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Ambiguity is the quality of being open to several interpretations. For an image, it arises when the contained
elements can be delimited in two or more distinct ways, which may cause confusion. We postulate that it also ap-
plies to the analysis of protein three-dimensional structure, which consists in dividing the molecule into subunits
called domains. Because different definitions of what constitutes a domain can be used to partition a given structure,
the same protein may have different but equally valid domain annotations. However, knowledge and experience
generally displace our ability to accept more than one way to decompose the structure of an object—in this case, a
protein. This human bias in structure analysis is particularly harmful because it leads to ignoring potential avenues
of research. We present an automated method capable of producing multiple alternative decompositions of protein
structure (web server and source code available at www.dsimb.inserm.fr/sword/). Our innovative algorithm assigns
structural domains through the hierarchical merging of protein units, which are evolutionarily preserved substruc-
tures that describe protein architecture at an intermediate level, between domain and secondary structure. To val-
idate the use of these protein units for decomposing protein structures into domains, we set up an extensive
benchmark made of expert annotations of structural domains and including state-of-the-art domain parsing algo-
rithms. The relevance of our “multipartitioning” approach is shown through numerous examples of applications
covering protein function, evolution, folding, and structure prediction. Finally, we introduce a measure for the struc-
tural ambiguity of protein molecules.
INTRODUCTION
Analysis is the process of separating a whole into its constituent parts
to gain a better understanding of it. Applied to the three-dimensional
(3D) structure of proteins, it often consists in dividing a macro-
molecule into simpler yet informative subunits, called domains, which
can be studied independently. Thus, investigating protein function, fold-
ing, or evolution often starts by delineating structural domains. This
strategy also helps overcome challenges associated with structural stu-
dies of full-length proteins by molecular dynamics or de novo predic-
tions. In addition, the classifications of protein structural domains are
at the basis of every protein structure prediction method relying on
fold recognition.

The idea of dividing protein structure into domains was introduced
more than four decades ago by Wetlaufer (1), who defined protein do-
mains as structurally compact and separate regions of the macromolecule.
After this geometrical definition, many manual and automated methods
for assigning structural domains have been based on additional crite-
ria, such as folding autonomy, function, thermodynamic stability, or
domain motions (2). As a result, many proteins are annotated differ-
ently from one domain database to another, depending on the methods
and criteria used for structure partitioning (3). Paradoxically, although
protein structure partitioning is a multiple-criteria problem—which, by
its definition, can often accept more than one solution—different do-
main decompositions of the same protein are still considered to be
mutually exclusive, rather than compatible or complementary. This
issue inherent to human perception has been previously raised (4, 5)
and continues to be a challenge (6), because it biases the analysis of pro-
tein molecules and restricts the number of avenues to explore, by not
allowing more than one way to decompose their 3D structure. A do-
main partitioning based on a particular criterion, for example, geome-
try, may be useful for studying certain properties of the protein, such as
function or dynamics, while being irrelevant regarding other charac-
teristics, such as evolution or folding. This is well illustrated by the
actin structure, which is divided into either two functional and evolu-
tionary domains in the Structural Classification of Proteins (SCOP) (7)
and Evolutionary Classification of Protein Domains (ECOD) (8) da-
tabases, or four domains, based on secondary structure elements, in
the CATH (Class, Architecture, Topology, Homology) database (Fig. 1A)
(9). Moreover, the delineation into two domains made by the authors
of the structure (10), who used spatial separation of the domains as a
criterion, differs from the function-based partitioning in terms of
boundaries.

