reconstruction 

methods (Dang et al 2015). The method was recently extended to include spatially varying 

penalty strength that maximizes task-based detectability throughout the brain (Dang et al 
2016).

While the aforementioned studies have shown great promise for acute ICH detection in 

CBCT, a practical challenge arises in translating this technology to clinical use. Specifically, 

a head holder – typically a U-shaped carbon-fiber support as shown in Fig. 1(a) – is typically 

used to support the head and minimize motion during the scan. However, the head holder 

can be partially truncated in the projection data (even for the fairly large – 43 x 43 cm2 – 

detector employed on the prototype), and the amount of truncation varies depending on the 

separation (e.g., a pillow) between the head and the holder. In this respect, the head holder is 

truncated in the axial plane. In the z direction, the head holder may or may not be 

longitudinally truncated at its superior extent (top of the head) and is certainly truncated at 
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the inferior extent (below the neck); however, such longitudinal truncation is not studied in 

the current work. Axial truncation introduces artifacts in the reconstructed image as shown 

in Fig. 1, giving rise to nonuniformity that could hinder ICH detection. MBIR methods tend 

to be sensitive to truncation, since they attempt to solve for an image estimate that best 

matches all of the measurements.

A variety of strategies to mitigate truncation effects have been investigated. For example, 

lateral extrapolation of the projection data prior to MBIR has been proposed, including 

symmetric mirroring (Ohnesorge et al 2000), approximation as a scalable water cylinder 

(Hsieh et al 2004), elliptical fitting (Kolditz et al 2010), and using scout images to constrain 

anatomical boundaries (Xia et al 2014). These methods have demonstrated reduction of 

truncation effects to various extents but usually assume the main source of truncation is the 

patient, and the missing projection data are treated as a continuous extension of the 

projection of the patient at the edge of the detector. These assumptions may not hold well 

when the truncation is primarily due to patient support – e.g., the head holder as in Fig. 1. 

Alternatively, truncation effects can be mitigated by increasing the reconstruction field-of-

view (RFOV). A large RFOV provides space for “tomosynthesis-like” reconstruction of the 

truncated object outside the scan field-of-view (SFOV) – i.e., the central (untruncated) 

region – and reduces bias within the SFOV. One advantage of this method is that it does not 

require additional processing of the projection data (e.g., extrapolation). However, simply 

increasing the RFOV increases the computational cost of MBIR. In cases where the 

truncated object is relatively far from the patient (e.g., a thick pillow inserted between the 

patient and the head holder), a RFOV much larger than the SFOV may be needed to mitigate 

truncation effects, posing a significant burden to computation time and memory.

We propose a method to mitigate truncation effects by a multi-resolution reconstruction 

approach, thereby extending the RFOV without major increase in computational burden. 

Specifically, an image volume is defined to contain two regions: 1) a fine interior region 

containing the region of interest (i.e., the head) with voxel size appropriate to the diagnostic 

task; and 2) a coarse outer region that can be extended as much as needed to mitigate 

truncation and coarser voxel size to reduce computational load. Multi-resolution MBIR has 

been studied previously in a 2D digital phantom by Hamelin et al. (Hamelin et al 2007) and 

applied to region-of-interest (ROI) reconstruction of high-resolution bone morphology by 

Cao et al. (Cao et al 2015). In this work, the multi-resolution approach is incorporated into 

the penalized weighted least-squares (PWLS) framework previously developed for high-

quality CBCT of the head (Dang et al 2015). Accordingly, the previously reported scatter 

correction method was also modified to account for the presence of the head holder. The 

method was evaluated in CBCT scans of an anthropomorphic head phantom with varying 

degrees of realistic data truncation by a carbon-fiber head support.

2. Methods

2.1 Multi-resolution PWLS for high-quality head imaging

Conventional PWLS methods (Sauer and Bouman 1993) usually model an image volume μ 
as a 3D region containing voxels with a fixed voxel size. In this work, we model μ as a 

combination of an inner 3D rectangular region with a fine voxel size (referred to as the “fine 
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region” or μF) and an outer 3D rectangular shell with a coarser voxel size (referred to as the 

“coarse region” or μC). Figure 2 illustrates the two regions in the multi-resolution method in 

imaging of the head. The fine region is defined to cover the SFOV of the CBCT system, 

while the coarse region is defined to cover objects that are outside the SFOV and subject to 

truncation. The combination of both regions defines the RFOV. For CBCT of the head, the 

anatomy is entirely within the SFOV (i.e., the fine region), while the head holder spans the 

fine and/or coarse regions of the RFOV. The resulting boundary between the fine and coarse 

regions is outside the cranium (in air, presumably not of diagnostic interest), so 

downsampling / upsampling voxels in the other region is not considered when calculating 

neighboring voxel differences in the subsequent image reconstruction. In the current work, 

we investigate an implementation specifically with two voxel sizes (coarse and fine), but the 

term “multi-resolution” (c.f., “dual resolution”) is used for consistency with previous work 

(Delaney and Bresler 1995, Cao et al 2016) and for generality in anticipation of future work 

in which voxel size is more continuously varied from a fine value in the SFOV to 

progressively coarser values outside the SFOV.

