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Abstract

Appreciation of the importance of the microbiome is increasing, as sequencing technology

has made it possible to ascertain the microbial content of a variety of samples. Studies that

sequence the 16S rRNA gene, ubiquitous in and nearly exclusive to bacteria, have prolifer-

ated in the medical literature. After sequences are binned into operational taxonomic units

(OTUs) or species, data from these studies are summarized in a data matrix with the

observed counts from each OTU for each sample. Analysis often reduces these data further

to a matrix of pairwise distances or dissimilarities; plotting the first two or three principal com-

ponents (PCs) of this distance matrix often reveals meaningful groupings in the data. How-

ever, once the distance matrix is calculated, it is no longer clear which OTUs or species are

important to the observed clustering; further, the PCs are hard to interpret and cannot be

calculated for subsequent observations. We show how to construct approximate decompo-

sitions of the data matrix that pair PCs with linear combinations of OTU or species frequen-

cies, and show how these decompositions can be used to construct biplots, select important

OTUs and partition the variability in the data matrix into contributions corresponding to PCs

of an arbitrary distance or dissimilarity matrix. To illustrate our approach, we conduct an

analysis of the bacteria found in 45 smokeless tobacco samples.

Introduction

Advances in sequencing technology have revolutionized our view of the microbiome, the

microbial communities that exist in almost every environment including within humans and

other animals. In the past, study of the microbiome was limited to what grows in culture. The

advent of sequencing studies has removed this restriction. By sequencing the 16S rRNA gene,

present in all bacteria and almost exclusive to bacteria, it is possible to survey the bacterial

composition of samples irrespective of whether they grow easily in culture. The large number
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of sequences obtained by modern genotyping methods means that bacteria present at very low

prevalence can be observed. The resulting data on bacterial abundance are highly complex and

analyses often require dimension reduction before important features can be found (in a

microbiome study, the OTU counts or frequencies play the role of ‘features’ in a general

machine learning context).

In a microbiome study, sequences are typically grouped into operational taxonomic units

(OTUs) based on similarity using a bioinformatic pipeline such as QIIME [1] or Mothur [2].

These pipelines produce OTU counts (abundances) that can be summarized in a data matrix

X; here we take the rows to correspond to observations and the columns to species or OTUs.

Since in a microbiome experiment the number of species or OTUs will typically far exceed the

number of observations, some sort of dimension reduction is required. As with other studies

in ecology, it is common practice to use the species (OTU) abundance data in X to calculate a

distance or dissimilarity matrix Δ with Δij denoting the distance between the ith and jth obser-

vation. The distance matrix can be a highly nonlinear function of the data in X and may in fact

require external data for calculation. For example, the Unifrac distance [3, 4], commonly used

in microbiome studies, is a functional of the phylogenetic tree that summarizes the genetic dis-

tance between the OTUs, and thus requires genetic sequence data to calculate. Here we do not

distinguish between dissimilarity measures that are or are not distance metrics, and generically

refer to all dissimilarities as ‘distances.’

The distance measures used by Ecologists (see [5] for an exhaustive discussion) are often

very successful at describing the observations in the sense that the first few principal compo-

nents (PCs) of the (appropriately centered and scaled) distance matrix allow visual separation

of the data into meaningful groups. While this separation is useful in showing that OTUs vary

systematically across groups, investigators often wish to know which OTUs contribute most to

this separation. However, once a distance is calculated, it is difficult to know which species or

OTUs contribute to the observed distances, or to place future observations in an ordination

plot to see if they cluster with the ‘correct’ group.

In high-dimensional data, important linear combinations of features are frequently

obtained by calculating the PCs of XT X, the correlation or covariance matrix of the data,

depending on how X is scaled. These PCs can also be obtained from a singular value decom-

position (SVD) of the data matrix X, which yields a set of singular vectors for observations

and a set of singular vectors for features (here, OTUs or species). This approach has the

advantage that there is a ‘duality’ between the two sets of singular vectors, so that if one set

of vectors is known, the other set can be immediately obtained. This duality has useful con-

sequences; the ‘factor loadings’ (coefficients of the corresponding singular vector in feature

space) can be obtained for each component in observation space to see which features con-

tribute most, or a biplot can be constructed. In addition, the singular vectors in observation

space can be used as predictors in a model, because the duality assures we can interpret and

calculate them for future observations. However, the cost is that we are implicitly using XXT

to measure similarity, since the singular vectors for observations are eigenvectors of XXT.

The goal of this paper is to restore the duality between the set of eigenvectors for an arbitrary

choice of distance matrix Δ, and a set of vectors in feature space, to the largest extent

possible.