Here, to get around the human tendency to reject potentially cru-
cial options when studying proteins, we propose an automated ap-
proach for structure partitioning, which considers the fact that protein
structures may be ambiguous and have different but equally valid do-
main delineations in the same way that an ambiguous image has
equally valid interpretations (Fig. 1B). This concept is also analogous
to the syntactic ambiguity, a situation where a sentence may be inter-
preted in several ways because of its ambiguous structure. Thus, unlike
other methods developed to date that provide single partitioning solu-
tions, our algorithm—named SWORD (Swift and Optimized Recog-
nition of Domains)—is aimed at cutting protein structures into
multiple alternative domain decompositions. It operates through the
hierarchical clustering of protein units (PUs), which are structural de-
scriptors of intermediate size, between secondary structures and do-
mains (11). These evolutionarily preserved substructures (12), into
which the input protein is initially decomposed, characterize protein
architecture in a more elementary way than domains while being large
enough to contain relevant structural information. Here, we first val-
idate the use of PUs to delineate structural domains, taking annota-
tions from the CATH, SCOP, and ECOD databases as reference and
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comparing our results with those obtained with state-of-the-art algo-
rithms. Then, we show the power of our multipartitioning approach
for cases of protein structure prediction and studies of folding,
function, and evolution. Finally, we show how we made SWORD able
to detect complex cases of partitioning through the development of an
original measure of the ambiguity in protein structures.
RESULTS AND DISCUSSION
Quantitative validation of the method
The ability of SWORD to find single partitioning solutions in agree-
ment with structural domains assignments made by human experts
was evaluated and compared with three reference algorithms: Protein
Postic et al. Sci. Adv. 2017;3 : e1600552 13 January 2017
Domain Parser (PDP), DomainParser, and DDomain (Fig. 2A).
Considering the four benchmarks as a whole, SWORD performs
slightly better than the other methods, ranking first for three annota-
tion data sets and third on the Islam90 set (n = 90). Although
SWORD is equaled by PDP for the Jones set (n = 55) and Domain-
Parser for the Broad-consensus set (n = 329), our method is unmatched
for the largest benchmark, that is the Consensus set (n = 3523), for
which it identified 87.7% of the manual annotations. Regarding in-
correct domain assignments, the four automatic methods have similar
propensities to over- or undercut protein structures. Finally, all these
accuracies are hardly inferior to those calculated without the 85%
boundary overlap criterion (fig. S1), which confirms that the main dif-
ficulty of protein structure partitioning lies more in finding the correct
number of domains than in delimiting accurate boundaries (4).

For a given protein structure, our method can propose multiple
alternative decompositions. Considering more than one assignment
necessarily increases SWORD’s ability to find a domain arrangement
that corresponds to expert annotations. Thus, the rate of agreement
with data set annotations reached 94.6% for the Jones set, 95.6% for
the Islam set, 96.9% for the Consensus set, and 97.6% for the Broad-
consensus set, with averages of 5.3, 3.7, 4.3, and 3.9 alternative delinea-
tions, respectively (see table S1). Moreover, by computing multiple do-
main assignments, SWORD can solve difficult cases of protein
structure partitioning. This has been evaluated by using the Dissensus
set (n = 1025), which contains domain annotations that differ between
CATH and SCOP databases. When considering only the optimal
partitioning for each protein structure of the Dissensus set, SWORD
found the correct assignment for 37.5 and 33.4% of CATH and SCOP
annotations, respectively (Fig. 2B). However, these proportions of cor-
rect assignments markedly increased to 60.4 and 76.8% of CATH and
SCOP annotations, respectively, when taking into account up to three
decompositions (2.67 on average) provided by our multipartitioning
method. The same benchmark has been conducted on the Strong-
dissensus data set (n = 98) made of discrepancies between CATH, SCOP,
and ECOD (fig. S2). By providing an average of 7.03 decompositions,
SWORD manages to find about half of CATH and ECOD annota-
tions (48.57 and 52.38%, respectively) and two-thirds of SCOP anno-
tations (67.62%). These lower, although still remarkable, performances
primarily reflect the higher difficulty of being in simultaneous agree-
ment with three diverging methods. Moreover, because most of the
ECOD annotations are based on SCOP, one can expect that these
partitioning cases, for which ECOD and SCOP disagree (in addition
to differing from CATH), are particularly complex.

Besides validating our PU-based algorithm, these results also
highlight the theoretical limit that automated methods have reached
regarding their ability to converge toward domain annotations man-
ually made by the authors. This limit is due to the exclusive use of
stereochemical information by algorithms, whereas human experts
can additionally take into account experimental data from molecular
biology and biochemistry. Although SWORD may be more accurate
than the other algorithms on our benchmark, the little improvement it
brings about leads us to believe that further development of the cur-
rently used “monopartitioning” approach is now of limited interest.