Following Cao et al. (Cao et al 2015), one can write the forward model for multi-resolution 

PWLS reconstruction as follows, assuming independent measurements:

(1)

where the mean measurements are modeled by ȳ (a Ny × 1 vector), g is a Ny × 1 vector of 

measurement-dependent gains, and D(·) is an operator that places a vector on the main 

diagonal of a matrix. The notation Ã denotes a system matrix representing the linear 

projection operation (and ÃT denotes the matched backprojection operation), which consists 

a Ny × NμF system matrix AF for the fine region μF and a Ny × NμC system matrix AC for the 

coarse region μC. The resulting line integral estimate Ãμ is thus a sum of the line integral 

estimate from the fine region (i.e., AFμF) and that from the coarse region (i.e., ACμC).

The objective function for multi-resolution PWLS reconstruction can be written:

(2)

where l denotes a vector of line integrals, and W is a diagonal weighting matrix with the ith 

diagonal element Wi representing the fidelity of the ith measurement. The terms RF (RC) and 

βF (βC) are the regularization term and regularization parameter for the fine region (the 

coarse region).

The two regularization terms enforce image smoothness in the fine and coarse regions 

respectively, which can be defined as:
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(3)

(4)

where KF (KC) denotes the indices of voxels in the fine region (coarse region), ΨF (ΨC) is 

an operator that computes first-order neighborhood differences in the fine region (coarse 

region), and H(·) is Huber penalty function (Huber 1981) which is quadratic within a 

neighborhood of [−δ, δ] and linear for larger differences as in (Wang et al 2014). Separate 

regularization terms for the fine and coarse regions allow independent control of the 

regularization strength. Calculation of neighborhood differences for voxels near the 

boundary between fine and coarse regions downsamples (or upsamples) neighboring voxels 

in the other region. This downsampling / upsampling operation is especially important when 

the boundary contains anatomy of interest (e.g., bone morphology in (Cao et al 2015)); 

however, in the scenario considered here, the boundary is outside the cranium (in air), so 

downsampling / upsampling at the boundary was not considered in the current work.

In the data fidelity term of the multi-resolution PWLS objective, the line integrals in l are 

typically derived from raw measurements y through a number of steps. Such steps include a 

log transformation to convert from the measurement domain to the line integral domain, and 

in many situations, also include correction for artifacts and/or processing to reduce noise in 

the measurements (Li et al 2004). Such steps can potentially lead to changes in the noise 

characteristics of the measurements, which need to be accommodated into the PWLS 

weighting terms. Previous work (Dang et al 2015) modeled the processing of the measured 

data as a generic function f as:

(5)

and derived the variance following data processing using first-order Taylor expansion of f:

(6)

where ḟ denotes the derivative. In CBCT of the head, scatter and beam hardening 

corrections represent the dominant corrections in the artifact correction framework 

corrections (Sisniega et al 2015). The function f in this case thereby corresponds to scatter 

correction in the measurement domain, followed by log transformation, and then beam 

hardening correction in the line integral domain. The variance following this particular 
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function f using Eq. (6) implies modification of the statistical weights as in (Dang et al 
2015):

(7)

The term yi corresponds to the weights used in conventional PWLS methods that model data 

processing simply as a log transformation (Sauer and Bouman 1993). The term ((yi − S̄i)/yi)2 

corresponds to the variance changes following scatter correction, where S̄i denotes the mean 

scatter for the ith measurement. For the Joseph-Spital beam-hardening correction method 

(Joseph and Spital 1978), the terms 1/ηw(yi − S̄i) and 1/ηb(yi − S̄i) correspond to the 

variance changes following water correction and bone correction, respectively, defined in 

Eq. (16b) of (Dang et al 2015). The statistical weights in Eq. (7) were used in all PWLS 

reconstructions in this work.

2.2 Optimization approach for multi-resolution PWLS

The multi-resolution PWLS objective in Eq. (2) was solved using the separable quadratic 

surrogate (SQS) algorithm with ordered subsets (OS) (Erdoğan and Fessler 1999). The OS-

SQS algorithm facilitates fast convergence not only via ordered subsets (nominally 10 

subsets from 360 projection data; see below) but also via parallelizable image updates 

allowing parallel implementation on GPU. Previous work (Dang et al 2015) adapted OS-

SQS to the single-resolution PWLS objective with modified statistical weights. For the 

multi-resolution case, for every subset of projections in every iteration, the image update 

was computed and applied to the fine and coarse regions separately. Moreover, since the 

optimal curvature ci of the data fidelity term is constant in PWLS objective, the term d in the 

image update can be precomputed (dFj and dCj for the fine and coarse regions, respectively).

Table 1 shows pseudocode of the OS-SQS solution of the multi-resolution PWLS objective. 