A motivating example is an analysis of the bacteria found in 45 samples from three types of

smokeless tobacco products (dry, moist, and brown toombak) reported elsewhere [6]. Using

sequence data from the V4 region of the 16S rRNA gene, we used the QIIME pipeline [1] to

categorize the 3,738,578 observed sequences into 5345 OTUs. After applying a thresholding

criterion [6], we reduced the number of OTUs to 271 while retaining 3,555,575 (95%)

sequences. Tyx et al. [6] found that the first three principal components of the (weighted)

Associating PCs of a Distance Matrix and LCs of Predictors for 16S Microbiome Studies

PLOS ONE | DOI:10.1371/journal.pone.0168131 January 13, 2017 2 / 15

Competing Interests: The authors have declared

that no competing interests exist.



Unifrac distance matrix were very successful at differentiating the tobacco types, while also

showing that replicates of the same product were closely clustered. However, we cannot know

which OTUs are influential in this result. Further, we are unable to use the OTU frequencies of

subsequent samples to see if their predicted type (as determined by their placement on the plot

of PCs) are consistent with our original analysis. Finally, we cannot make a biplot that uses the

ordination obtained using the UniFrac PCs to visualize which OTUs are influential in predict-

ing tobacco type.

The approach we take here is to construct approximate decompositions of the data

matrix that mimic the SVD. We first recall how the singular value decomposition (SVD)

ensures a connection between eigenvectors of observations and OTUs when the data matrix

is decomposed using a SVD, and then present approximate SVD-like decompositions that

use the eigenvectors of an arbitrary distance matrix such as the Bray-Curtis or UniFrac dis-

tance in the role of the singular vectors for observations. We then show how these SVD-like

decompositions can be used to partition the total sum of squares in the data, to aid in choos-

ing the number of components to use and to determine the amount of variability explained

by each OTU. In the results, we analyze the tobacco bacteria data to evaluate the perfor-

mance of the methods we are proposing. We then discuss rarefaction and a kind of weighted

analysis that connects two of the approaches we consider. Finally we conclude with a brief

discussion.

Duality between a Distance Matrix and Linear Combinations of

OTUs

Duality and the Singular Value Decomposition

Data from a 16S rRNA microbiome experiment can be summarized in a n × p-dimensional

data matrix X where n is the number of observations and p is the number of species or OTUs.

The elements of X count the number of reads in observation i that fall into OTU j. The row

sums, referred to as the library size, are thought to be largely ancillary; thus, the count data in

X is often converted to OTU frequencies by dividing the counts in each row by the corre-

sponding library size (to put each row on the same scale) and then data for each OTU is cen-

tered by subtracting the mean OTU frequency. An interesting property of count data scaled

and centered in this way is that both row and column sums are zero. Whatever scaling and

centering is applied, the data matrix X can always be written using the singular value decompo-

sition (SVD) as

X ¼ LSRT ð1Þ

where L is a n × q matrix with orthonormal columns, S is a q × q diagonal matrix having posi-

tive entries, and R is a p × q matrix with orthonormal columns, where q is rank of X. If we are

willing to measure similarity between observations using Δ = XXT, then the columns of L com-

prise the coordinates of the observations in a principal components analysis, or a principal

coordinates analysis (PCoA) if count data in X have been scaled and centered as described

above, since the columns of L are also the principal components of XXT. Equivalently, we can

first calculate the PCs of XT X to obtain R, the PCs of the covariance (or correlation, depending

on scaling) matrix of OTUs. Ecologists refer to the representation of observations by coordi-

nates in a low-dimensional (typically in 2 or 3) space as ordination. The SVD is also the start-

ing point for constructing a biplot of the data.

If the data from each observation is standardized and we use Δ = I − XXT to measure dis-

tance then using Eq (1) we see that the eigenvectors of Δ are given by the columns of L. In this

situation, given only the kth PC of Δ (i.e., Lk, the kth column of L) we could use Eq (1) to obtain
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the ‘factor loadings’ Rk (i.e., the kth column of R) by rewriting Eq (1) as

SkkRk ¼ LT
k X : ð2Þ

The constant of proportionality (Skk) can be determined by normalizing Rk. The factor load-

ings from Eq (2) contain information on which OTUs are important predictors of the kth PC.

Conversely, given the matrix of factor loadings R and diagonal matrix of constants of propor-

tionality S, the eigenvectors of Δ (i.e., the columns of L) could be reconstructed by rewriting

Eq (1) as

L ¼ XRS� 1 : ð3Þ

Representation Eq (3) allows us to use observed OTU frequencies for a new observation to see

where it falls in an ordination plot of existing data. Of course, (Eqs (2) and (3)) are immediate

consequences of the SVD and coordinates for observations L, factor loadings R and constants

S can be calculated simultaneously.

