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Abstract
The human central canal of the spinal cord is often overlooked. However, with advancements in
imaging quality, this structure can be visualized in more detail than ever before. Therefore, a
timely review of this part of the cord seemed warranted. Using standard search engines, a
literature review was performed for the development, anatomy, and pathology involving the
central canal. Clinicians who treat patients with issues near the spine or interpret imaging of
the spinal cord should be familiar with the morphology and variants of the central canal.  
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Introduction And Background
The human central canal extends throughout the spinal cord [1-2]. Derived from the primitive
neural tube, the central canal encompasses an internal system of cerebrospinal fluid (CSF)
cavities that include the cerebral ventricles, aqueduct of Sylvius, and fourth ventricle [1].
Uniformly elliptical in shape throughout most of the cord, variations exist in the morphology of
the caudal central canal, including dilatation [3-4], forking [5-6], and outpouchings [6-7]. The
function of the adult human central canal is not yet well understood [7]. Often regarded as
vestigial and a structure that is obliterated after birth and replaced by ependymal cells, the
canal may be patent up to the second decade of life. Pathology involving the central canal
includes stenosis or occlusion, hydrosyringomyelia, and other cavitary lesions [1, 7]. It is
difficult to discuss these lesions without a better understanding of the canal. Therefore, the
objective of this review is to elaborate further on our current understanding of the anatomy and
importance of the human central canal of the spinal cord. 

Review
Embryology
The central canal arises from the neural canal, formed within the neural tube during
neurulation. During the fourth week (22-23 days) of development, in the region of the fourth to
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sixth pairs of somites, the underlying notochord and paraxial mesoderm induce the overlying
ectoderm to differentiate into the neural plate [8]. The neural tube and the neural
crest differentiate from the neural plate. Signaling molecules involved in this process include
the transforming growth factor-β (TGF-β) family, which includes activin and fibroblast growth
factors (FGFs) [8].

In the early part of the fourth week, the caudal one-third of the neural plate (caudal to the
fourth pair of somites) and neural tube represent the future spinal cord (Figure 1). Fusion of the
neural folds occurs in a cranial to caudal direction until only small areas of the neural tube
remain open at both ends, with its lumen (neural canal) communicating freely with the
amniotic cavity [8]. The cranial opening, the rostral neuropore, closes around day 25, and
the caudal neuropore closes on day 27 at which point the neural canal is converted into the
ventricular system of the brain and the central canal of the spinal cord. The lateral walls of the
neural tube thicken while the dorsal and ventral parts remain thin and are named the roof
and floor plates [9]. Thickening of the tube gradually reduces the size of the neural canal until
only a minute central canal of the spinal cord is present at nine to 10 weeks [8].

2016 Saker et al. Cureus 8(12): e927. DOI 10.7759/cureus.927 2 of 13



FIGURE 1: Various embryological stages of the neural tube
noting the evolution of the central canal to its final position in
the adult spinal cord (lower left image).
(From Jacob's Atlas of the Nervous System, 1901)

The wall of the neural tube is composed of a single layer of pseudostratified, columnar
neuroepithelium that constitutes the ventricular zone (ependymal layer) and gives rise to all
neurons and macroglial cells (astroglia and oligodendroglia) in the spinal cord (Figure 2) [8].

2016 Saker et al. Cureus 8(12): e927. DOI 10.7759/cureus.927 3 of 13

http://assets.cureus.com/uploads/figure/file/8807/lightbox_19b7cb30a6d111e69c3efbf3abe845c5-Figure_1.png


The neuroepithelial cells in the ventricular zone differentiate into neuroblasts, which give rise
to neurons. When neuroblast formation ceases, the neuroepithelial cells differentiate into
glioblasts (spongioblasts). These cells migrate from the ventricular zone into other zones
formed from components of the neuroepithelial cells. Some of the glioblasts become astroblasts
and then astroglia (astrocytes). Others become oligodendroblasts and then oligodendroglia
(oligodendrocytes). The remaining neuroepithelial cells differentiate into ependymal cells
lining the central canal of the spinal cord [8-9]. 

FIGURE 2: Histological image (H&E) of the human central canal
at the center of the image.
Note the single layer of columnar ependymal cells.