The pseudocode is similar to that in (Cao et al 2016), updated with respect to notation and 

detector pixel model. The notation [·]+ denotes the nonnegativity constraint, γi is the ith 

projection of an image of all ones, aFij and aCij are the (i, j)th element of the matrix AF and 

AC respectively, niter is the maximum number of iterations, M is the number of subsets, l̂i is 

the sum of the projection of the current image estimate μ̂F and μ̂C, and Sm denotes all the 

projections in the mth subset. In the regularization part, taking the fine region as an example, 

KF is the number of neighboring voxels in the fine region, and Ḣ and ω are the gradients and 

curvatures of the Huber penalty function H, respectively. While the pseudocode in (Cao et al 
2016) used a small detector pixel size for the projection of a high-resolution region-of-

interest and a large detector pixel size for the rest of the projection data, the pseudocode here 

used a single detector pixel size.

2.3 Experimental studies

The method was tested in phantom experiments performed on the CBCT test-bench shown 

in Fig. 3(a). The bench includes an x-ray source (RAD13, Dunlee, Aurora IL) and flat-panel 

detector (PaxScan 4343R, Varian, Palo Alto CA) in geometry equivalent to that of the 

Dang et al. Page 6

Phys Med Biol. Author manuscript; available in PMC 2018 January 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



prototype head scanner (Xu et al 2016c): 550 mm source-to-axis distance (SAD) and 1000 

mm source-to-detector distance (SDD). Scans were acquired at 90 kVp, 0.8 mAs per 

projection, with 360 projections (1° angular steps), and a 0.556 × 0.556 mm2 pixel size 

(after 2 × 2 binning). The radiation dose was measured using a Farmer chamber in an 

extended length CTDI phantom of 16 mm diameter, weighting the central (Do) and mean 

peripheral (Dp) dose according to Dw = (1/3)Do + (2/3)Dp. The dose measured with no head 

holder in place was 26.8 mGy. Adding the carbon-fiber head holder reduced the dose 

slightly to 25.8 mGy, which was independent of Locations 1, 2, 3 (Fig. 3b) within 1%. This 

dose is comparable to that for scan protocols used in clinical studies using the prototype 

head scanner, 22.8 mGy (Xu et al 2016a). The anthropomorphic phantom and head holder 

emulated a typical clinical setup in which the head was fully covered by the (23.7 × 23.7 × 

23.7 cm3) SFOV, but the head holder was truncated to varying extent. The head phantom 

(The Phantom Laboratory, Greenwich NY) included a natural skull and tissue-equivalent 

plastic (Rando™). The head holder (Siemens AG, Forchheim, Germany) was a carbon fiber 

(~150 HU) unit identical to that used on routine head CT exams. The phantom was scanned 

with the head holder placed at three locations as illustrated in Fig. 3, increasing in anterior-

posterior distance from the head in increments of 2.54 cm in a manner that emulated a broad 

range of clinically realistic setup (e.g., varying amount of padding beneath the head). A scan 

was also acquired without the head holder to provide a truncation-free dataset.

All projection data were first offset-corrected and gain-normalized by mean dark and flood 

field calibrations. Scatter correction involved a fast Monte Carlo method integrated with 

beam hardening correction using the Joseph and Spital approach. Previous work (Sisniega et 
al 2015) validated the scatter and beam hardening correction without a head holder. We 

added a head holder model to the Monte Carlo scatter simulation to estimate the scatter from 

the head holder in addition to the scatter from the head. The head holder model (3D map of 

attenuation coefficient) was obtained from a separate CT scan of the head holder using a 

diagnostic CT scanner (SOMATOM Definition, Siemens Healthineers, Erlangen, Germany) 

with a SFOV sufficient to cover the entire head holder (i.e., without truncation). This 

separate scan yielded an accurate attenuation map of the head holder. In the Monte Carlo 

scatter simulation, the head holder was added to the system geometry based on its position 

as evident in the projection data. In the current work, the position of the head holder model 

was manually adjusted for each scan, but was subsequently automated by detecting the long 

edges of the holder in the scan data and computing a rigid 3D-2D registration.

Projection data were reconstructed using both conventional single-resolution PWLS and the 

proposed multi-resolution PWLS method. Both methods used matched separable footprint 

projectors and backprojectors (Long et al 2010) and 10 ordered subsets. A total of 50 

iterations was found sufficient for convergence for both PWLS methods. The voxel size for 

single-resolution PWLS was 0.5 × 0.5 × 0.5 mm3. For multi-resolution PWLS, the voxel 

size for the fine region was also 0.5 × 0.5 × 0.5 mm3, and the voxel size for the coarse region 

was varied as described in the next section. A RFOV of 400 × 480 × 480 voxels (at isotropic 

0.5 mm voxel size) was sufficient to cover the SFOV and was defined as the basic RFOV. 