If we wish to use an arbitrary distance matrix Δ, then the eigenvectors of Δ will not corre-

spond to the left singular vectors of X. As a result, Eq (2) cannot be used to express the eigen-

vectors of Δ as linear combinations of OTU frequencies and Eq (3) cannot be used to

determine the PCs of a new observation. Because Δ is real and symmetric, we can always write

Δ = BEBT where B is orthogonal and E is diagonal; however, the elements of E may not all be

positive unless Δ is Euclidean.

We can attempt to restore the relationship between the eigenvectors of Δ and linear com-

binations of the rows of X in two ways, either using the singular value decomposition of X as

our guide, or using prediction of the left singular vectors of X (that are used for ordination)

as our guide. In the first case, we can seek a decomposition of X that looks like the SVD, but

uses B in place of the left singular vectors. Specifically, we can seek a matrix V with normal-

ized columns and a diagonal matrix D with nonnegative elements that minimize the objec-

tive function

fdðV;DÞ ¼ jjX � BDVT jj
2

F ð4Þ

where jjMjj2F ¼ TrðMTMÞ ¼
P

i;jM
2
ij is the Frobenius matrix norm used for least-squares

problems posed in terms of matrices. For identifiability we insist that the elements of D are

nonnegative. We refer to this as the ‘decomposition’ approach. Note that if we are only inter-

ested in a subset of the columns of B, we can replace B by Bd, the n × d matrix that contains

the d columns of interest. For notational simplicity, we suppress the subscript d here.

Alternatively, we can use Eq (3) as our starting point, and seek a matrix V with normalized

columns and a diagonal matrix D having nonnegative entries that minimize the objective func-

tion

frðV;DÞ ¼ jjXVD� 1 � Bjj2F ¼
Xdmax

j¼1

jjXV�jD
� 1

jj � B�jjj
2

ð5Þ

where M�k denotes the kth column of M and where ||C||2 is the Euclidean (L2) norm. We refer

to this as the ‘regression’ approach. Note that, unless constraints are added to the problem that

mix information from the columns of V, the regression approach naturally separates into uni-

variate regressions, one for each column of B that we are fitting. The requirement that V have

normalized columns corresponds to Diag(VT V) = Id.

Associating PCs of a Distance Matrix and LCs of Predictors for 16S Microbiome Studies
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Unconstrained Solutions to the Decomposition and Regression

Approaches

If the only constraint on V is that Diag(VT V) = I, the matrices V and D that minimize Eqs (4)

and (5) can be easily found. We first note a lemma governing minimizers of Eq (4):

Lemma 1. Let W minimize f ðWÞ ¼ jjX � BWT jj
2

F where X has rank q, B has dimension n ×
d and X = LSRT is the singular value decomposition given in Eq (1). Then W = RQ for some q
× d-dimensional matrix Q.

The proof of Lemma 1 can be found in the appendix. Note that Lemma 1 implies that mini-

mization of Eq (4) is equivalent to minimization of jjLS � BQT jj
2

F for q × d—dimensional

matrix Q, which implies we can find a unique minimizer even when p> n since q�min(p, n).

By direct optimization we find that if the columns of B are orthogonal, the minimizer of Eq (4)

is

Wdu≔VduDdu ¼ XTB; ð6Þ

given Wdu, Ddu and Vdu are determined by the norms of the columns of Wdu.

Unlike Eq (4), optimization of Eq (5) produces a family of solutions. The general solution

can be written as

Zru≔VruD� 1
ru ¼ RQru þ R?Aru ð7Þ

where the subscript r denotes regression. Using Eq (7) in Eq (5) we find

Qru ¼ S� LTB :

where M− denotes the Moore-Penrose inverse of M. Eq (5) gives no information on Aru; how-

ever, if we choose Aru = 0 then Lemma 1 shows the resulting choice of Vru will give the best

decomposition (in the sense of minimizing Eq (4)) among all choices in the family Eq (7).

Thus, we choose Aru = 0, to obtain the particular solution

Zru ¼ RS� LTB ¼ X� B : ð8Þ

As before, Vru and Dru are determined by the norms of Zru. Note that in general Vdu obtained

by minimizing Eq (4) differs from Vru obtained by minimizing Eq (5).

Because the unconstrained decomposition and regression approaches differ, it is not clear

that either is adequate for our dual goal of predicting B for future observations and describing

X for ordination and biplot construction. Thus, XVduD� 1
du may give poor prediction of B in the

sense that Eq (5) is large, while BDruVT
ru may be a poor approximation to X in the sense that Eq

(4) is large.