Anatomy
The central canal, also referred to as the spinal foramen or ependymal canal, extends from the
conus medullaris in the lumbar spine to the caudal angle of the fourth ventricle and is lined by
a single layer of columnar ependymal cells [2]. It represents the remnant of the lumen of the
primitive neural tube. As one ages, the canal fills with the disintegrated cellular debris of the
lining epithelium [10-12].

The central canal is part of a system of cerebrospinal fluid (CSF) cavities that includes the
cerebral ventricle, aqueduct of Sylvius, and fourth ventricle (Figures 3-4) [2]. It is situated in the
gray commissure, which (along with the anterior white commissure) connects the two parts of
the spinal cord. The gray commissure can be divided into dorsal and ventral components, based
on their relationship to the central canal [10]. As the spinal cord merges into the medulla, the
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canal trends backward and opens into the fourth ventricle. In the conus medullaris, it is more
dorsally located, becomes widened, and forms the triangular-shaped, 8-to-10 mm long
structure known as the ventriculus terminalis of Krause (Figure 5) [10-11].

FIGURE 3: T1-weighted sagittal MRI noting a normal central
canal (arrows).
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FIGURE 4: T2-weighted sagittal MRI noting a normal central
canal (arrows).
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FIGURE 5: Schematic drawing of the distal conus medullaris of
the spinal cord in the coronal plane noting the central canal
(C) and its dilatation into the terminal ventricle (V).
Interfascicular oligodendrocytes (O), protoplasmic astrocyte (Ap), nerve cells (N), and microglia
cells (M)

(From Tarlov's 1953 Sacral Nerve Root Cysts)

The location of the central canal relative to the midpoint of the spinal cord varies among the
regions of the cord. It is slightly ventral in the cervical and thoracic segments, central in the
segments of the lumbar region, and dorsal in the conus medullaris [10]. In transverse sections,
the central canal appears morphologically oval or circular and is juxtaposed by the substantia
gelatinosa centralis of Stilling, which contains neurons, neuroglia, and a reticulum of fibers
[10-11]. The central canal is also lined with cylindrical epithelium, which bears cilia in the
embryonic cord. The epithelial cells have basal processes, which are continuous with the
neuroglial tissue upon which they rest [11].

The region of the central canal is rich in neuroglia cells and fibers. These are chiefly arranged in
the form of a circular network just beneath and around the central canal. In front and behind
the central canal, the fibers display a commissural-like arrangement; laterally, they are
continuous with the fibers of the anterior horns [11].

Variations 
The central canal is usually a uniform elliptical [13] shape throughout most of the cord,
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although variations in the morphology of the caudal central canal have been described [7].
Choi, et al. noted that the ependyma-lined central canal of the filum terminale forms a cystic
dilatation at the lower end of the conus medullaris to become the ventriculus terminalis of the
spinal cord [3]. Similarly, enlargement of the canal was reported by Pearson and Sautter in their
observations on the caudal end of the spinal cord [4]. They reported the gray matter of the alar
plate was reduced in size with the corresponding enlargement of the central canal, which
constituted the terminal ventricle. Multiple cases of canal duplication in human embryos, and
whether they are of primary or secondary origin have been described in the literature [5, 14-16].

Ikeda inspected the caudal end of the nerve cord in human embryos and found multiple cases
with forking of the cord lumen, reporting seven main types [5]. Similarly, Lendon and Emery
investigated the incidence of canal forking in the equinal cord of 100 human infants [6]. They
observed that most of the forking occurred at the caudal end of the region, particularly in the
filum terminale, surmising that the process of redifferentiation associated with the
development of the filum contributed to the incidence of canal forking [6]. Storer, et al.
performed a computerized 3-D study of the central canal and observed forking in the lower part
of the conus near the terminal ventricle with outpouchings of each fork of the central canal
into the filum terminale [7]. Additionally, they observed the proliferation of ependymal cells in
two distinct columns of the lower conus and upper filum with the extension of these cells from
the lumen of the canal to the surface of the pia mater. They speculated this was a possible
functional connection between the canal and the subarachnoid space providing an important
fluid communication that may play a role in the “sink” function of the canal [10].

Studies of various species, including some primates and German shepherd dogs [17], have
demonstrated openings from the filum terminale central canal into the subarachnoid space [7,
18-22].