For multi-resolution PWLS, the fine region was set to the basic RFOV, and the coarse region 

was varied as described in the next section (equivalent to varying the relative ratio of areas 

between the fine and coarse regions). This study investigates how extension of the coarse 

Dang et al. Page 7

Phys Med Biol. Author manuscript; available in PMC 2018 January 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



region of reconstruction outside the head (and the head holder) allows more accurate 

reconstruction of attenuation coefficient within the SFOV, essentially distributing bias from 

axial truncation outside regions of interest. In the current work, the boundary between the 

fine and coarse regions is a fixed value determined by the system geometry (simply equal to 

the SFOV) and is not a parameter that needs to be manually defined. The water attenuation 

coefficient was 0.0216 mm−1, and the Huber parameter δ was set to 10−4 mm−1, which 

enforced a degree of edge-preservation for features such as ICH and ventricles without 

causing an overly patchy appearance to the images (Dang et al 2015).

2.4 Multi-resolution PWLS: parameter selection

Key parameters affecting the performance of multi-resolution PWLS were investigated, 

including regularization strength in the fine and coarse regions (βF and βC), the voxel size in 

fine and coarse regions (related by the downsampling factor, DS), and the size of the RFOV. 

For example, previous work (Cao et al 2015) in extremity orthopaedic imaging showed that 

using a coarse region voxel size four times larger than the fine region voxel size yielded 

accurate ROI reconstruction.

1. Regularization parameter. The parameter βF controls the 

noise-resolution tradeoff in the fine region in a similar 

manner to β in single-resolution PWLS (Wang et al 2014, 

Dang et al 2015). The parameter βC, however, affects the 

fine region indirectly, and its effect on image quality was 

investigated as a function of downsampling factor, RFOV, 

and location of the head holder.

2. Downsampling factor. The ratio of the voxel size in the 

coarse region to that in the fine region defined the 

downsampling factor (DS), which is expected to control the 

amount of speedup in multi-resolution PWLS. In the 

studies presented below, multi-resolution PWLS 

reconstructions were performed with the fine voxel size 

fixed at 0.5 mm, and DS was varied from 1 to 40.

3. Reconstruction field-of-view (RFOV). Extending the 

RFOV is expected to reduce truncation effects but increase 

reconstruction time. In the work reported below, multi-

resolution PWLS images were reconstructed for RFOV 

ranging from the basic SFOV to a much larger RFOV, and 

the impact on image quality and reconstruction time were 

evaluated.

2.5 Figures of merit and computational complexity

The accuracy of image reconstruction was defined as the root mean square difference 

(RMSD) from a “truth” image, restricted to a region of the image within the cranium (i.e., in 

the brain). The “truth” image was defined as a single-resolution PWLS image reconstructed 

from the “no-holder” dataset (i.e., free of truncation effects). Spatial resolution was also 
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assessed as in (Wang et al 2014) in terms of the width ε (mm) of the edge spread function 

(ESF) of a low-contrast sphere within the brain [see Fig. 3(f)]. Contrast and contrast-to-noise 

ratio (CNR) were evaluated with respect to a 50 HU sphere and nearby uniform ROI [see 

Fig. 3(f)].

The computational complexity of both single-resolution and multi-resolution PWLS 

methods are primarily determined by the total number of projection operations (including 

forward projection and backprojection). For single-resolution PWLS, one iteration of OS-

SQS algorithm as shown in Table 1 in (Dang et al 2015) requires two projection operations 

(one forward projection and one backprojection) for the entire RFOV, which can be written 

as:

(8)

where TRFOV denotes the time for one projection operation (for one forward projection and 

one backprojection) for the entire RFOV, and M is the number of subsets. For multi-

resolution PWLS, one iteration of the OS-SQS algorithm requires two projection operations 

for both the fine and coarse regions, giving:

(9)

where TF and TC denote the time for one projection operation for the fine and coarse region, 

respectively. Assuming the same RFOV, multi-resolution PWLS is expected to require less 

computation time than single-resolution PWLS, since projection operations at the fine voxel 

size are performed only for the fine region (2TF) for multi-resolution PWLS, but are 

performed for the entire RFOV (2TRFOV) for single-resolution PWLS. Although multi-

resolution PWLS requires two additional projection operations for the coarse region, the 

time associated with these two operations (2TC) is expected to be small.

Both PWLS methods were implemented in Matlab (The Mathworks, Natick MA), with 

projection operations executed on GPU using CUDA-based libraries. All image 

reconstructions were performed on a workstation equipped with a GeForce GTX TITAN 

(Nvidia, Santa Clara CA) graphics card.

3. Results

3.1 Scatter correction with a head holder model

The previously developed Monte Carlo scatter correction method was modified to include a 

model of the head holder, with results summarized in Fig. 4. The head holder was truncated 

in the three scans at Location 1 to 3 in Fig. 4. Here, we focus on the evaluation of scatter 

artifacts (not truncation artifacts), so the results show FBP reconstructions for simplicity 

which appears to be somewhat less sensitive to truncation than PWLS reconstructions. As 

shown in Fig. 4(a–c), ignoring the head holder in the scatter correction model resulted in 

residual artifacts – evident primarily as shading, streaks, and overall underestimation in HU 
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as shown in Fig. 4(d–f). In comparison, the results in Fig. 4(g–i) show that including the 

head holder model in scatter correction yielded images with improved uniformity for all 

three locations of the head holder. The “truth” image (FBP image with the head holder 

removed during the scan) is shown in Fig. 4(m). Including the head holder in the scatter 

correction method reduced the RMSD from the “truth” image from 15.1 × 10−4 mm−1 to 

10.2 × 10−4 mm−1 at location 1, 13.5 × 10−4 mm−1 to 9.4 × 10−4 mm−1 at location 2, and 

11.7 × 10−4 mm−1 to 9.1 × 10−4 mm−1 at location 3. In subsequent results reported below, 

the head holder model was always included in the scatter correction.