Because Vru 6¼ Vdu, OTUs selected as important for regression may not correspond to

important variables for decomposition, or vice versa. We explore these issues further using the

Tobacco data in the next section. Since both regression and decomposition are important, we

next consider minimizing Eqs (4) and (5) subject to the constraint that V has orthonormal col-

umns. We will see in our analysis of the tobacco data that this has the effect of ensuring that

the V that is selected performs well for both regression and decomposition.

Orthogonal Solutions to the Decomposition and Regression Approaches

The easy connection between Eqs (1), (2) and (3) when using measuring similarity using XXT

occurs because the columns of R are orthogonal. In order to ensure that the OTUs selected are

important for both regression and decomposition, we next consider minimizing Eqs (4) or (5)

Associating PCs of a Distance Matrix and LCs of Predictors for 16S Microbiome Studies
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subject to the constraint

VTV ¼ I : ð9Þ

Unless all the singular values of X are equal (i.e., if X has been standardized by right-multi-

plication by ðXTXÞ�
1
2), it is easy to see that neither Wdu nor Zru have orthogonal columns. As a

result, we seek Vdo and Ddo, the minimizers of Eq (4) subject to constraint Eq (9) and Vro and

Dro, the minimizers of Eq (5) subject to constraint Eq (9), where the subscript o refers to

orthogonal.

Finding Vdo and Ddo is related to the orthogonal but not orthonormal Procrustes problem

[7]. Because the minimizer of jjX � BDVT jj
2

F with respect to either D or V subject to Eq (9) is

available in closed form, Everson [7] suggests the Tandem algorithm, an alternating approach

in which first V then D is updated, until convergence. Finding the optimal V given D is not dif-

ficult, requiring only the calculation of a single SVD, while the optimal D given V can be

expressed in closed form (see the proof of Lemma 2 in the appendix). Further, Lemma 1

implies V = RQ while Eq (9) implies QT Q = I.
Finding Vro and Dro is much harder, even after using Eq (7), because the closed form of V

that minimizes the Frobenius norm subject to orthogonality constraint Eq (9) is not known

even when D is assumed to be known. We know of three ways to numerically optimize Eq (5)

subject to constraint Eq (9); none of the methods outperform the others in all cases. First, [7]

gives a representation of V in terms of an initial matrix V0 that satisfies Eq (9) and d
2

� �
Givens

rotation matrices; this enables brute-force minimization of Eq (5) subject to Eq (9) using a

derivative-free optimizer. A similar representation for the derivatives of Eq (5) w.r.t. the Giv-

ens rotation angles is possible as well. Second, an approximate quadratic programming

algorithm by Watson [8], described in [7], can be used. This approach requires solving a
d
2

� �
-dimensional linear system for each step. Finally an approach described by Gower and

Dijksterhuis ([9], pp98–100) using an algorithm by Koschat and Swayne [10] for finding V sat-

isfying Eqs (5) and (9) for fixed D can be used. If only the first few columns of Vro are needed,

the brute force approach works well. In this situation, we can optimize Eq (5) using only d col-

umns of B, and systematically increase d until the needed components stabilize. This approach

assumes the first few columns of B explain the majority of variability; the values of Ddo can be

used as a guide to ensure that the important columns of B are being used.

Decomposing The Variability in the Data Matrix X

Once we have obtained an estimate of V, it can be used either for predicting B (e.g., for future

observations) or describing variability in X (e.g., for constructing biplots). Since both goals are

important, we need to evaluate the performance of each method for regression and decompo-

sition. Regression performance is easily summarized by R2, the correlation between the pre-

dicted and observed columns of B; note this measure is independent of D. Decomposition

performance is a bit more complicated, since the natural quantity jjX � BDVT jj
2

F depends

explicitly on D. To avoid penalizing the regression approaches just because of the scale choice,

for assessing the performance of Vro in explaining variability in X, we replace Dro by ~Dro, the

minimizer of Eq (4) when V = Vro. This change is unnecessary for Dru since it is easy to show

that it already minimizes Eq (4). We now show the following lemma that governs partitioning

the total sum of squares jjXjj2F into a model sum of squares jjBDVT jj
2

F and a residual sum of

squares jjX � BDVT jj
2

F . If X is centered, then the total sum of squares is proportional to the

variance of the Xijs.
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Lemma 2. Let B be a n × d-dimensional matrix with orthonormal columns and let D be a

d × d-dimensional diagonal matrix chosen to minimize jjX � BDVT jj
2

F . Then

jjXjj2F ¼ jjX � BDVT jj
2

F þ jjBDV
T jj

2

F

Proof of Lemma 2 can be found in the Appendix. Further, as long as B is orthogonal, we can

decompose the model sum of squares either as

jjBDVT jj
2

F ¼
Xd

k¼1

D2

k ð10Þ

or

jjBDVT jj
2

F ¼
XJ

j¼1

w2

j ð11Þ

where w2
j ¼

Pd
k¼1

W2
jk ¼

Pd
k¼1
ðVjkDkkÞ

2
. Eq (10) partitions the model sum of squares into

parts that are explained by each component, with the kth component contributing D2
k to the

model sum of squares; Eq (11) partitions the model variability into parts explained by each