Pathology 
Syringomyelia

Typically, the central canal is prone to certain types of diseases, destructive lesions, and
conditions that become more common as people age. The central canal is frequently involved
with cavitary lesions in the parenchyma of the spinal cord, such as syringomyelia [10]. First
introduced by Ollivier D’Angers in 1827, the term syringomyelia, derived from the Greek word
for tube (syrinx), is used to describe dilation of the central canal extending over many segments
and appears to be related to a hydrodynamic mechanism related to the cerebrospinal fluid (CSF)
[10, 23].

Often used interchangeably in literature with syringomyelia, the closely related term
hydromyelia also refers to a dilatation of the central canal by CSF (Figure 6). Some have defined
hydromyelia as a congenital dilatation [24] of the central canal associated with hydrocephalus,
an obstruction of the foramina of Luschka and Magendie [25], and is at least partially lined by
ependymal cells. Syringomyelia has been applied to every kind of intramedullary cyst by some
authors defining it as a cavity distinct from the central canal and lined by ependymal cells or
primarily glial cells [23, 25]. Others restrict its use to certain subtypes of cystic lesions and
distinguish syringomyelia, hydromyelia, or myelomalacia as separate entities. Still, some
authors combine these terms into syringohydromyelia or hydrosyringomyelia [25]. Lee, et al.
stated that a clear communication between intramedullary cavities and the ventricular system
is almost never demonstrated, making it difficult to differentiate syringomyelia from
hydromyelia, although a truly eccentric location within the spinal cord may be more
characteristic of syringomyelia than of hydromyelia [26]. Batzdorf mentioned the distinction
between syringomyelia and hydromyelia is no longer considered absolute or critical [23].
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FIGURE 6: Axial cut through the spinal cord from a patient with
dilatation of the central canal (cc), i.e., hydrosyringomyelia.

Many have postulated on the pathophysiology of syringomyelia, but it is still not well
understood. Gardner in 1958 suggested a “water-hammer theory” where obstruction of the
foramen of Magendie leads to the transmission of pulsatile CSF pressure into the central canal
through the obex [27]. Ball and Dayan surmised that the CSF enters the syrinx through an
enlarged Virchow-Robin space in the spinal cord via a one-way valve-like mechanism at the
craniovertebral junction, which blocks the upward CSF movement [28]. Chang and Nakagawa
performed the simulation of CSF dynamics and came to the conclusion that loss of the shock
absorbing capacity of the cisterna magna and subsequent increase of central canal wall pressure
leads to syrinx formation [29]. Studies on kaolin-induced hydrocephalic animals indicated that
the forces of a downward movement of CSF from ventricles in the brain into the central canal
caused spinal cord cavitation, including central canal distention and disruption into the cord
parenchyma [30-37]. Klekamp stated that if we understand syringomyelia as a state of chronic
interstitial edema, where the extracellular fluid is trapped in the spinal cord due to CSF flow
obstruction, spinal cord tethering, or an intramedullary tumor, then we could explain all of the
experimental and clinical observations mentioned throughout literature [25].

Since the anterior white commissure lies near the central canal, it is likely to be the first
structure that gives definite clinical signs [38]. Involvement of the anterior horns may lead to
amyotrophy, often first evident in or confined to the hands but later spreading to the forearm
muscles of the shoulder girdle. Deep reflexes in the upper extremities are diminished early in
the course of the disease, resultant of the loss of continuity in the reflex arc. Scoliosis is often
an early sign resulting from damage to the dorsomedial and ventrolateral spinal nuclei. The
decussating spinothalamic fibers, carrying pain and thermal sensation, are frequently
interrupted, leading to impairment and subsequent loss of pain and temperature sensibility
with retention of light touch and proprioception [23]. This pathological condition may occur at
any level of the spinal cord, but if it should appear at extremity levels, clinical suspicion should
be wary for syringomyelia as such patients often seek treatment for burns, cuts, or blisters on
the regions involved [38]. 