3.2 Single-resolution PWLS

The influence of truncation on the image quality of single-resolution PWLS reconstructions 

was first investigated. First, the nominal β value suitable for CBCT of the head was selected 

using the “no-holder” dataset. Figure 5(a) plots the ESF width and CNR measured as a 

function of β, showing a steep increase in CNR for β > 102, owing to the Huber penalty as 

shown in previous work (Wang et al 2014). A nominal value of β = 102.4 was selected as 

balancing noise reduction and edge preservation without overly patchy image appearance, 

giving CNR = 25.4 and ESF width = 0.77 mm for the ROIs shown in Fig. 3. The resulting 

image [Fig. 5(b)] was taken as “reference” / “truth” in subsequent results.

Next, single-resolution PWLS reconstructions were computed with the head holder at three 

locations as shown in Fig. 6. Severe artifacts – including both positive and negative bias – 

are evident throughout the head, attributable to truncation by the head holder (not to x-ray 

scatter, which was corrected with the head holder model as summarized in the previous 

section and Fig. 4). The magnitude of truncation artifacts is seen to depend on the position 

of the head holder with respect to the head – i.e., somewhat stronger artifacts for location 1, 

and reduced for location 3. These artifacts appear to be associated with the truncated anterior 

edges of the head holder, giving rise to shading and streaks in the anterior part of the head as 

shown in the difference image of Fig. 6. The streaks are strongest for location 1 (where the 

edges are closest to the head) and reduced as the head holder was positioned toward the 

posterior of the head (location 3). Because the streaks appear to arise from the edges of the 

holder, they are most severe for location 1, even though location 3 involves a greater bulk of 

material attenuation farther from the SFOV. The RMSD from “truth” was 11.0 × 10−4 mm−1 

at location 1, 10.2 × 10−4 mm−1 at location 2, and 8.2 × 10−4 mm−1 at location 3.

3.3 Multi-resolution PWLS

The sections below systematically evaluate the performance of multi-resolution PWLS in the 

presence of truncation. First, a very large RFOV was chosen (1000 × 1000 × 1000 voxels, 

with 0.5 mm isotropic voxel size), and the effects of regularization parameter βC (Section 

3.3.1) and downsampling factor DS (Section 3.3.2) were studied. Based on that analysis, 

nominal values of βC and DS were selected, and the dependence of image quality on RFOV 

(Section 3.3.3) was investigated.

3.3.1 Regularization parameters—Figure 7 plots the RMSD of multi-resolution PWLS 

as a function of βC and DS for the three locations of the head holder. The value of βF was 

fixed at 102.4 for each case. The reconstruction accuracy exhibited low dependence on βC as 
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long as βC was below an upper limit in regularization strength, but quickly reduced when βC 

exceeded this limit. This was observed for all locations of the head holder and all DS levels. 

The rapid degradation in reconstruction accuracy beyond a regularization limit was also 

observed in previous work (Cao et al 2015). Note that for any level of DS, the regularization 

limit was the same for different locations of the head holder, suggesting that in practice the 

exact location of the head holder does not affect selection of βC.

Figure 8 shows the fine (a–c) and coarse (d–f) regions of the multi-resolution PWLS images 

for three values of βC. In each figure (a–c), the left half is the PWLS image, and the right 

half is the difference from “truth”. For the cases in Fig. 8, the head holder was at location 2, 

and the DS was set to 4. As evident in Fig. 8(a) and 8(b), PWLS exhibited fairly accurate 

reconstruction for a broad range of βC below or near the regularization limit (~106.4), but 

performance degraded markedly for βC above the limit (Fig. 8(c)). Figures 8(d–f) show the 

amount of smoothing in the coarse region (outside cyan box) for the three βC values. It can 

be seen that the use of βC beyond the regularization limit resulted in over-smoothing and low 

intensity error throughout the air region, which was a possible cause of the reduced accuracy 

in the fine region.

3.3.2 Downsampling factor—Figure 9 shows that the reconstruction accuracy was 

robust as DS was increased from 4 to 20, beyond which we observe moderate degradation 

(e.g., at DS = 40). In the cases shown, the head holder was at location 3, and the βC value 

was selected to achieve the lowest RMSD for each DS (fairly insensitive to selection as 

shown in Fig. 7). A small increase in streak artifacts is evident with increasing DS. Figures 

9(e–h) show the coarse regions for various DS levels. Taking DS = 40 as an example, the 

coarse region involves a very large voxel size (20 × 20 × 20 mm3), which led to coarse 

reconstruction of the head holder and likely led to the streaks observed in the fine region. 