OTU so that data from the jth OTU contributes w2
j to the model sum of squares. Thus, the

value of w2
j =jjXjj

2

F gives the proportion of the variability in jjXjj2F that is explained by the jth
OTU. Using these partitions, and in particular by examining ‘scree’ plots of sorted values of D2

i

or w2
j , gives us another method to evaluate the performance of each method. Finally we note

that Eqs (10) and (11) holds for any choice of d; we may wish to reserve the term ‘residual sum

of squares’ for the value of jjX � BDVT jj
2

F that is attained when the maximum value of d is

used. In this case we can partition the ‘model’ sum of squares into a part corresponding to

components actually used (typically, the first d components) and a part corresponding to the

unused (truncated) components. From Eqs (10) and (11), it is easily seen that the sum of

squares corresponding to truncated components can be written either as
Pdmax

j¼dþ1
D2

j or as
Pdmax

k¼dþ1
W2

jk ¼
Pdmax

k¼dþ1
ðVjkDkkÞ

2
.

Analysis of Bacteria found in Smokeless Tobacco Products

To illustrate the approaches developed here, we applied the decomposition and regression

approaches, with and without the orthogonality constraint, to 16S rRNA data on 15 smoke-

less tobacco products; 6 dry snuffs, 7 moist snuffs, and 2 toombak samples from Sudan.

Three separate (replicate) observations (starting with sample preparation) were made of each

product, so that in total 45 observations are available. Our goal in analyzing these data are

both to find important OTUs that describe the variability in the microbial communities in

these products, and to develop insight on how well each approach performs in a variety of

measures.

We measured distance Δ between samples using the (weighted) unifrac distance. To

account for differences in read count across samples, we sub-sampled reads so that each sam-

ple had the same number of reads before calculating the distance. We repeated this subsam-

pling 1,000 times and averaged over replicates to obtain a final matrix Δ. After centering rows

and columns of the the matrix having elements D
2

ij as described by Gower [11], we obtained

the matrix B by spectral decomposition of the resulting matrix. We additionally converted the

rows of X to percent abundances to eliminate differences in scale, and then centered the rows

and columns to sum to zero. All calculations were carried out using R.

Associating PCs of a Distance Matrix and LCs of Predictors for 16S Microbiome Studies
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The Tandem algorithm [7] applied to these data converges almost instantly even when all

44 columns of B are used in the decomposition. We found it much harder to find Vro for all 44

components, as there are apparently local minima. The computation time was measured in

hours or days, not seconds like the Tandem algorithm. A modification of the Watson [8] algo-

rithm that used a line search to choose the step size gave the solution having the smallest value

of Eq (4) that we present here.

In Table 1 we compare the performance of the four methods in terms of their ability to

explain X and their ability to predict B. Results in Table 1 are based on estimating d = 44 com-

ponents, the maximum number for these data. The most surprising result in Table 1 is the

remarkably small proportion (0.8%) of the data matrix X that is explained by using Vru chosen

by unconstrained regression, even though Vru predicts the columns of B perfectly. Although

Vdu predicts 100% of the variability in X, its performance in predicting the columns of B is the

worst of the four approaches. Overall Vdo seems to perform best, explaining almost 90% of the

variability in X while also predicting the important columns of B well. The performance of Vro

in predicting the columns of B was also good but it only explained about 75% of the variability

in X. Thus, even if prediction of B is the primary goal, the small improvements in R2 do not

seem to warrant the computational effort required to obtain Vro.

In Fig 1 we plot the (square of the) diagonal elements of D for the four methods considered

here: the unconstrained regression and decomposition approaches, and the orthogonal regres-

sion and decomposition approaches. For orthogonal regression we plot the (square of the)

diagonal elements of ~Dro selected for the orthogonal regression approach when used as a

decomposition method. Like a typical SVD, the ‘scree plot’ shows that for each decomposition

only a few components are important. This is reassuring as we are most interested in truncated

versions of the SVD-like decompositions. From Fig 1 we are assured that a biplot in 2 or 3

dimensions will capture much of the variability in the data. Note that the components are

sorted by the eigenvalues of B, not the magnitude of D, so that the generally monotonic

decrease in D values indicates directions that are important in describing B are also important

in describing X. If this were not the case, it may be worth choosing another measure of dis-

tance for calculating B.