Central Canal Stenosis
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It is estimated that stenosis of the central canal or occlusion occurs in 70% to 80% of normal
adults [1]. The canal narrows over time as part of an involutional or degenerative process and
compresses the nerves, resulting in claudication and radicular pain in the lower extremities. A
distinctive feature of the human central canal is its tendency to become progressively occluded
after birth [1]. However, not all levels of the canal become stenotic or obliterated with age. An
autopsy study by Yasui, et al. showed portions of the central canal in the cervical cord remain
patent up to the fourth to sixth decades of life [2]. Muthukumar was able to report a patent
central canal in a 33-year-old patient diagnosed with panventriculomegaly with
communicating syringomyelia [39]. Histologic studies of the canal indicate that ependymal cell
breakdown during the aging process contributes to the canal occlusion [10]. The ependymal cell
changes result in glial bundle formation, the proliferation of astrocytes, formation of
subependymal gliovascular buds, and intracanalicular gliosis [1-2, 10]. 

Milhorat, et al. performed a large autopsy study and observed that the stenotic process was
most pronounced in the narrowest segments of the canal (T2-T8) and involved more levels with
higher grades of stenosis in older individuals [1]. Interestingly, they suggested that central
canal stenosis was an acquired pathologic lesion rather than an age-dependent degenerative
process [10]. They speculated that the cause is recurring episodes of ependymitis caused by the
common virus infections one is exposed to throughout life [10]. This theory is supported by
Mims who has shown that influenza A and poxviruses replicate selectively in ependymal
cells [40]. Other viruses, including parainfluenza 2, measles, mumps, and reovirus type I, were
also shown to infect and destroy ependymal cells in the absence of clinically apparent disease
[1, 40]. 

Molecular studies
Many species have been used to better understand the anatomy and pathological nuances
involving the spinal cord central canal. Garcia-Ovejero, et al. [41] were able to demonstrate that
the adult human central canal displays at least three common characteristics distinct from other
species: first, a gliosis formed by a dense mesh of glial fibrillary acidic protein-positive ( GFAP+)
astrocytic processes. A second feature is the presence of protoplasmic cells or ependymocytes,
which show expression of CD15 and glutamate aspartate transporter (GLAST) (now known as
SLC1A3), that, in addition to astrocytes, have been related to radial glia and stem/precursor cell
phenotypes [41]. Additionally, Paniagua-Torija, et al. observed that the ependymal region is
enriched in cannabinoid receptor type 1 (CB1), which is involved in the regulation of the neural
stem [42]. A third feature is the existence of structures previously described as pseudo-canals
consisting of cells expressing vimentin and radially oriented around a presumed lumen, which
later was discovered to be a blood vessel [41]. Garcia-Ovejero, et al. stated that this finding
showed the presence of perivascular pseudorosettes, a crucial diagnostic feature for low-grade
ependymoma [41-42].

Recent adult mammalian spinal cord studies have revealed that ependymal cells lining
the central canal retain latent neural stem cell potential following experimental spinal cord
injury (SCI) [43-44]. Immunohistochemical studies of the spinal cord ependymal zone revealed
ependymal cells bordered by a subependymal layer comprised of small numbers of astrocytes,
oligodendrocyte progenitors, and neurons [43]. It was found that the dorsal pole of the central
canal contains tanycyte-like cells that express markers of both ependymal cells and neural
precursors, suggesting the potential for stem cell activity [43]. Lee, et al. performed real-time
polymerase chain reaction (PCR) array analysis of mouse spinal cord mRNAs and found
upregulation of Sox2 expression, a transcription factor that regulates self-renewal and potency
of embryonic neural stem cells, in adult SCI in both oligodendrocyte and ependymal cells of the
central canal [45].

With application to amyotrophic lateral sclerosis (ALS), Dodge, et al. showed that expression of
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adeno-associated virus serotype 4 (AAV4)-mediated expression of insulin-like growth factor-1
(IGF-1) or vascular endothelial growth factor (VEGF-165) found in the ventricular system,
including the ependymal cell layer and spinal cord central canal, lead to trophic factor delivery
throughout the central nervous system and increased survival of cytosolic copper–zinc
superoxide dismutase (SOD1) in transgenic mice [46]. The most frequent cause of familial ALS
is due to a mutation in the gene encoding SOD1, and these investigative findings pave the way
for the potential treatment of ALS [46]. 

Conclusions
The human central canal of the spinal cord has been studied infrequently. A better
understanding of its normal and pathological anatomy is necessary for clinicians who treat or
interpret imaging of the spinal cord.
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