Despite the small reduction in accuracy as DS increased, the reconstruction accuracy at all 

four DS levels was still much better than the single-resolution PWLS image (Fig. 6).

3.3.3 Reconstruction field-of-view—The RFOV of multi-resolution PWLS was varied 

as summarized in Fig. 10, which effectively varies the size of the coarse region while 

keeping the size of the fine region equal to the basic RFOV. Specifically, the RFOV was 

varied from (400 × 480 × 480 voxels) to ~10 times as large (10003 voxels). In the cases 

shown in Fig. 10, the head holder was at location 2, the DS was 4, and βC was selected to 

minimize RMSD for each RFOV. The noise-resolution tradeoff in the fine region was found 

to exhibit small changes for varying the RFOV (which was not observed when varying βC 

and DS), so the βF value was selected to give the same noise-resolution performance for 

each RFOV. Images reconstructed using any of the three RFOV in Fig. 10 exhibited 

similarly high reconstruction accuracy compared to the basic RFOV (single-resolution 

PWLS) shown in Fig. 6. This again shows the benefit of increasing RFOV to mitigate 

truncation effects and suggests that one could freely choose a RFOV (> ~600 × 600 × 600 

voxels) to mitigate truncation effects.
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3.4 Computation time

The computation time between single-resolution and multi-resolution PWLS reconstruction 

is summarized in Fig. 11 in terms of the measured time per projection operation (averaged 

over one forward projection and one backprojection) and memory usage as a function of 

RFOV (for isotropic voxel size of 0.5 mm). As shown in Fig. 11(a), both time and memory 

usage increase dramatically if the RFOV increases from the basic RFOV (denoted by the 

dashed line), suggesting that simply increasing the RFOV in single-resolution PWLS is 

computationally expensive and likely impractical. Figure 11(b) plots the measured time per 

iteration as a function of RFOV for various PWLS reconstruction methods. Single-resolution 

PWLS exhibited a steep increase in time per iteration with larger RFOV, consistent with the 

steep increase in Fig. 11(a). By comparison, the time per iteration was much reduced for the 

multi-resolution approach at DS = 2 and was further reduced at DS = 4. The time per 

iteration was reduced from the single-resolution approach (DS = 4) by 40.7% for a RFOV of 

6003 voxels, 83.0% for a RFOV of 8003 voxels, and over 95% for a RFOV of 10003 voxels. 

Moreover, the time per iteration became almost independent of RFOV when DS increased to 

4 or larger in the multi-resolution approach. This suggests that one could increase the RFOV 

as much as needed to mitigate truncation effects in the multi-resolution approach without 

corresponding increase in computational complexity. The results clearly demonstrate the 

advantages of multi-resolution reconstruction, especially in situations where a large RFOV is 

needed. Because an increase in DS larger than 4 gradually reduced the reconstruction 

accuracy as shown in Section 3.3.2 (but does not correspondingly reduce the computation 

time), DS = 4 was selected as the nominal / optimal DS.

3.5 Comparison of reconstruction methods

Figure 12 shows a single-resolution PWLS reconstruction using (a–b) the basic RFOV and 

(c–d) an extended RFOV in comparison to (e–f) multi-resolution PWLS reconstruction (with 

the same extended RFOV). In this case, the head holder was at location 2. The multi-

resolution PWLS reconstruction parameters were: (1) βC = 106.4, which is near the upper 

range of stable regularization identified in Section 3.3.1; (2) DS = 4, as indicated in Sections 

3.3.2 and 3.4; and (3) an extended RFOV of 6003 voxels (assuming isotropic voxel size of 

0.5 mm), which the results of Section 3.3.3 identify as the smallest RFOV providing good 

mitigation of truncation artifacts. Single-resolution PWLS using the basic RFOV exhibits 

severe artifacts due to truncation, whereas single-resolution PWLS with an extended RFOV 

substantially reduced such artifacts, but doubled computation time. Multi-resolution PWLS 

using the same extended RFOV exhibited visually and quantifiably similar reduction of 

truncation effects and only increased computation time by 12% (109 sec/iter vs. 97 sec/iter) 

compared to reconstruction with the basic RFOV.

4. Conclusions and Discussion

We have proposed a multi-resolution MBIR method to mitigate truncation effects and 

applied to CBCT of the head in which the main source of truncation is the patient support / 

head holder. While conventional reconstruction methods employ a fixed voxel size 

throughout the image, the multi-resolution method uses a fine voxel size within the 

untruncated region (i.e., inside the SFOV encompassing the area of interest – in this case, the 
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head) and a coarse voxel size in the truncated region outside the SFOV (i.e., outside the area 

of interest). The approach was implemented in a PWLS reconstruction framework and 

evaluated in experiments involving a head phantom imaged on a CBCT test-bench with 

varying levels of truncation using a commercially available carbon-fiber head holder. The 

multi-resolution method demonstrated substantial mitigation of truncation effects and major 

reduction in computational cost compared to single-resolution reconstruction with an 

extended RFOV.