In Fig 2 we plot the sorted values of w2
j for each method considered here; note that the

order of OTUs may be different in each panel. To see how similar the orderings OTU influence

(as measured by w2
j ) are across methods, we calculated the variance-covariance matrix of the

w2
j values from the four approaches (Table 2). These correlations are high except when

Table 1. Percent of variation in X explained and R2 for prediction of B�1 through B�9 for the Tobacco data.

% Variation

of X Explained1
R2 for prediction of column:

Analysis 1 2 3 4 5 6 7 8 9

Unconstrained

Regression

0.8 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Unconstrained

Decomposition

100.0 0.888 0.872 0.685 0.583 0.964 0.106 0.126 0.163 0.066

Orthogonal

Regression

74.5 0.974 0.885 0.896 0.910 0.981 0.808 0.751 0.693 0.622

Orthogonal

Decomposition

88.9 0.962 0.909 0.845 0.818 0.979 0.789 0.741 0.682 0.398

1 100jX̂ j2F=jXj
2

F

doi:10.1371/journal.pone.0168131.t001
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calculating w2
j using unconstrained regression, indicating that the ordering of OTUs in Fig 2 is

similar for all the methods except unconstrained regression. Since Tyx et al. [6] found 3 princi-

pal components were necessary to separate these three groups, we used d = 3 when calculating

w2
j . In Table 3 we show the 11 OTUs that were selected to be on the list of the top 5 OTUs for

each method (along with the variability explained by that OTU and its rank by each method).

There is good agreement between both decomposition approaches and the orthogonal regres-

sion approach, while none of the OTUs selected by unconstrained regression appear on the

top 5 list for any other method. The OTUs selected by unconstrained regression are biologi-

cally distant as well, with only one OTU selected by unconstrained regression sharing a family

(Staphylococcaceae) with any OTU selected by one of the other methods.

The effect of each OTU can be displayed in a biplot. In Fig 3 we show a 2-dimensional

biplot based on the orthogonal decomposition method, showing the second and third

Fig 1. Scree plots for variance explained by each component. For each method, the contribution of the first 20 (of 44) components plotted. Note the

change of scale for unconstrained regression. Components are ordered by decreasing eigenvalue of the Unifrac distance matrix.

doi:10.1371/journal.pone.0168131.g001
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Fig 2. Scree plots for variance explained by each OTU. For each method, the contribution of the 20 (of 271) OTUs having the largest contributions are

plotted. Note the change of scale for unconstrained regression.

doi:10.1371/journal.pone.0168131.g002

Table 2. Correlation between w2
j values for each method.

Unconstrained

Regression

Unconstrained

Decomposition

Orthogonal

Regression

Orthogonal

Decomposition

Unconstrained

Regression

1 −0.01 −0.01 −0.01

Unconstrained

Decomposition

1 0.95 0.99

Orthogonal

Regression

1 0.96

doi:10.1371/journal.pone.0168131.t002
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components (which had the two highest values of both Ddu and Ddo). It is clear the ordination

of these data using the first 3 PCs of the (weighted) Unifrac matrix are fairly successful at sepa-

rating the different types (dry, moist and toombak). Further, the replicates corresponding to

the same product are tightly clustered. We also show arrows corresponding to the top five

OTUs calculated using orthogonal decomposition. To construct this biplot, we note that the

orthogonal decomposition implies

Xij �
X

k

BikDkkVjk ¼� Bi;Wj � ð12Þ

where Bi denotes the ith row of B and Wj denotes the jth column of W = V � D and�A, B�
denotes the Euclidean inner product. Since the elements of Bi are the coordinates of the ith
observation and Wj is the vector whose norm determines the influence of OTU j in explaining

the model sum of squares, it is natural to represent OTUs by plotting Wj. Further, the magni-

tude of Xij is represented by the dot product of Bi and Wj, so that if Wj for an OTU ‘points

towards’ a certain group of samples, we can expect that the values of Xij are relatively large for

these samples. To create a low-dimensional plot, we typically sum k in Eq (12) over two or

three dimensions; for Fig 3 we sum k from 2 to 3.

By examining the biplot in Fig 3, we see that Sudanese toombak is characterized by elevated

levels of OTU 810425, assigned to the Corynebacteriaceae family, largely absent from all other

types. The OTU 4379247 (Lactobacillaceae) appears elevated in some dry snuff samples;

whereas, OTUs 29012 (Enterococcaceae), 4312974 (Staphylococcaceae) and 52399 (Aerococ-

caceae) appear elevated in moist snuff samples.

Additional Considerations

In this section, we show that the results we have obtained can be applied directly to some sim-

ple but important generalizations. In particular, we show how to incorporate rarefaction into

our decomposition approach, and indicate where it may not be necessary. We also consider a

weighted regression approach that gives a connection between the regression and decomposi-

tion approaches.