Dealing with ambiguity: Applications
The multiple view of protein architecture that we propose here can be
advantageously applied to the numerous fields of molecular biology
involving domain assignment, such as structure prediction or studies
about protein folding, function, and evolution. This can be illustrated first
Fig. 1. Analogy between recognition of structural domains and image interpre-
tation. (A) Three equally valid assignments of structural domains for the actin protein
(PDB: 1ATNA), each resulting from different partitioning criteria. (B) Ambiguous
image that can be interpreted as either the letters “KB,” the mathematical inequality
“1 < 13,” or the letters “VD” with their mirror image.
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Fig. 2. Benchmark results for the SWORD algorithm. (A) Partitioning accuracies of SWORD, PDP, DomainParser (DP), and DDomain (DD) calculated for the four data sets
of structural domain annotations (values are given in fig. S1). (B) Agreement between SWORD and either CATH or SCOP annotations, depending on the number of assign-
ments provided, for the structures of the Dissensus data set (values are given in table S1).
Postic et al. Sci. Adv. 2017;3 : e1600552 13 January 2017 3 of 11
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with the set of structures used by Wetlaufer (1) when he introduced
the concept of protein domains. For these proteins, neither the CATH
nor the SCOP databases contain domain assignments similar to those
he made four decades ago, although these remain valid today. The
same goes for the recent ECOD database, probably because it mainly
relies on domain assignments from SCOP. On the other hand, our
partitioning algorithm finds all these expert annotations of domains
through the alternative structural decompositions it computes for each
Postic et al. Sci. Adv. 2017;3 : e1600552 13 January 2017
protein (Fig. 3, A to E). Thus, without the results produced by SWORD,
any scientists interested in these proteins risk missing important ave-
nues of research.

More specifically, SWORD multipartitioning finds applications in
protein structure prediction. In this field, it is well established that fold
recognition methods perform better if the template library includes,
along with full protein chains, protein structures partitioned into do-
mains (13) because the global-local algorithm, typically used in fold
Fig. 3. Practical cases requiring alternative domain decompositions. (A to X) Examples illustrating the usefulness of SWORD structural partitioning (for details, please
refer to the main text).
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recognition methods, cannot efficiently assess sequence-fold compat-
ibilities over short portions of protein structures (14). Therefore,
extending the fold library with alternative domain decompositions
for each template structure can improve the search for compatible
folds and, consequently, the quality of protein structure predictions.
This can be verified by using target structures from the eighth edition
of the Critical Assessment of Structure Prediction (CASP8) competi-
tion, for which the modeling difficulty is lowered when treating the
structural domains separately rather than the whole protein chain
(15), the challenge being reduced to the relative positioning of the in-
dividually modeled domains. For these target proteins, unlike annota-
tions from other methods, SWORD partitioning finds the number of
domains that most facilitates structure prediction (Fig. 3, F to J). Thus,
we can speculate that a fold library derived from SWORD domain
assignments would likely have helped the prediction of these protein
structures by containing template domains more relevant for fold re-
cognition than those from other databases.

In detail, the Rieske ferredoxin (target T0391) is annotated as a
one-domain protein by PDP, CATH, and Pfam (no data in SCOP),
although this target is an obvious two–evolutionary domain protein,
constituted of a rubredoxin-like domain (residues 55 to 117) inserted
into a six-strand b barrel (residues 14 to 54 and 118 to 154), as shown by
N. Grishin in his analysis of the CASP8 results (15) and as can be found
in his ECOD database. This two-domain partitioning corresponds to
what SWORD proposes as the best alternative decomposition (Fig.
3F). Because the modeling difficulty goes from “hard” to “medium,”
depending on whether the target is treated as a one- or a two-domain
protein, respectively, it can be concluded that predicting the structure
would have been easier if it were based on SWORD, which can suc-
cessfully identify the two domains, rather than on CATH or Pfam do-
main assignments. Also worth mentioning is the particular case of the
Mu-like prophage tail protein gpP from Neisseria meningitidis (target
T0424), in which structural modeling is favored when considering the
protein as a whole (that is, one-domain assignment) because of the
existence of close homologs. For this protein, the best decomposition
identified by SWORD is similar to that of SCOP and divides the struc-
ture into two domains (Fig. 3H). Our algorithm also finds the same
three-domain organization as CATH and the four-domain assignment
made by N. Grishin (15)—and therefore annotated as a manual as-
signment in ECOD. Although SWORD does not find the domain as-
signment that is most favorable for predicting this target structure, the
multiplicity of partitioning solutions it provides remarkably reflects
the complex evolutionary history of this protein. The comparison be-
tween the two- and three-domain decompositions shows that the two
b-strand domains result from a duplication event, which was followed
by the insertion of a third domain. Then, by comparing the three- and
four-domain assignments, we can deduce that one of the duplicated
b-strand domains has undergone another insertion event of a 68-
residue domain.