Investigation of the main algorithm parameters suggest that: (1) reconstruction accuracy in 

the fine region (the head) does not depend strongly on the regularization parameter in the 

coarse region βC as long as the parameter is below a regularization “limit,” which in turn 

was found not to depend on the location of the head holder and can therefore be held fixed; 

(2) use of a larger voxel size in the coarse region (larger DS) reduces computational 

complexity but slightly reduces reconstruction accuracy, suggesting an optimal DS such that 

the voxel size in the coarse region was ~4 times that in the fine region; and (3) 

reconstruction accuracy improved with a larger RFOV up to a certain extent (6003 voxels 

assuming isotropic voxel size in this work) beyond which accuracy was modestly improved. 

In the current work, truncation was due solely to the head holder (which varied in location 

but not in size or mass), and more severe truncation (i.e., greater mass of attenuation outside 

the SFOV) may require larger RFOV. In summary, the method presents a promising means 

to mitigate truncation effects in CBCT of the head and supports translation of a newly 

developed CBCT head scanner in point-of-care imaging applications.

A variety of alternative methods to managing truncation artifacts have been reported. For 

example, some methods treat missing projection data as a continuous extension of the 

projection at the edge of the detector and extrapolate the missing data before image 

reconstruction (Ohnesorge et al 2000, Hsieh et al 2004, Kolditz et al 2010, Xia et al 2014). 

These methods have demonstrated reduction of truncation effects to various extents but the 

assumption on the continuous extension of the projection may not hold well when the 

truncation is primarily due to patient support. Other methods attempt to directly reconstruct 

a ROI inside the patient anatomy that has not been truncated during the scan (Noo et al 
2004, Defrise et al 2006, Kudo et al 2008, Zou and Pan 2004, Pan et al 2005, Yu et al 2006, 

Yu and Wang 2009). For example, a widely recognized approach in ROI reconstruction is to 

backproject the derivative of the projection data and apply Hilbert filtering along certain 

lines covering the ROI (Noo et al 2004, Zou and Pan 2004). These ROI reconstruction 

methods have demonstrated substantial reduction of truncation artifacts in the ROI, but as 

analytical methods, they usually do not enjoy the noise-resolution benefits exhibited by 

MBIR. The method proposed in this work allows more general treatment of the source of 

truncation than extrapolation-based methods and therefore can be used to manage truncation 

effects that do not arise from the patient (e.g., due instead to the patient support). Moreover, 

the proposed method is formulated within a MBIR framework, which allows the use of 

advanced system models and regularization techniques.

An alternative method to mitigate truncation effects in CBCT of the head is to include a 

model of the head holder within the image reconstruction process. For example, previous 

work (Stayman et al 2012) reported a known-component reconstruction (KCR) approach 
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that could be extended to include the known shape of the head holder. This could yield even 

better agreement with the measured projection data and mitigate truncation artifacts in the 

image. Moreover, the multi-resolution approach proposed above could be combined with the 

KCR approach to improve computational efficiency.

The multi-resolution method presents a more efficient means to recover attenuation 

information from truncated objects than simple extension of the RFOV. This is a particularly 

important consideration in MBIR, which can be sensitive to truncation effects not only in 

terms of artifacts and accuracy of reconstruction but also in the speed and stability of 

convergence. MBIR also carries a fairly high computational burden, and straightforward 

extension of the RFOV could lead to impractical reconstruction time. The current work 

focused on a particular form of data truncation encountered in CBCT of the head but offers a 

potential general solution for other scenarios in CT or CBCT. In C-arm CBCT for 

interventional imaging, for example, the patient periphery, interventional tools, and 

operating table are often truncated due to the limited SFOV. Moreover, in diagnostic 

imaging, truncation can occur for obese patients or (purposeful or inadvertent) setup of the 

patient off center. Such scenarios are the subject of future work, where the proposed method 

may offer a means to mitigate truncation effects without major increase in computational 

cost.
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Figure 1. 
Artifacts caused by truncation of the head support in CBCT of the head. (a) CAD drawing of 

a patient with head supported by a carbon-fiber head holder during a CBCT scan. (b) PWLS 

image of an anthropomorphic head phantom without a head holder. The circular inserts 

within the central region of the cranium span a range of contrast including that of ICH. (c) 

PWLS image of the same, with a U-shaped carbon-fiber head holder in place during the scan 

(evident beneath the posterior of the head).
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Figure 2. 
Illustration of fine and coarse regions in multi-resolution reconstruction (only x-y plane 

shown here). The dashed circle denotes the SFOV. The fine region (μF) is a 3D rectangle that 

contains the head, and the coarse region (μC) is the space outside the fine region that 

contains the head holder. The volume encompassing both the fine and coarse regions is the 