Table 3. Taxonomic assignment for OTUs selected as a top 5 OTU in explaining variability, and the variability explained by each OTU (d = 3

components).

Unconstrained

Regression

Unconstrained

Decomposition

Orthogonal

Regression

Orthogonal

Decomposition

OTU1 Family Genus Species Rank VE1 Rank VE Rank VE Rank VE

29012 Enterococcaceae Tetragenococcus halophilus 59 2.3 × 10−5 4 6.0 × 10−2 4 4.8 × 10−2 4 5.3 × 10−2

52399 Aerococcaceae Unknown unknown 58 2.3 × 10−5 3 0.12 2 0.13 2 0.11

181589 Staphylococcaceae Staphylococcus equorum 1 7.9 × 10−4 30 1.3 × 10−4 32 1.3 × 10−4 28 2.3 × 10−4

801438 Enterobacteriaceae Unknown unknown 5 2.1 × 10−4 55 2.4 × 10−5 58 2.3 × 10−5 55 4.2 × 10−5

810425 Corynebacteriaceae Corynebacterium unknown 103 6.4 × 10−6 6 1.2 × 10−2 6 1.7 × 10−2 5 3.5 × 10−2

905303 Aerococcaceae Alloiococcus unknown 57 2.4 × 10−5 5 3.7 × 10−2 3 4.9 × 10−2 6 3.0 × 10−2

1102921 Carnobacteriaceae Granulicatella unknown 2 4.9 × 10−4 56 2.3 × 10−5 62 2.0 × 10−5 64 2.2 × 10−5

1110381 Aerococcaceae Unknown unknown 4 3.0 × 10−4 153 6.0 × 10−7 171 7.0 × 10−7 171 4.4 × 10−7

4297253 Bacillaceae Bacillus unknown 3 4.2 × 10−4 20 3.3 × 10−4 17 4.5 × 10−4 20 7.2 × 10−4

4312974 Staphylococcaceae Staphylococcus succinus 69 1.7 × 10−5 1 0.26 1 0.21 1 0.20

4379247 Lactobacillaceae Lactobacillus unknown 76 1.5 × 10−5 2 0.13 5 3.2 × 10−2 3 9.8 × 10−2

1Greengenes OTU (operational taxonomic unit) Identification Number, VE = Variance Explained w2
j =jXj

2

F

doi:10.1371/journal.pone.0168131.t003
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Rarefaction is a commonly used (but still controversial, see e.g. [12]) approach to process-

ing microbiome data to account for differences in library size. In our analysis of the tobacco

data, we averaged over rarefactions when calculating the distance matrix; here we address

the question of how to incorporate averaging over rarefactions of the data matrix into our

Fig 3. Biplot for second and third component of tobacco bacterial data. Points are colored by type (blue = dry, red = moist, green = toombak)

and samples corresponding to replicates of the same product are plotted with the same symbol. The taxonomic families corresponding to the OTUs

shown are Staphylococcaceae (4312974), Aerococcaceae (52399), Lactobacillaceae (4379247), Enterococcaceae (29012) and

Corynebacteriaceae (810425). The scale on bottom and left corresponds to coordinates of samples, scale on right and top to coordinates of OTUs.

doi:10.1371/journal.pone.0168131.g003
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orthogonal decomposition. Computing a separate decomposition for each rarefaction is not

tenable as it is unclear how we would combine the decompositions obtained for each replicate.

Instead, we propose finding D and V that minimize the objective function

fdRðD;VÞ ¼
1

R

XR

r¼1

jjXr � BDVT jj
2

F

subject to D� 0 and the desired constraints on V, where Xr is the rth rarefied data matrix.

However, since

jjXr � BDVT jj
2

F ¼ TrðXT
r XrÞ � 2TrðXT

r BDV
TÞ þ TrðVDBTBDVTÞ

¼ C � 2TrðXT
r BDV

TÞ þ TrðD2Þ;

we see that we can instead optimize jjX � BDVT jj where X is the average of the data matrix

over rarefactions. Thus, if X contains the untransformed counts (or even if the data matrix

is scaled by the library size for each observation), in the limit this corresponds to using

Xij ¼ pijM (or Xij ¼ pij if we scale the rows of X by the library sizes), where πij is the frequency

of the jth OTU in the ith sample and M is the number of reads selected in each rarefaction.

Since centering for PCoA is also linear in the elements of X, this argument suggests that using

the empirical frequencies without rarefaction, at least for the decomposition approaches, is

warranted.