Our partitioning algorithm is also helpful in understanding the
molecular mechanisms underlying protein functions. For example, al-
though the papain protease [Protein Data Bank (PDB): 9pap] is anno-
tated as a one-domain enzyme in CATH, SCOP, and ECOD databases,
the best alternative decomposition provided by SWORD successfully
identifies the two structural domains that form the cleft in which the
active site is located (Fig. 3K) (16). This also goes for the cystic fibrosis
transmembrane conductance regulator (CFTR) (PDB: 2bbo), for which
the most thorough partitioning computed by SWORD corresponds to
the three functional subdomains identified by the authors of the struc-
Postic et al. Sci. Adv. 2017;3 : e1600552 13 January 2017
ture (Fig. 3L, left) (17), whereas CATH and ECOD assign a unique
structural domain. Another example is the structure of the high-fidelity
DNA polymerase I (PDB: 1u4bA), for which only SWORD properly
isolates the catalytic domain through a decomposition into six domains
(Fig. 3M), our method being relevant regarding the molecular mechan-
isms of this enzyme. Finally, the complex structure of the myosin V
molecular motor (PDB: 1oe9A), which SWORD optimally partitions
into the five subcomponents delimited by a study of allosteric motions,
is worth mentioning (Fig. 3N) (18), whereas other methods fail at iden-
tifying these dynamic/functional domains. In this case, the function of
the protein is related to its structure and internal dynamics. These struc-
tural motions locally modify the geometry of the protein so that the
resulting domain assignment can vary depending on the conformation-
al state of the protein, hence the importance of providing multiple
possibilities of protein structure partitioning. By doing so, SWORD
can delimit protein domains that are compatible with dynamic exper-
imental data while still providing alternative decompositions that agree
with those based on structural and functional criteria.

The above examples of the DNA polymerase I and CASP8 targets
are actually cases where SWORD identifies structural domains that
correspond to mobile evolutionary units. These domain decomposi-
tions agree with the manual annotations from the MultiDom database
(19), in which structural domains are assigned mainly on the basis of
evolutionary information. This is also true for the optimal decom-
position that SWORD provides for the CFTR structure, which fits
with the two evolutionary domains annotated in Pfam 2bbo (Fig.
3L, right). Our method can also compute alternative partitioning solu-
tions that have the same number of domains but different boundaries.
Because of this capacity, SWORD can identify the two evolutionary
domains of the kinase haspin (PDB: 3dlz), in agreement with the dif-
ferent but equally plausible annotations of Pfam and CATH/MultiDom
(Fig. 3O). Finally, the advantage of using SWORD is also well illustrated
by the structural partitioning of DNA polymerase IV (PDB: 1jx4).
Two structural domains have been assigned in SCOP, and this protein
was annotated in CATH 3.4 as containing three domains, whereas
both the version 3.5 and the current version 4.0 identify four function-
al domains, as does ECOD. Instead of considering these three assign-
ments as mutually exclusive, all should be retained because these
three-, four-, and two-domain assignments are actually valid in terms
of evolution, function, and geometry, respectively. This is what SWORD
does by providing all these decompositions of the structure (Fig.
3P). Thus, we can see that the use of the evolutionarily preserved
PU substructures to delimit protein domains can make SWORD
assignments consistent with both geometrical and evolutionary de-
finitions of domains.

The intermediate size and compactness of PUs, their content in
regular secondary structure, and their conservation throughout evolu-
tion suggest an important role of these substructures in protein
folding. Thus, it is certainly no coincidence that SWORD succeeds
in demarcating the folding nucleus of the subtilisin protease (PDB:
1spb) (20), whereas other methods do not distinguish any domain
from this protein structure (Fig. 3Q, folding nucleus in purple). This
is also the case with the partitioning of the villin headpiece structure
(PDB: 1yu5), for which the sole alternative decomposition provided by
SWORD precisely delimits the ultrafast folding subdomain of this pro-
tein (21), whereas other methods do not isolate any domain (Fig. 3R,
folding subdomain in red). Similarly, the best alternative assignment
provided by SWORD for cytochrome c (PDB: 1ycc), or for RNase H
(PDB: 2rn2), isolates a subdomain that corresponds to a stable autonomous
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folding region (Fig. 3, S, in orange, and T, in black) (22, 23), whereas
CATH, SCOP, ECOD, and Pfam consider it as a one-domain protein.
For thermolysin (PDB: 1hyt), SCOP and ECOD identify only one do-
main, whereas CATH and Pfam assign two functional and evolution-
ary domains, respectively, as does SWORD. However, our method
proposes two different boundaries that are both relevant regarding
protein folding experiments. One decomposition isolates an autono-
mous folding unit (Fig. 3U, in salmon) (24), whereas its alternative
delimits a domain that has been shown to be able to fold partially
(Fig. 3U, in green cyan) (25). Another example is a-lactalbumin
(PDB: 1a4v), which is annotated as a one-domain protein in CATH,
SCOP, ECOD, and Pfam, whereas our algorithm isolates an a-helical
domain in its best alternative assignment (Fig. 3V, left, in black) and a
b-strand domain (in red, residues 38 to 103) that can independently
fold while keeping its ability to bind calcium (26). A shorter delinea-
tion of this latter b-strand domain (residues 38 to 72) that can still fold
partially as a molten globule (27) is also identified by SWORD in its
second best alternative assignment (Fig. 3V, right). A homolog of
a-lactalbumin is the hen egg-white lysozyme (PDB: 3lzt), for which
the same main folding domains are isolated by SWORD (Fig. 3W):
the a-helical domain (residues 1 to 39 and 74 to 129), which forms
early during the folding of the lysozyme, and the b-strand folding do-
main (residues 40 to 73) (28, 29). As for a-lactalbumin, CATH, SCOP,
ECOD, and Pfam annotate this lysozyme as a one-domain protein.
Finally, the same situation is once again observed with the Trp
repressor (PDB: 1jhgA), which is considered by CATH, SCOP,
ECOD, and Pfam as made of one functional or evolutionary domain.
Although the best partitioning solution provided by SWORD for this
structure is also a one-domain assignment, our algorithm produces
two alternative decompositions (Fig. 3X) identifying two domains
(in blue and magenta), which have been shown to fold, or partially
fold, in an independent manner (30, 31).