RFOV.
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Figure 3. 
Experimental setup. (a) Photograph of the CBCT test-bench, head phantom, and head 

holder. (b) Illustration of three locations at which the head holder was positioned during the 

experiments. (c–e) Axial images superimposed with a representation of the head holder at 

each location. (f) Axial image illustrating structures and ROI used for image quality 

assessment. The central circular insert was used to compute spatial resolution (edge spread 

function) and contrast, and the nearby rectangular ROI was used to compute noise.
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Figure 4. 
Scatter correction (a–f) without and (g–l) with the head holder included in the Monte Carlo 

model. (a–c) FBP reconstructions without a head holder model exhibit shading and streaks 

in the (d–f) difference images from (m) “truth”. Including the head holder in scatter 

correction reduces such residual errors as shown in (g–i) and difference images (j–l).
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Figure 5. 
Nominal parameter selection for single-resolution PWLS. (a) ESF and CNR as a function of 

the regularization strength β (in the absence of truncation). (b) Axial slice of a single-

resolution PWLS image using β = 102.4, exhibiting a reasonable balance between ESF and 

CNR and taken as the “truth” image for subsequent PWLS reconstructions.
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Figure 6. 
(a–c) Single-resolution PWLS with a carbon-fiber head holder positioned at three locations 

posterior to the head. RFOV is (400 × 480 × 480 voxels). (d–f) Difference images between 

(a–c) and the “truth” image of Fig. 5(b).
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Figure 7. 
Accuracy of multi-resolution PWLS reconstructions as a function of coarse region 

regularization strength βC and downsampling factor (DS) at three locations.
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Figure 8. 
Multi-resolution PWLS reconstruction for various choices of coarse region regularization 

strength, βC. Images (a–c) show the fine region, with the left half showing the PWLS image 

(grayscale window: [−300, 200] HU) and the right half showing the difference from truth 

(grayscale window: [−1100 −700] HU). Images (d–f) show the coarse region (outside cyan 

box). The head holder was at location 2, the DS was 4, and the RFOV was 10003 voxels with 

0.5 mm isotropic voxel size.
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Figure 9. 
Multi-resolution PWLS reconstruction for various choices of coarse region voxel size, 

characterized by DS. Images (a–c) show the fine region, with the left / right presentation of 

the PWLS (grayscale window: [−300, 200] HU) and difference image (grayscale window: 

[−1100 −700] HU) as in Figure 8. The head holder was at location 3, the RFOV was 10003 

voxels (with fine region voxel size = 0.5 mm isotropic), and βC was chosen to minimize 

RMSD for each DS.
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Figure 10. 
Multi-resolution PWLS reconstruction for various choices of RFOV. Images (a–c) show the 

fine region, with the left / right presentation of the PWLS (grayscale window: [−300, 200] 

HU) and difference image (grayscale window: [−1100 −700] HU) as in Figs. 8–9. The head 

holder was at location 2, the DS was set to 4, and βF was adjusted slightly to maintain 

constant noise-resolution performance: (a) βF = 102.35, (b) βF = 102.38, and (c) βF = 102.40. 

The parameter βC was chosen to minimize RMSD for each RFOV (after selecting βF).
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Figure 11. 
(a) Measured computation time (averaged over one forward projection and one 

backprojection) and measured memory usage as a function of reconstruction field-of-view 

(RFOV). (b) Time per iteration (i.e., for all subsets) as a function of RFOV for single-

resolution and multi-resolution PWLS reconstruction at different DS levels. Substantial 

speedup can be seen compared to the single-resolution approach at DS = 2 and to multi-

resolution approach at DS = 4.
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Figure 12. 
Comparison of single-resolution and multi-resolution PWLS reconstruction. (a–b) Single-

resolution PWLS reconstruction using the basic RFOV (400 × 480 × 480 voxels). (c–d) 

Single-resolution PWLS reconstruction using an extended RFOV (6003 voxels assuming an 

isotropic voxel size of 0.5 mm). (e–f) Multi-resolution PWLS reconstruction using the same 

extended RFOV. The symbols ε and t denote RMSD and computation time, respectively, 

quantifying the reduction in artifact using an extended RFOV and the benefit to computation 

time using the multi-resolution method.
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Table 1

Pseudocode for solving the multi-resolution PWLS reconstruction using OS-SQS.

Precompute optimal curvatures ci(l̂i) = [Wi]+ l̂i ≥ 0

Precompute approximate d term for the fine region 

Precompute approximate d term for the coarse region 

for each iteration n = 1, …, niter

 for each subset m= 1, …, M

   

  for voxel in the fine region j = 1, …, NμF

L
.
F j

= M ∑
i ∈ Sm

aFi j
h
.
i, μF j

= μF j
+

L
.
F j

− βF ∑
k = 1

KF
ΨF k j

H
.

ΨFμF k

dF j
+ 2βF ∑

k = 1

KF
ΨF k j

2 ω ΨFμF k +

  End

  for voxel in the coarse region j = 1, …, NμC

L
.
C j

= M ∑
i ∈ Sm

aCi j
h
.
i, μC j

= μC j
+

L
.
C j

− βC ∑
k = 1

KC
ΨC k j

H
.

ΨCμC k

dC j
+ 2βC ∑

k = 1

KC
ΨC k j

2 ω ΨCμC k +

  End

 End

End
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