Turning now to the relationship between the orthogonal regression and decomposition

approaches, the objective function for the orthogonal regression approach given in Eq (5)

assigns equal importance (weight) to the prediction of each column of B. If we choose to

weight the prediction of the jth column of B by D2
jj, a measure of the importance of the

jth column, then it is easy to show that minimizing the resulting objective function

jjðXVD� 1 � BÞDjj2F ¼ jjXV � BDjj2F yields the same values of V and D as minimizing the

objective function for orthogonal decomposition. Thus, orthogonal decomposition also

has an interpretation as a weighted regression, where the weight assigned to the prediction

of each column is proportional to the variance of X explained by that column in the

decomposition.

Discussion

The principal components of a distance matrix Δ can be very useful in ordination, the repre-

sentation of observations in an Ecology or microbiome study as points in a low-dimensional

space. Meaningful groupings in the data are often apparent in an ordination plot. When the

correlation matrix is used to measure similarity, there is a natural duality that enables us to

express the eigenvectors of Δ as linear combinations of the species or OTU frequencies. This

duality allows construction of a biplot, in which both observations and OTUs can be simulta-

neously represented graphically. When an arbitrary distance is used, we have developed meth-

ods to restore this duality, at least approximately. We evaluated these approaches within the

context of an analysis of the bacterial species found in smokeless tobacco products [6].

In our analysis of the bacteria found in smokeless tobacco products, we found that the

orthogonality constraint results in linear combinations that perform well both in explaining

the variability in the data matrix X as well as predictors in a regression. This is reasonable as

orthogonality is the same principle connecting the regression and decomposition approaches

in a SVD of X. We also found that the orthogonal regression and orthogonal decomposition

approaches gave similar results, which were also fairly close to the unconstrained decomposi-

tion approach. Finally, given the difficulties in obtaining more than a few components of the
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orthogonal regression approach, and the interpretation of the orthogonal decomposition

approach as a weighted version of the orthogonal regression approach given in the previous

section, it seems that the orthogonal decomposition approach is the most appealing approach.

We also showed that the approaches we presented have a variance partitioning property in

which the total sum of squares represented by jjXjj2F can be partitioned into residual sums of

squares and model sums of squares. We further showed that, even when we choose a set of lin-

ear combinations V that are not orthogonal, the model sum of squares can be partitioned in

two ways; one in which we sum over the contributions of each component, another in which

we sum over the contributions of each variable (OTU). The first partition can be used to justify

a truncated decomposition; the second can be used to find important variables, especially for

making biplots. We found that both orthogonal approaches and unconstrained decomposition

were in broad agreement (similar model sums of squares, similar OTUs identified as impor-

tant) while unconstrained regression behaved very differently, identifying very different OTUs

as important and having a small model sum of squares. This may be because a certain set of

OTUs may allow good prediction of a columns of B even if these OTUs do not explain much

of the overall variability in the OTU table (e.g., if they are rare). Since the decomposition

approaches also give good prediction of at least those columns of B that explain most of the

variability (at least in the tobacco data we considered) it seems that unconstrained regression

can miss important large-scale features in favor of small-scale features that happen to be good

predictors of B, in some sense failing to see the forest through the trees.

We have considered here only decompositions of the data matrix X. The results here thus

can be considered ‘unsupervised learning.’ In further work, we plan to consider extensions of

this approach to ‘supervised learning’ where we have additional variables that we wish to

incorporate into the choice of linear combinations. For example, we may wish to find linear

combinations of OTUs that optimally explain group membership (e.g., tobacco type in the

tobacco data considered here).

Appendix: Proofs of the Lemmas

Proof of Lemma 1. Because q is the rank of X, p� q. If p = q the result is trivial, since the col-

umns of R span Rp and so the columns of any p × d-dimensional matrix W can be expressed as

a linear combination of columns of R, which establishes the result. For p> q let R? be a (p − q)

× p-dimensional matrix having orthonormal columns that span the orthogonal compliment of

the space spanned by the columns of R. Because the columns of any p × d-dimensional matrix

can we written in terms of the basis given by the columns of R and R? we have W = RQ + R? A
for matrices Q and A. Inserting this form into f(W) and using RT R? = 0 and XR? = 0 we find

f ðWÞ ¼ jjX � BQTRT jj
2

F þ jjA
TAjj2F . Since AT A is a real symmetric matrix, f(W) is minimized

when A = 0, i.e. when W = QR.

Proof of Lemma 2: By direct calculation, each element Djj satisfies (BT XV)jj = Djj(VT V)jj.

The lemma holds because Tr ½VDBTðX � BDVTÞ� ¼ TrðDBTXV � D2VTVÞ ¼
Pd

j¼1
DjjðBTDVÞjj � D2

jjðV
TVÞjj ¼ 0 elementwise. Finally, note if Djj< 0 we can replace Djj by

−Djj while replacing Vkj by −Vkj 8k and the lemma still holds.
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