Measure and source of structural ambiguity
Given the above results showing the success of our method at finding
multiple domain decompositions, one can expect that the number and
quality of the alternative partitioning solutions produced by SWORD
may provide a relevant measure of ambiguity in protein structures.
This is why we have developed an ambiguity index (A-index; see
Materials and Methods) and compared its average value and distrib-
ution for the Consensus, Dissensus, and Strong-dissensus data sets.
Protein size is an obvious source of ambiguity because a larger structure
naturally means more possible decompositions. Therefore, to avoid this
size-related bias, the A-index comparisons have been (i) based on
structures annotated in the SCOP database as having two domains
(Fig. 4A) and (ii) performed according to different categories of chain
lengths (Fig. 4B). When comparing the A-index means, we can see that
the A-index is significantly higher for proteins of the Dissensus and
Strong-dissensus data sets than for those of the Consensus data set
(Fig. 4A). Moreover, proteins of the Strong-dissensus data set are signif-
icantly more ambiguous than those of the Dissensus data set. When com-
paring the A-index distributions, we can also observe that the A-indexes
are significantly higher in the Dissensus than in the Consensus data set
for each size category (Fig. 4B). For both the Dissensus and Consensus
data sets, we can see on the bar plots that the A-index gradually increases
with the chain length, which was expected: the longer the protein chain,
the more complex the structure can be. These differences in the mean
and distribution of the A-index show that it is a pertinent measure of
structural ambiguity as we define it, that is, a quantifiable property that
Postic et al. Sci. Adv. 2017;3 : e1600552 13 January 2017
is positively related to the number of valid domain decompositions of the
protein structure.

Despite the statistical significance of these results, one can observe
that a fraction of the structures from the Dissensus set show a lower
A-index than those from the Consensus set (Fig. 4A). Although seem-
ingly contradictory, the large majority of these cases from the Dissen-
sus set actually correspond to one-domain assignments from either
CATH or SCOP. When considering the structures from the Dissensus
set (n = 1025) that have an A-index of 0 or 1 (that is, 136 structures
detected as unambiguous by SWORD), we observe that 93.4% (127 of
136) of them are annotated in CATH or SCOP as being made of only
one domain. These disagreements on annotations that involve one-
domain assignments are special cases of discrepancies because a
“decomposition into one domain” could actually correspond to an ab-
sence of analysis (except for small proteins). Therefore, these
structures that have a relatively low A-index, although belonging to
the Dissensus set, may turn out to be “false discrepancies” if additional
data confirm their organization into more than one domain. In the
Strong-consensus data set (n = 98), only two structures have an A-
index of≤1, and both are annotated as one-domain proteins in SCOP.
Thus, all these results show the efficiency of SWORD at identifying
unambiguous protein structures.

Reciprocally, a fraction of the structures from the Consensus set
show a higher A-index than those from the Dissensus set (Fig. 4A).
The fact that a protein is similarly annotated in CATH, SCOP, and
ECOD is actually not incompatible with having an ambiguous struc-
ture. For example, when the decomposition into domains only relies
on the 3D structure itself (either because there are no other data avail-
able or because the method focuses on structural features to delimit
domains), the use of the sole geometric criterion is likely to lead dif-
ferent algorithms or experts to the same annotation. However, when
functional, evolutionary, folding, or dynamic information is used, da-
tabases would rather tend to disagree, by selecting only one out of sev-
eral valid decompositions, according to the type of information they
favor. Thus, the protein structures of the Consensus set that have a
high A-index should fall into two categories: (i) those for which the
lack of data has made all databases converge toward the same domain
assignment or (ii) those for which several valid possibilities of
partitioning have been found throughout their different studies, but
only one has been arbitrarily conserved in CATH, SCOP, and ECOD.

Although it is difficult to identify structures that belong to the first
category, examples of proteins with alternative annotations to those of
CATH, SCOP, and ECOD can be easily found among the most am-
biguous structures of the Consensus set (n = 3523): 34 proteins with
an A-index of 4 (table S2). For these protein structures, the ambiguity
(that is, high A-index) finds its source in the potential number (actu-
ally >1) of equally valid domain assignments. Thus, although the elon-
gation factor Tu from Thermus thermophilus (EF-Tu; PDB: 2c78A) is
consensually decomposed into three domains, based on spatial sepa-
ration, it can be alternatively annotated as a two-domain structure
(Fig. 5A) when using either the secondary structure content or the
domain motion, which is consequent to the hydrolysis of GTP, as a
criterion (see http://pdb101.rcsb.org/motm/81). A second example is
the structure of the interferon-g–induced guanylate-binding protein
1 (GBP1; PDB: 1f5nA), which is a two-domain protein in CATH,
SCOP, and ECOD, but could be decomposed into three or four domains
(Fig. 5B), when considering its conformational change induced by the
binding of a 4-azapodophyllotoxin derivative (32). A third example is
the clathrin heavy chain proximal leg segment from Bos taurus (PDB:
6 of 11
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Fig. 4. Assessement of the structural ambiguity measure. (A) Box plots of the A-indexes calculated by SWORD for the two-domain protein structures (SCOP boundaries)
of the Consensus, Dissensus, and Strong-dissensus data sets (statistics in table S3). (B) A-index distributions of the structures from the Consensus and Dissensus data sets for
four categories of chain lengths from 100 to 200 amino acids to >400 amino acids (statistics in table S4).
Postic et al. Sci. Adv. 2017;3 : e1600552 13 January 2017 7 of 11
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1b89A), which is a large protein chain annotated as a one-domain
protein in the Consensus, whereas it is made of three clathrin domains
according to Pfam (Fig. 5C). The opposite case can be illustrated by
the rabbit skeletal muscle calsequestrin (PDB: 1a8yA), which is de-
composed into three thioredoxin-like domains by CATH, SCOP,
and ECOD, whereas Pfam identifies the whole chain as one calseques-
trin domain (Fig. 5D). For the 30 other structures of table S2, multiple
decompositions can also be found when using evolutionary, functional,
or folding criteria.

The examples presented in this article show that ambiguous cases
of domain assignment occur when the formation of domains in a pro-
tein structure has been driven by different and diverging forces. Thus,
the evolutionary domains of the Mu-like prophage tail protein gpP
(A-index = 3; Fig. 3H) could not be identified by a method that
focuses on the protein function. Similarly, the folding domains of
the thermolysin structure (A-index = 3; Fig. 3U) could not be identi-
fied if functional and evolutionary criteria are used. Finally, the high
ambiguity measured by SWORD for calsequestrin (A-index = 4; Fig.
5D) may result from the fact that its structure is partly made of ran-
Postic et al. Sci. Adv. 2017;3 : e1600552 13 January 2017
dom coil and has its secondary structure content modified upon the
binding of Ca2+ (33), which would blur or multiply the possibilities of
partitioning. These structural particularities and the numerous do-
main decompositions found by SWORD must be related to the mul-
tifunctional nature of calsequestrin, which can bind Ca2+ and K+,
polymerize, and directly regulate other protein activities via protein-
protein interactions (34) and has a reported kinase activity (35).

Conclusions and perspectives
Here, we show that our conceptually new multipartitioning approach
can tackle the analytical bias caused by the ambiguity of protein struc-
ture and can therefore be helpful for any field of molecular biology
involving protein domain assignment. We did not mention the DHcL
(Domain Hierarchy and closed Loops) method (36, 37), although it
can compute alternative partitionings because of its low performance
reported in an independent benchmarking (38). We did not also men-
tion the DOMIRE web server (39) because its ability to produce multi-
ple structural decompositions is more a consequence of using multiple
algorithms rather than its purpose.

Finally, we have used our partitioning algorithm as a basis for de-
veloping an original measure of ambiguity in protein structures. We
have shown that our A-index is sensitive to ambiguous cases of struc-
tural domain assignment. Some structures show a high A-index de-
spite having the same annotation in CATH, SCOP, and ECOD.
These cases may fall into the category of proteins that have alternative,
yet undiscovered, biological functions. Thus, future work will investi-
gate how measuring the architectural complexity of protein structures
can be used to detect functionally complex (that is, multifunctional)
proteins.
MATERIALS AND METHODS
Benchmark data sets
Jones set.
The well-known Jones domain data set (40) contains 55 protein
chains, for which domain assignments had been reported in the liter-
ature by the authors of the structures. This data set is widely used as a
benchmark for domain assignment methods.
Islam90 set.
The Islam2363 domain data set (41) contains 2363 manual protein
domain assignments and has previously served as a benchmark (5).
Here, we used Islam90, a subset of 90 annotations, with a maximum
sequence identity of 30% (to avoid the bias of overrepresented protein
families) and excluding theoretical models.
CATH and SCOP set.
The CATH and SCOP (CS) domain data set contains 4660 proteins
that share ≤30% sequence identity and are annotated in both SCOP
1.75 and CATH 3.4 protein domain databases. Here, for a given protein
structure, we considered domain annotations as similar when having an
equal number of identified domains and ≥85% overlap between do-
main boundaries (9). Thus, we derived two benchmark data sets from
the CS set: a Consensus set of 3635 proteins and a Dissensus set of 1025
proteins, for which database annotations (CATH and SCOP) were sim-
ilar and different, respectively. The number of proteins in the Consensus
set was further reduced to 3523 by selecting the annotations that are
similar in CATH, SCOP, and ECOD. Finally, we derived from the
CS set a third data set, named the Strong-dissensus set, which contains
98 proteins, for which annotations from CATH, SCOP, and ECOD are
all different.
Fig. 5. Revealing the structural ambiguity with the A-index. (A to D) Examples
of domain assignments for protein structures from the Consensus set that are de-
tected as ambiguous by SWORD.
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Broad-consensus set.
The Broad-consensus data set contains the 333 proteins of the CS set,
for which CATH, SCOP, and Islam annotations were similar. Our de-
cision model was optimized using this set of structural domain anno-
tations. The number of proteins in the Broad-consensus set was further
reduced to 329 by selecting the annotations that are similar in CATH,
SCOP, Islam, and ECOD.

Domain assignment using PUs
Since the first automated method for structural domain assignment
(which was published only 1 year after Wetlaufer’s definition of protein
domains and was based on Ca-Ca distance maps) (42), a wide variety
of algorithms have been developed, continuously improving the quality
of automatic annotations. Different partitioning strategies have been
used. Thus, algorithmic methods can delimit domains by iteratively seg-
menting the entire protein structure (“top-down” strategy) and/or by
defining and clustering smaller substructures (“bottom-up” strategy).
Hence, domain assignment is achieved using different representations
of the protein structure, such as maps, graphs (43–45), or Gaussian
network models (46). Although maximizing the ratio of intradomain
contacts over domain-domain interface is the most popular approach
(47–50), other criteria have also been used successfully, such as energy
(51) or secondary structure (52).

The SWORDmethod is a top-down/bottom-up approach in which
PUs are generated using Protein Peeling (53) and then gradually
merged while testing several possible 30-residue-long domain delinea-
tions. Thus, each PU merging event defines a domain partitioning level,
which is evaluated using two criteria: the separation (s) and the com-
pactness (k), inspired by the PDP (47) and PUU [Parser for protein
Unfolding Units (48)] methods, respectively. The separation criterion
si,j measures the independence between two PUs, i and j, and can be
written as follows

si; j ¼
pi; j=ðSiÞa � ðSjÞa
piþj=ðSi þ SjÞ

where pi, j is the contact probability (11) between PUs i and j (pi, j is a
real number between 0 and 1; see the Supplementary Materials), Si
and Sj are the amino acid lengths of PUs i and j, a = 0.43 (47), and
pi+j is the contact probability of the whole domain formed by merging
the two PUs. Thus, a high value of si, j indicates a high number of
contacts between PUs i and j, meaning that these PUs are good can-
didates for being merged into one protein domain; otherwise, a low si, j
implies two independent PUs that should remain separated between
two protein domains. The merging of PUs i and j is also evaluated
using the ki, j compactness criterion, which measures the contact den-
sity of the resulting protein domain, and can be written as follows

ki; j ¼
∑
a
∑
b
pa;b

Si þ Sj

where pa,b is the contact probability between residues a and b of the
resulting protein domain, and Si and Sj are the amino acid lengths of
PUs i and j. Thus, a high value of ki, j indicates a high compactness of
the protein domain, meaning a favorable merging event of PUs i and j.
Finally, the choice of using PUs as building blocks to reconstruct pro-
tein domains is justified by their potential content in evolutionary
Postic et al. Sci. Adv. 2017;3 : e1600552 13 January 2017
information. This assumption is supported by a recent study, which dem-
onstrates that alternative splicing events tend to spare PUs while mod-
ifying the overall protein structure (12). These substructures are also
relevant regarding the protein folding because they have been success-
fully used to identify early folded elements (11). The relevance of PUs
was also confirmed by their very recent use in the design of small
HIV-1 antigens (54).

Parameter optimization
For each protein structure of the training set, after each level of PUmerg-
ing, the different possibilities of domain delineations are sorted by their
compactness, the best delineation being the one with the highest k com-
pactness value. Then, when matching with the domain delineation re-
ported in the literature, each of these best domain delineations, as well
as the corresponding undercut delineation (that is, the domain delinea-
tion from the previous level), is labeled “correct”; the corresponding
delineation of the next level (overcut) is labeled “incorrect.” Thus, follow-
ing this bimodal classification, quasi-optimal values of s and k for separat-
ing correct and incorrect delineations were determined using a grid search
algorithm. Stable values of the model parameters s and k were obtained
with 10-fold cross-validation. An illustration of the model is given in fig. S3.

Alternative delineations and measure of ambiguity
At the end of the structure partitioning process, several domain decom-
positions may fall in the acceptance region because of their s and k
values, enabling SWORD to provide several domain assignments for
a single query structure. In addition, SWORD provides decompositions
that are outside the acceptance region but close to the model’s threshold.
The best domain assignment is selected among the accepted decomposi-
tions of the highest level (that is, those with the highest number of do-
mains) as the one with the highest domain compactness. A qualitative
assessment is also provided for each assignment by calculating f(di), where
di is the Euclidean distance between the decomposition i and the thresh-
old of the acceptance region and f is a step function used to sort the
distances di into five classes. The f function takes five values, from “*”
to “*****,” defined on five intervals delimited by the values {−0.15, −0.05,
0.05, 0.15} (rejected decompositions have negative distances). This im-
plies that a quality of “***” corresponds to a decomposition that is
close to the model’s threshold, either inside or outside the acceptance
region. Finally, we have developed a measure of structural ambiguity,
called the A-index, which is similar to the Hirsch index (h-index) used
in scientometrics (55), except that it is based on the decomposition
quality described above, instead of article citations. Thus, a protein
structure with an A-index of 3 has at least three different decomposi-
tions, each with a quality of *** or more. Therefore, the A-index is an
integer ranging from 0 to 5 (0 being the value attributed to proteins
that do not have any partitioning, that is, one-domain assignment).
On the web server [where the different decompositions can be visua-
lized with the PV molecular viewer (56)], the structural ambiguity is
represented by n “+” symbols, where n is the A-index.

Performance evaluation
The accuracy of SWORD in identifying protein domains was evalu-
ated using the benchmark data sets defined above and compared with
that of three widely used methods: PDP (47), DomainParser (43), and
DDomain (50). We used DDomain trained on the “AUTHORS” data
set of annotations [see the study by Zhou et al. (50)] because it gave
the best results on our benchmark. Nevertheless, results for the CATH-
and SCOP-optimized versions are also provided in the Supplementary
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Materials. For the evaluation of all methods, domain decompositions
were considered similar when boundary overlap was ≥85% (9). In ad-
dition, the accuracy in finding the correct number of domains regardless
of the boundary overlap was also evaluated. The notions of accuracy
and correctness must be considered in light of the fact that CATH,
SCOP, and ECOD annotations do not represent the absolute truth.
Here, the purpose was to see whether SWORD decompositions agreed
with domain annotations made by human experts. Finally, to deter-
mine which algorithm is the most accurate, the distributions of deli-
neations (“correct” and “incorrect”) were compared using the
Wilcoxon signed-rank test, with an a error of 0.05. Finally, the capac-
ity of SWORD to identify alternative domain delineations was evalu-
ated using (i) the Dissensus benchmark data set of CATH and SCOP
annotation discrepancies and (ii) the Strong-dissensus set of CATH,
SCOP, and ECOD discrepancies.
SUPPLEMENTARY MATERIALS
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table S2. The 34 most ambiguous protein structures of the Consensus set.
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